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Critical loads of shell structures can be properly approximated only thro-
ugh including randomness in their geometry. As it is difficult and expen-
sive to measure the initial structure imperfections in situ or in laborato-
ry, a methodology of identification and description of the available data
should be provided. The presented procedure provides an opportunity
for the reproduction of measured maps of steel cylindrical tank geo-
metrical imperfections. Simulations of nonhomogeneous random fields
of imperfections, based on the original conditional-rejection method of
simulation, are applied. Using the measured data, an envelope of the
imperfections is also estimated. It allows for simulation of extreme but
still realistic fields of imperfections. Additionally, nonlinear numerical
analyses of tanks with and without initial geometrical imperfections are
performed. The results indicate that the initial imperfections influence
the solutions.
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1. Introduction

Assessment of the reliability, safety and stability of structures with initial ma-
terial and geometrical imperfections belong to the most complex problems
in applied mechanics. The response of a large class of imperfection-sensitive
structures (thin shells, thin-walled beams, arches and others) exhibit some
features of chaotic systems. Many structural models deal mainly with elastic
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stability and include imperfections in a deterministic way, but alternative me-
thods are also implemented. The random nature of the structure behaviour
has initiated the use of probabilistic methods (Augusti et al., 1984). Unfortu-
nately, exact analytical solutions to stochastic problems exist only for simple
models of structures and uncomplicated cases of loading. To obtain approxi-
mate results, a great variety of perturbation techniques and stochastic finite
element methods have been developed (see Surdet and Der Kiureghian, 2002;
Matthies et al., 1997; Schuëller, 2001). Structure reliabilities are also estima-
ted. For these purposes, the following techniques are in use: the Monte Carlo
method, first and second order reliability methods (FORM and SORM), re-
sponse surface techniques, artificial neural network methods and others (see
Hurtado and Barbat, 1998; Marek et al., 1996; Melchers, 1999; Raizer, 2004).
When nonlinear geometrical and material effects are taken into consideration,
the structure reliability can be evaluated only numerically (Anders and Hori,
1999). But the probabilistic analysis should be used cautiously. For example, it
has been demonstrated by Ferson and Ginzburg (1996) what spurious results
could be obtained by a stochastic method applied inappropriately.

It is well known that the effect of structural geometrical imperfections can
dramatically decrease the nominal load carrying capacity of engineering struc-
tures (Arbocz and Starnes, 2002; Khamlichi et al., 2004; Papadopoulos and
Papadrakakis, 2004). An analysis of these imperfections can improve the de-
sign process (Arbocz, 1998). On the basis of measured and experimental data,
the initial structure imperfections can be realistically described by random va-
riables or random fields (Arbocz and Starnes, 2002). An important part of the
structural imperfection modelled in a reliability context is the representation
of random fields describing the statistical variation of properties or structure
parameters. Various attempts have been made to find out ways of doing this
(see: Surdet and Der Kiureghian, 2002; Matthies et al., 1997; Vanmarcke, 1983;
Vanmarcke et al., 1986; Li and Der Kiureghian, 1993; Zhang and Ellinwood,
1995; Mignolet and Spanos, 1992; Spanos and Mignolet, 1992).

The measured response of a structure, whenever available, should be used
to update its reliability. For example, Papadimitriou et al. (2001) showed that
the structural reliability computed before and after using additional dynami-
cal data could differ significantly. The degree of structure sensitivity to the
imperfections depends not only on their magnitude but also on their shape
(Arbocz and Starnes, 2002). It is not sufficient to check the shell surface for
the maximum imperfection amplitude by carrying out selected circumference
or axial measurement scans. A complete surface map of the measured structure
should be provided.
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The developed methods of the structural data identification are related
mainly to dynamical problems (Bendat and Piersol, 1993; Brandt, 1997), and
their application to static analysis needs further investigation.

Comprehensive numerical analysis of these problems can be found, for
example, in Schenk and Schuëller (2003), where buckling behaviour of cylin-
drical shells with random geometrical imperfections was examined. A concept
of numerical prediction of a large scatter in the limit load observed in experi-
ments using the direct Monte Carlo method, the simulation technique, and the
nonlinear finite element method was introduced. The geometric imperfections
were modelled as two-dimensional, the Gaussian stochastic process with pre-
scribed second moment characteristics was based on a data bank of measured
imperfections. The tests were aided by the Karhunen-Loéve expansion me-
thod. Owing to this, it was possible to give the second moment characteristics
of the limit load.

