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The paper concerns the modelling of a flow with high density and viscosi-
ty ratios using the Volume of Fluid method (VOF). Two high resolution
schemes are used for discretization of the nonlinear convective term in
the equation for transport of the volume fraction. Properties of the sche-
mes are compared by taking into consideration their ability to capture
the interface subjected to strong deformation. We show that diffusive
properties of the high-resolution schemes affect the obtained solution.
Verification of the schemes is performed in two test cases: rotation of a
solid body with a slot and sloshing of water in a rectangular tank.

Key words: free surface flow, Volume of Fluid method, high-resolution
schemes

1. Introduction

Numerical modelling of multiphase flows is a developing branch of the Com-
putational Fluid Dynamics (CFD). In this paper, incompressible viscous two-
phase fluids with a well defined interface will be considered. The main difficulty
here is tracking of the interface position during integration in time since this
information is needed for proper arraignment of boundary conditions. To cap-
ture the interface position, the Volume of Fluid (VOF) method is employed
(Hirt and Nicholls, 1981). In the framework of the VOF method, the evolution
of the free surface in time is described by an additional transport equation for
the volume fraction of the background fluid. The value of the volume fraction
indicates presence or absence of the background fluid in the control volume.
Control volumes that are partially filled with the background fluid contain the
interface. When coupled with the Navier-Stokes equations, the volume fraction
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is treated as an active scalar (it has influence on the velocity field). The main
numerical difficulties connected with discretization of the transport equation
for the volume fraction are: keeping constant width of the interface, i.e. avo-
iding artificial diffusion of the step interface profile and assuring a monotonic
change of the variables. This last condition is also known as the boundedness
criterion (Ferziger and Perič, 2002; Hirt and Nicholls, 1981; Versteeg and Ma-
lalasekera, 1998). In order to overcome the aforementioned problems different
methods were proposed. For instance, in Hirt and Nicholls (1981) a Donor-
Acceptor Scheme (DAS), based on the availability criterion, was introduced.
Problems that arose when using this scheme, see Noh and Woodward (1976),
Youngs (1982), provoked other proposals that follow the idea of geometric
interface reconstruction; examples are SLIC (Simple Line Interface Calcula-
tion) method (Noh and Woodward, 1976), PLIC (Piecewise Linear Interface
Construction) method (Youngs, 1982) or more recent methods that use the
least-square procedure (Pillod and Puckett, 1991, 2004) or splines (Lopez et
al., 2004). Methods that employ these ideas give good approximation of the
shape of the interface and they allow for proper calculation of the fluxes thro-
ugh faces of the control volumes. However, their application is often restricted
to structured grids with simple shapes of the control volumes. Moreover, sin-
ce estimation of a spatial orientation of the interface from the distribution
of the volume fraction needs a substantial number of numerical operations,
interface reconstruction methods increase the computational effort (Zaleski,
2002).

In this work, to discretize the convective term in the equation for trans-
port of the volume fraction, high-resolution schemes: CICSAM (Compressive
Interface Capturing Scheme for Arbitrary Meshes) (Ubbink and Issa, 1999)
and HRIC (High Resolution Interface Capturing scheme) (Muzaferija et al.,
1998), are used. Unlike geometric interface reconstruction methods, the high-
resolution schemes do not introduce geometrical representation of the interface
but try to satisfy the aforementioned conditions by properly chosen discreti-
zation scheme.

To model dynamics of a set of immiscible fluids, a solution to the equation
of transport of the volume fraction needs to be coupled with the solver of the
Navier-Stokes equations. In this paper, an in-house, finite volume second order
accurate code is used where the SIMPLE procedure is employed for pressure-
velocity coupling, see Ferziger and Perič (2002), Versteeg and Malalasekera
(1998). The developed algorithm is used to model the flow in a system of
immiscible fluids and for comparison of the aforementioned high-resolution
schemes.
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2. One-fluid formulation for multiphase flow

In this paper, one-fluid formulation for a multiphase flow is used. According
to this model, dynamics of viscous, incompressible and immiscible fluids is go-
verned by single Navier-Stokes equations (2.1)1 and continuity equation (2.1)2
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+
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where ui is the i-th velocity component, ρ denotes density, µ is the dynamic
viscosity, p is the pressure, gi is the i-th component of the gravitational ac-
celeration. The additional term that appears in Navier-Stokes equation (2.1)1
is inherited from one-fluid formulation. This term represents surface tension
acting locally at the interface between fluids. In the case of constant surface
tension coefficient σ, the force resulting from surface tension acts in the di-
rection normal to the interface n = ∇φ/|∇φ|, where φ denotes the volume
fraction of the background fluid. One needs to notice that ∇φ has a non-zero
value only at the interface, indicating a local character of the surface tension
term. In this paper, the term that models surface tension effects will be ne-
glected, since inertial forces are dominant in the case of water sloshing in a
rectangular tank.
To model dynamics of a set of immiscible fluids, one needs to add con-

stitutive relations that convolve material properties of fluids with the volume
fraction of the background fluid (here water) in the control volume. Since in
this paper the set of two fluids is considered, the constitutive relations write