Stefanou and Papadrakakis (2004) presented a stochastic triangular shell
element in the case of a combined uncertain material (Youngs modulus and
the Poisson ratio) and geometrical (thickness) properties. The properties were
described by uncorrelated two-dimensional homogeneous fields. The spectral
description of the random fields in conjunction with the Monte Carlo simula-
tion was used for the computation variability.

In Papadopoulos and Papadrakakis (2004) by means of the same metho-
dology a parametric study was performed to evaluate the sensitivity of the
buckling load of a cylindrical panel to the amplitude and shape of the initial
imperfections. One- and two-dimensional stochastic imperfections of shapes,
the modulus of elasticity and the shell thickness were introduced individually
or in combination. The influence of the shape and magnitude of the imper-
fections on the form and magnitude of the panel buckling load distributions
was investigated. In the case of one-dimensional combined imperfections, a
drastical reduction of about 50% of the mean value of the buckling load was
observed, whereas in two-dimensional combined imperfections such a reduction
was not proved.

The Monte Carlo method combined with the finite element program ana-
lysis was also employed by: Bielewicz et al. (1994), Walukiewicz et al. (1997),
Bielewicz and Górski (2002) and Górski (2006). Structural initial imperfections
were assumed to be random fields described in terms of a set of simulated re-
alizations and the resulting statistic estimators. This lead to solutions of a
set of deterministic problems for the assessment of the structure model re-
sponses. The critical load histograms obtained numerically made it possible
to estimate the structure reliability. Special attention was paid to discussion
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of reduction methods concerning the number of the Monte Carlo realizations.
Two methods were considered: the reduction of the initial sets of data, and
the accuracy analysis of the output results. An assessment of the structure
reliability interval was also proposed.

With regard to compressed cylindrical shells, a reliability based knock-
down factor was derived to describe the allowable load applied by Arbocz and
Starnes (2002). It can replace the empirical knockdown factor so chosen that
when multiplied by the calculated perfect shell buckling load, a ”lower bound”
relating to all existing experimental data is obtained. But despite some achie-
vements in accurate prediction of the load carrying capacity of an imperfect
shell, the problem is still an open question (Papadopoulos and Papadrakakis,
2004).

In this paper, the measured imperfections obtained for steel cylindrical
vertical tanks of 5000-50000 m3 capacity (Orlik, 1976) are considered. An
identification procedure and numerical simulation of the initial geometrical
imperfections of tanks is proposed. For this purpose a comprehensive statistic
analysis of the measured imperfection is provided. To accomplish the numeri-
cal simulation, a correlation function describing the imperfection random fields
is introduced. In calculations, the conditional-rejection simulation method is
used (see Bielewicz et al., 1994; Walukiewicz et al., 1997; Górski, 2006). As
the field of initial imperfections is an example of circular data (Fisher, 1993)
the simulation method is appropriately modified. The proposed simulation
method makes it possible to implement the entire measured data in the cal-
culation process. On this basis a formula which can be used in the prediction
of any extreme imperfection in the tank is developed. Additionally, nonlinear
numerical analyses of tanks with and without initial geometric imperfections
are performed. The results indicate that the initial imperfections influence the
solutions.

2. Stochastic description of tank geometric imperfections

A detailed description of in a imperfections steel cylindrical vertical tank can
be found in Orlik (1976). Nine sets of measured in situ imperfections of tanks of
V = 5000-50000 m3 capacity were analysed (see Table 1, and Fig. 1b-e). The
basic statistic parameters of the initial imperfections, i.e. the mean values,
standard deviations, and the maximal values are presented in Table 2. It is
easy to notice that the discrepancies between the parameters are significant.
Examining the shapes of the measured imperfection fields one can describe
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them as accidental or even chaotic. Only the first two tank imperfection maps
are similar. Even in the case of tanks no. 3 and 4, the dimensions of which
are the same as in the first two, the initial imperfections differ evidently.
The differences result from tank dimensions, construction method used and
precision of the tank assembly. The last reason seems to be the most important.
Using the measured data, a procedure of the identification and simulation of
the steel tank geometrical imperfection maps is proposed (see also Górski and
Mikulski, 2005). Probabilistic methods are applied.

Table 1. Cylindrical vertical tank data (Orlik, 1976)

Dia- Tank
assem-
bly
method

Mesh
dimen-
sion
[mm]

Nos. of
measu-
reing
point

Nos. of Nos. of
Tank V meter Height points points
no. [m3] d [m] h [m] along along

perim. height

1 5000 23.75 11.98 rolled strike 396× 750 3232 202 17
2 5000 23.75 11.98 rolled strike 396× 750 3232 202 17
3 5000 23.75 11.98 rolled strike 396× 750 3030 202 15
4 5000 24.50 11.80 sheets, hand 4810× 1500 128 16 9

welding
5 13000 36.58 13.45 sheets, hand 442× 750 168 12 14

welding
6 30000 49.50 16.44 sheets, hand 370× 1500 3780 420 9

welding
7 30000 49.50 16.44 sheets, hand 5981× 750 572 26 22

welding
8 32000 54.10 14.40 sheets, hand 6060× 800 448 28 16

welding
9 50000 65.00 18.01 sheets, 400× 1500 5100 510 10

automatic

2.1. Identification of the measured geometrical imperfections

The tank side surface imperfections can be considered in terms of a two-
dimensional scalar random field described by a probability density function.
In Wilde (1981) and Orlik (1976), the essential features of the measured im-
perfection fields were considered. The following hypotheses were formulated
and proved:

• the stochastic process is stationary and ergodic along the horizontal lines,
• the random variables can be described by a Gaussian probability density
function.
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Fig. 1. Measured and simulated geometrical imperfections of petrol tanks. Notes:
tanks are in different scales; in tanks no. 6 and no. 9 only every second vertical line
is drawn. Measured imperfections: (b) tank no. 1 – V = 5000m3, d = 23.75m,

h = 11.98m; (c) tank no. 3 – V = 5000m3, d = 23.75m, h = 11.98m; (d) tank no. 6
– V = 30000m3, d = 49.50m, h = 16.44m; (e) tank no. 9 – V = 50000m3,

d = 65.00m, h = 18.01m. Simulated imperfection – tank no. 1: (f) estimation of
measured imperfections – sample no. 1; (g) simulated extreme imperfections –

sample no. 234



Identification and simulation of initial geometrical... 419

Table 2. Statistical description of measured initial geometrical imperfections
of tanks

Tank d Mean value St. dev. |xmaxi |
x/d σx/d |xmaxi |/d

no. [m] x [m] σx [m] [m]

1 11.875 −0.763 · 10−2 0.0233 0.159 −0.643 · 10−3 0.00197 0.0134
2 11.875 −0.988 · 10−2 0.0240 0.163 −0.832 · 10−3 0.00202 0.0137
3 11.875 −0.485 · 10−2 0.0153 0.110 −0.408 · 10−3 0.00129 0.00926
4 12.250 −0.216 · 10−1 0.0213 0.075 −0.176 · 10−2 0.00173 0.00612
5 17.790 −0.994 · 10−3 0.0329 0.139 −0.559 · 10−4 0.00185 0.00781
6 24.750 −0.361 · 10−2 0.0302 0.167 −0.146 · 10−3 0.00122 0.00675
7 24.750 0.118 · 10−1 0.0252 0.097 0.476 · 10−3 0.00101 0.00392
8 27.005 0.297 · 10−2 0.0278 0.108 0.110 · 10−3 0.00103 0.00400
9 32.500 0.109 · 10−2 0.0491 0.226 0.334 · 10−3 0.00151 0.00696

Using the above assumption, the following nonhomogeneous correlation
function is introduced

K(y1, y2, z1, z2) = α
z1z2
h2
cos(ω(y2 − y1)) exp(−β|y2 − y1| − γ|z2 − z1|) (2.1)

where: y1, y2, z1, and z2 are the point coordinates (see Fig. 1), α, ω, β, and γ
are the correlation coefficients, and h denotes the tank height. The first term
αz1z2h

−2 determines a linear change of the standard deviation σx =
√
αz/h

along the vertical line with zero value at the tank bottom and maximum
at the top. The element cos(ω(y2 − y1)) assumes that the random variables
permute along the perimeter according to the cosine function. The last term,
exp(−β|y2 − y1| − γ|z2 − z1|), describes how fast the correlation between the
neighbouring points vanishes in the horizontal and vertical directions.

The correlation function parameters α, ω, β, and γ are estimated on the
basis of the measured data. Only the imperfection fields of tanks nos. 1-3
(V = 5000m3), no. 6 (V = 30000m3), and no. 9 (V = 50000m3) were me-
asured using fine meshes (see Table 1). Thus, only five data sets were used
to determine the constants of Eq. (2.1). The assumption that the random
field of imperfections is ergodic along the horizontal lines makes it possible to
analyse not a single (the measured) but hundreds of realizations. For exam-
ple, in the first case (tank no. 1), as the imperfection values are given in
202 vertical lines, the same number of field realizations can be considered
(NR = 202). For the reason that the imperfections were measured at 16 points
along the vertical line, the dimension of the random vector xi equals 16×202 =
3232. The global experimental covariance matrix Ke (size 3232× 3232) of the
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measured imperfection field was obtained according to the following statistical
formulas

Ke =
1

NR− 1
NR∑

i=1

(xi − x)(xi − x)⊤

(2.2)

x =
1

NR

NR∑

i=1

xi

where xi (i = 1, . . . , NR) is the measured imperfection vector, NR is the
number of realizations, and x represents the mean value vector.

Making use of the calculated matrix Ke (Eqs. (2.2)), the parameters of
correlation function (2.1) are determined by a standard regression analysis.
As any regression calculations concerning the global experimental covariance
matrix size 3232×3232 are inefficient, only imperfections measured on limited
areas of tank surfaces have been considered. In the cases of tanks nos. 1,
2 and 3, the random vectors xi of dimensions 16 × 16 has been analysed.
Similar reduction has been set up in the case of tanks nos. 6 and 9 (28×9 and
26 × 10, respectively). In the calculation, all horizontal lines are taken into
considerations and only a limited number of the vertical lines. The magnitude
of the reduced areas of the calculation are connected with the significant range
of the correlation defined by (2.1). This simplification has reduced the time
of regression analysis. The results – parameters of correlation function (2.1)
– are presented in Table 3, in which the global Ger and variance Ver errors
of the calculations are also presented. They are obtained using the following
formulas

Ger(Ke, K̂e) =

∣∣∣‖Ke‖ − ‖K̂e‖
∣∣∣

‖Ke‖
· 100%

(2.3)

Ver(k
e
ii, k̂
e
ii) =

1

MN

MN∑

i=1

keii − k̂eii
keii

· 100%

where ‖K‖ =
√
trK2 is the matrix norm, kii denotes the diagonal element

of the matrix, and MN describes the covariance matrix size. The elements of
the covariance matrix estimator K̂e were obtained by inserting the calculated
correlation parameters in (2.1). The graphical representation of the selected
experimental covariance matrix values Ke and their estimator K̂e, calculated
with the help of the vector xi defined on a 16×16 size mesh, is given in Fig. 2.
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Table 3. Correlation parameters of covariance function (2.1)

Tank Random vector Correlation parameters of Eq. (2.1) Errors
no. xi dimension α ω β γ Ger Ver

1 16× 16 0.000716 0.317389 0.175900 0.058001 4.49 26.84
2 16× 16 0.000707 0.329261 0.163659 0.050385 3.04 29.00
3 16× 16 0.000533 0.421175 0.113103 0.098789 8.25 15.75
6 28× 9 0.001397 0.154658 0.061831 −0.00861 1.84 22.21
9 26× 10 0.005234 0.134896 0.040879 0.001564 0.78 6.40

Fig. 2. Graphical representation of identified correlation matrix of imperfection field
(xi size equals 16× 16); y = 6.0m (constant, half the shell height),

0 ¬ x ¬ 37.3m (half the shell perimeter)

The error values and the plots show that the scattered pattern of imperfections
was modelled accurately.

Analysing the results presented in Table 3, one can notice that only the
first two sets of parameters describing the imperfections for tank no. 1 and
no. 2 are similar. The results confirm the conclusions formulated above (see
Table 2). It is obvious that the characteristics of geometrical imperfections vary
depending on different tank dimensions. Also the difference between the tanks
of the same capacity (tanks no. 1, no. 2 and no. 3) can be easily predicted.
Comparing Fig. 1a,b, it is possible to notice that tank no. 3 was built much
more precisely.

Similar calculations of the correlation coefficients can be made in the case
of the limited measured data, i.e. for tanks nos. 4, 5, 7, and 8. For example,
using the data of tank no. 4 (see Table 1), the following parameters have been
obtained

α = 0.013612 ω = 0.299437

β = 0.062983 γ = −0.009868
(2.4)
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with the associated global and local errors: Ger = 16.51%, Ver = 4.48%. In
this case, the calculations are performed with the help of all the available
data (mesh 9 × 15, 128 measured points). Despite the fact that tank no. 4
(V = 5000m3) is almost identical to tanks 1-3, the results differ significantly
(compare parameters (2.4) and those presented in Table 3). The differences
result mainly from the limited data used in the calculations, i.e. 15 vertical
lines in tank no. 4, and 202 when tank no. 1 is considered. The differences
in the initial imperfection shapes and magnitudes (see Table 2) seem to have
minor influence.
To indicate the effect of the number of measured imperfections on the

correlation parameters, an additional simple analysis was performed. The me-
asured data of tank no. 1 were reduced in such a way that their size was close
to the data of tank no. 4, i.e. 8×17 = 136 points. On that basis, the following
correlation parameters were estimated

α = 0.009893 ω = 0.335382

β = 0.024198 γ = −0.013186
(2.5)

As expected, the results differ significantly from those obtained for the
16× 202 measured points of tank no. 1 (see Table 3). Thus, the imperfection
data for tanks 4, 7, 8, and 9 seem to be insufficient to describe the random
fields properly. The method of identification of the imperfection fields on the
basis of the limited data remained an open problem.
The analysis makes it possible to formulate the following conclusions:

• the number of the measuring points of imperfections should depend on
the quality of the tank assembly,

• the data necessary for the acceptable definition of the random field of
imperfections should be measured precisely, using a fine mesh, even when
only a limited part of the tank (for example one quarter) is taken into
consideration; measuring the entire tank side by a rough mesh gives
inadequate results.

It is an important problem if a general rule can be established to describe
the relation between the tank dimensions and the correlation coefficients. To
this end, the parameter values (Table 3) are presented versus the tank dia-
meters (see Fig. 3). Analysing the graph and taking into consideration the
statistic data presented in Table 2, one can notice that the available data are
too scattered to build a reliable general expression describing the random field
of the tank imperfections. Only a draft formula can be estimated. For this pur-
pose, the standard regression analysis is applied. The first coefficient α (Eq.
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Fig. 3. Correlation coefficients (Eq. (2.1)) vs. tank diameter (see Table 4)

Table 4. Extreme values of geometrical imperfections

Tank Extreme values Tank edge
no. z/h xextr/σx xextr/σx

1 0.0625 4.5511 3.6533
2 0.1250 4.5764 3.5357
3 0.7333 3.8638 3.3294
4 0.3750 2.3853 1.6780
5 0.8571 2.5232 2.3843
6 1.0000 3.6732 3.6732
7 1.0000 2.6984 2.6984
8 0.0625 3.3931 2.4055
9 0.1000 4.7730 2.8431
The means: 3.6042 2.9112

(2.1)) is described with the help of an exponential function, and the coefficients
ω, β and γ are defined by straight lines (see Fig. 3)

α = 0.006733 exp(0.091963d)

ω = −0.005894d + 0.491321
β = −0.002876d + 0.218356
γ = −0.001931d + 0.112063

(2.6)

where d is the tank diameter.
Formulas (2.6) can be improved when new data are included in the cal-

culations (Kowalski, 2004). Further improvements can be obtained describing
the correlation coefficients as functions of standard deviations of imperfections
and their extreme values.
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2.2. Envelope of tank geometrical imperfections

It is possible to describe the correlation function as an envelope of the
extreme imperfections. For this purpose, the standard deviations of tank im-
perfections for each horizontal level are calculated. The obtained normalized
standard deviations for all tank data are plotted in Fig. 4. Examining these
data, it is easy to notice that the tank side imperfections start from the bot-
tom, and their values indicate the same order as the imperfections measured
at higher levels. Therefore, the simplest solution is the approximation of the
standard deviation to a parabolic function

σ =
√
αzh (2.7)

Then, the correlation function of the imperfection field takes the form

K(y1, y2, z1, z2) = α

√
z1z2
h
cos(ω(y2− y1)) exp(−β|y2− y1|− γ|z2− z1|) (2.8)

Fig. 4. Normalized standard deviations of geometric imperfections calculated
separately for each level

The coefficient α is evaluated in such a way that the standard deviation
value at the top of the tank is increased by 10%. For example, in the case of
tank no. 1

√
α = 0.0364. The other correlation parameters ω, β, and γ (see

Eq. (2.8)) remain unchanged (Table 3). The normalized envelope for all tank
data is presented in Fig. 4. The results have proved that the adopted envelope
in the parabolic shape describes precisely possible extreme imperfections.
Proposed correlation functions (2.1) and (2.8), and the estimated values of

the parameters α, ω, β, and γ make it possible to simulate vertical geometrical
imperfections of the tank.
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3. Simulation of geometrical imperfections

The simulation process is presented using the data of tank no. 1 (Table 1). Two
cases are analysed, i.e. simulation of the measured imperfections as precisely
as possible, and simulation of the maximal imperfection values.

The field of imperfections is numerically simulated taking advantage of
correlation function (2.1) and the estimated constants presented in Table 3. In
the process, the conditional-rejection simulation method is used (see Bielewicz
et al., 1994; Walukiewicz et al., 1997; Górski, 2006). This technique has been
successfully applied to spatial descriptions of soil random properties (Prze-
włócki and Górski, 2001; Tejchman and Górski, 2006) and to environmental
problems (Jankowski and Walukiewicz, 1997). Here, only a brief description
of this method is presented.

3.1. Conditional-rejection simulation method

A discrete random field can be described by multidimensional random va-
riables defined at mesh nodes. The field is represented by the random vector
x(m×1) and its mean value x(m×1). The correlation function is replaced by the
symmetric and positively defined covariance matrix K(m×m). The random va-
riable vector x(m×1) is divided into blocks consisting of the unknown xu(n×1)
and the known xk(p×1) elements (n+p = m). The covariance matrix K(m×m)
and the expected values vector x(m×1) are also appropriately cut

x =

{
xu

xk

}

(n+p)

K =

[
K11 K12

K21 K22

]

(n+p)×(n+p)

x =

{
xu

xk

}

(n+p)

(3.1)

The unknown vector xu is estimated from the following conditional trun-
cated distribution (Jankowski and Walukiewicz, 1997)

ft
(
xu

xk

)
=

1

[(1− t)2π]m detKc
exp
(
− 1

2(1− t)(xu−xc)
⊤
K
−1
c (xu−xc)

)
(3.2)

where Kc and xc are described as the conditional covariance matrix and con-
ditional expected value vector

Kc = K11 −K12K−122 K21
(3.3)

xc = xu +K12K
−1
22 (xk − xk)
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The constant t is the truncation parameter

t =
s exp(−s2/2)√
2π erf (s)

(3.4)

The constant s (Eq. (3.4)) is usually related to the standard deviation of the
random field points.

The random vector of the unknown variables xu is simulated using the
rejection method (Devroye, 1986). The single random points of the vector xu
are generated according to the following formula

xi = ai + (bi − ai)ui i = 1, . . . ,m (3.5)

where ui denotes the random variables uniformly distributed in the interval
[0, 1], and (ai, bi), i = 1, 2, . . . ,m are the intervals of the reals. The value xi
is generated according to (3.5) to fulfil condition (3.2) (the trial and error
method). The intervals ai and bi are defined for all points of the mesh and
establish an envelope of the random field. The envelope specifies the characte-
ristic features of the field under consideration, for example, the maximal and
minimal values and the field boundary conditions. It can be given in the form
of a function or by experimental discrete data.

Fig. 5. Simulation process – coverage of field points with moving propagation
scheme; ◦ – known values, • – simulated value, × – unknown values simulated in
one base scheme step, 2 – known values not included in base scheme calculations

The direct application of the rejection method is inefficient. To improve
it, a base scheme of random values is defined (Bielewicz et al., 1994). The
scheme is placed at the nodal points of the mesh in such a way that it covers
all the nodes i, 1 ¬ i ¬ m, m = M × N (Fig. 5). The simulation process
is divided into three stages. First, four-corner random values are simulated.
Next, the propagation scheme with a growing number of points covers the
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defined base scheme of the field mesh. In the example shown in Fig. 5a the
dimension of the base scheme equals c× d = 5× 5 = 20 random values (mesh
points). In the third stage, the base scheme is appropriately shifted, and the
next group of unknown random values is simulated (see Fig. 5b). The base
scheme is translated so as to cover all the field nodes. As the simulated field of
tank imperfections is a form of circular data, the algorithm has been improved.
When the calculations along the circle (the horizontal lines) are being closed,
the base scheme is modified accordingly.

The base scheme and the random field envelope are the characteristic fe-
atures of the conditional-rejection simulation method. They make it possible to
simulate the fields describing any two-dimensional shapes (three dimensional
problems can also be analysed). The size of the field is practically unlimited
(a thousand of mesh points).

3.2. Simulation of measured and extreme tank imperfections

According to the method of simulation, the random field envelope – i.e.
the lower ai and the upper boundary bi (see Eq. (3.5)) – have to be defined
for each mesh point i. The parameters determine the theoretical maximal
and minimal values of imperfections and should be related to their standard
deviations. Since the imperfection field is assumed to be ergodic, the same
boundary values are assigned to each horizontal line. To estimate them, the
imperfection mean values and the standard deviations calculated separately for
all horizontal lines are analysed once more. The extreme imperfections related
to their standard deviations are presented in Table 4. They appear on different
tank levels (z/h in Table 4). Only in two cases the extreme values occurred
on the tank edges (tank no. 6 and 7). The maximal value xextr/σx = 4.7730
appeared in tank no. 9 (V = 50000m3). Analysing the data, the following
values describing the random field boundary have been assumed

ai, bi = ±sσi = ±5σi (3.6)

where σi is the standard deviation at the point i (see Eq. (2.1))

σ2i = K(yi, yi, zi, zi) = α
z2i
h2

(3.7)

The next simulation parameter, i.e. the simulation base scheme (see Fig. 5)
is defined as a rectangle of dimension 16×16 points. This base scheme is moved
horizontally step by step to cover all mesh points. The procedure allows for
simulating the tank imperfections, i.e. along the cylindrical surface. As many
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as 2000 realizations have been simulated. Using formulae (2.3), the following
errors in the field simulation have been found

Ger = 3.30% Ver = 3.48% (3.8)

Values (3.8) indicate excellent convergence of the field estimators. Additio-
nally, samples no. 1 of the simulated field of imperfections is presented in Fig.
1f. It can be noticed that the essential features of the measured imperfection
map have been numerically reproduced.
The same calculation can be performed in order to obtain the extreme

geometrical imperfection field. For this purpose, Eq. (2.8) with the following
correlation coefficients

√
α = 0.0364 ω = 0.317389

β = 0.175900 γ = 0.058001
(3.9)

is implemented.
The same boundary values (3.6) are used. After simulating 2000 realiza-

tions, the following errors occurred

Ger = 0.15% Ver = 0.41% (3.10)

A sample of the simulated initial imperfection vector is presented in Fig. 1g.
The mean value of the vector characterizes the extreme value chosen from all
2000 samples in the set. Thus, the sample is an extreme one (in the defined
sense).

4. Numerical calculation of vertical petrol tank

The preliminary numerical calculations include three cases of tank no. 1
(5000m3).
The first case refers to an ideal cylindrical shell whose data are presented in

Fig. 1a (Orlik, 1976). The tank is made of 6 strakes of plates, each ca. 2000mm
in height, and of thicknesses t = 11, 10, 8, and 7mm, starting from the bottom.
Steel St3VY is used for the lower side plates and the first row of the bottom
plates, and steel St3SY for other plates. The steel yield stress has been assumed
to be R = 255MPa. The petrol level, of specific gravity ρ = 50MN/m3, is
raised in every incremental step (its maximal value hp = 11.25m). Other data
of the tank, for example, the soil (foundation) parameters k = 50MN/m3,
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are taken from Ziółko (1986). 15646 finite elements were used for the tank
model mesh (Górski and Mikulski, 2005). Some of the results, obtained with
the help of MSC NASTRAN (MSC Nastran for Windows, 2001), are presented
in Table 5.

Table 5. Extreme stresses, bending moments and axial forces in tanks with
and without initial geometrical imperfections

Tank surface
Internal forces

Ideal
Measured Simulated
imperfections imperfections

Maximal stresses σR [MPa] 92.24 255 255
Bending moments mz [kNm/m] −0.67-0.98 −2.51-4.19 −1.38-3.76
Bending moments mϕ [kNm/m] −0.20-0.29 −4.11-2.68 −3.42-2.40
Axial force nz [kN/m] −7.97-20.56 −516.1-335.7 −712.7-448.2
Axial force nϕ [kN/m] −1.23-1025.0 −433.6-1319.0 −945.2-1227.0

The tank data for the second case include measured initial geometrical
imperfections presented in Fig. 1b (Orlik, 1976). As the imperfections refer
only to 16 horizontal and 202 vertical lines (3232 points), the missing mesh
values are determined by linear interpolation using the neighbouring data. The
basis of the numerical calculation is the deformed shape of the cylindrical tank
assumed to be stress free. The results are presented in Table 5.
The third calculation is performed for the simulated extreme imperfections

shown in Fig. 1g.

The results of nonlinear calculations (see Table 5) indicate that the tank
initial imperfections can cause significant variations in stress fields in compa-
rison with the solution related to an ideal surface. The steel of the tank with
imperfections yields at a point connecting the bottom with the side plates and
in areas of extreme imperfections. It should be noted that the yielding process
occurrs despite the fact that the initial field of imperfections is rather a typical
one (see Fig. 1b).

5. Conclusions

On the basis of the presented analysis, the following comments and suggestions
having reference to future improvements of the identification and modelling of
the random fields of imperfections in tanks can be made:

• A method of measuring geometrical imperfections in tanks should be
formulated. It is essential to define the minimal tank area and the size
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of the mesh of measuring points. It has been shown that the parameters
depend on the tank diameter as well as characteristics and magnitude
of the imperfections.

• A generalized version of the correlation function should be formulated
for steel cylindrical tanks of various dimensions. The presented primary
relations can help in future improvements when more measured data can
be incorporated in the estimation.

• The procedure of identification of the correlation function from limited
data measured in situ needs further investigation.

• The achieved results, aided by the statistical analysis, have proved the
capability of the conditional-rejection method to precisely simulate geo-
metrical imperfections in tanks when the correlation function is known.

• The random numerical model of tanks can be easily extended, for exam-
ple, by introducing random variability of soil foundations which can have
a degrading effect on the tank loading capacity.

• The presented results of numerical calculations have revealed that the
initial geometrical imperfections have influence on the mechanical beha-
viour of steel cylindrical tanks. Formulation of a methodology of identifi-
cation, classification and description of the tank imperfections can lower
the laborious and high cost of experiments and ensure a better and much
safer design.

Designing a new tank, the correlation function and the appropriate stan-
dard deviations of the geometric imperfections can be described according to
the measured data of existing tanks of similar dimensions. Then, the simulation
procedure can be applied and, from the simulated set, some extreme realiza-
tions can be selected. The selection criteria of characteristic samples are, for
example: the extreme value of imperfections, norms of the imperfection vec-
tors, the number of sign changes (number of waves) along the horizontal lines.
On the basis of the selected extreme samples, it is possible to calculate stress
fields of the structure. In this way, the most dangerous stress state related to
all simulated but realistic data can be obtained. A definition of the critical
state of a steel petrol tank should also be established. Usually, plastic defor-
mation of the tank side is considered dangerous as steel becomes brittle. Cyclic
loading conditions of the tank also play an important role in the definition of
the critical state.
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Identyfikacja i symulacja wstępnych imperfekcji geometrycznych

w stalowych cylindrycznych zbiornikach

Streszczenie

Wyznaczenie obciążenia granicznego konstrukcji powłokowych wymaga uwzględ-
nienia w obliczeniach odchyłek geometrycznych. Wykonanie pomiarów tego typu od-
chyłek rzeczywistych obiektów jest trudne i kosztowne. Wyniki uzyskane na podstawie
analizy modeli laboratoryjnych nie są wiarygodne. W pracy zaproponowano metodę
alternatywną. Wykazano, że na podstawie dostępnych danych można sformułować
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metody identyfikacji i symulacji wstępnych odchyłek geometrycznych. Zaprezento-
wane procedury umożliwiają odwzorowanie pomierzonych pól wstępnych odchyłek
stalowych cylindrycznych zbiorników o osi pionowej na paliwa płynne. Symulacje nie-
jednorodnych pól losowych imperfekcji wykonano za pomocą oryginalnej warunkowej
metody akceptacji i odrzucania. Pomierzone dane pozwoliły także na wyznaczenie
obwiedni odchyłek losowych i na tej podstawie wykonano symulację ekstremalnych,
realistycznych pól imperfekcji. Dodatkowo przeprowadzono nieliniowe obliczenia nu-
meryczne zbiorników idealnych oraz z imperfekcjami. Porównanie wyników pozwoliło
na określenie wpływu odchyłek na mechaniczną odpowiedź powłoki.
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