ρ = (1− φ)ρ1 + φρ2 µ = (1− φ)µ1 + φµ2 (2.2)

where ρj, µj represent, respectively, the density and dynamic viscosity of
the j-th fluid. Substituting constitutive relation (2.2)1 to the conservative
form of the continuity equation and taking into account the assumption about
incompressibility of the fluids, one can derive equation for transport of the
volume fraction

∂φ

∂t
+ uj

∂φ

∂xj
= 0 (2.3)

To model a multiphase flow and capture the interface position, one needs to
solve Eqs. (2.1)-(2.3). It should be noticed that both fluids are treated as
single continuous since they share the same velocity in each control-volume.
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This simplification allows for relatively easy numerical solution of the problem
also when more than two fluids are considered. On the other hand, sharing the
same velocity is a disadvantage of this formulation, because one is not able to
model the slip phenomenon.

3. Numerical methods for solution of conservation equations

To solve numerically the set of equations (2.1)-(2.3) it is necessary to discretize
it in order to obtain a system of algebraic equations. In the present work, an
in-house, three-dimensional, finite volume, second order accurate code was
used to model the dynamics of a multiphase flow. Next, a brief description
of the numerical methods employed for discretization of the Navier-Stokes
equations will be given. Two high-resolution schemes used for discretization
of the convective term in Eq. (2.3) will be presented in more details.

3.1. Discretization of the Navier-Stokes equation

The first step to solve Navier-Stokes equations (2.1)1 is to write them in a
conservative, integral form (finite volume method) and to apply the Gauss
theorem to convective and diffusive terms (Ferziger and Perič, 2002; Versteeg
and Malalasekera, 1998). In the case of the second-order accurate method, the
assumption about a constant value of the variables, e.g. velocity component,
at the cell face centres of the control volumes, leads to the conservative formu-
lation. One needs to remember that in a collocated-mesh arrangement, used
here, the solution is searched in centres of the control volumes. Therefore, va-
lues of variables at the cell face centres have to be connected with their cell
centre neighbours through interpolation. In this work, both convective and
diffusive terms (fluxes through the faces of the control volumes) in Eq. (2.1)1
are discretized using a deferred correction approach (Ferziger and Perič, 2002;
Versteeg and Malalasekera, 1998). The pressure gradient and mass force are
discretized in a conservative and non-conservative manner, respectively.

The second step is integration in time. It is assumed that the surface and
volume force terms are constant over one time step. However, the component
of velocity in the nonlinear convective term is assumed to be taken from the
new time level. Integration of the local derivative over one time step, together
with application of the first order implicit Euler scheme, leads to an impli-
cit, first order accurate algorithm. Additionally, one needs to correct velocity,
which does not satisfy continuity equation (2.1)2 after segregated solution to
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the momentum equations. In our code, the SIMPLE algorithm is used for
pressure-velocity coupling (Ferziger and Perič, 2002; Versteeg and Malalase-
kera, 1998). In this method, the Poisson equation for pressure correction is
obtained. Moreover, it can be shown that the velocity correction is propor-
tional to the gradient of the pressure correction. Both velocity and pressure
corrections are used to obtain a divergence free velocity field as well as cor-
rected pressure field. In the case of unsteady flows, it is usually necessary
to perform more than one outer iteration per time step to accurately satisfy
continuity equation (2.1)2.
Boundary conditions for Eqs. (2.1)-(2.3) and the Poisson equation obtained

in the SIMPLE procedure are test case dependent. In this work, the symmetry
plane and no-slip wall boundary conditions were used, see Ferziger and Perič
(2002), Versteeg and Malalasekera (1998) for Eq. (2.1)1 and Eq. (2.3). Since
boundary conditions for the Navier-Stokes equation determine velocity at the
borders of the computational domain, the Neumann boundary condition is
applied for the Poisson equation at each side of the domain.

3.2. Discretization of the equation for transport of the volume fraction,
high-resolution schemes

Proper discretization of Eq. (2.3) is crucial for simulation of a multiphase
flow. It can be shown (Wacławczyk and Koronowicz, 2005), that numerical
schemes, commonly used for discretization of the convection term, introduce
numerical diffusion or numerical dispersion phenomena. For this reason, some
additional techniques are needed, i.e., high-resolution schemes. The main task
for a high-resolution scheme is to discretize the convective term in Eq. (2.3)
in a way that will prevent artificial smearing of the step interface profile due
to numerical diffusion. Moreover, it should preserve monotonic distribution of
the variable, i.e., it should satisfy the boundedness criterion. Discretization
of Eq.(2.3) in time is performed with the Crank-Nicolson method, shown to
be consistent with an unsplit time integration procedure (Ubbink and Issa,
1999). Since in this paper two high resolution schemes CICSAM and HRIC are
compared, a brief description of schemes will be given, emphasising similarities
and differences between both formulations.

3.2.1. Normalised Variable Diagram

The Normalised Variable Diagram (NVD) (Leonard, 1991) provides the foun-
dation to CICSAM and HRIC high-resolution schemes. Let us consider the
control volumes denoted by U , D, A for upwind, donor and acceptor faces
respectively; f denotes the face of the control volume, see Fig. 1a. Since the
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Fig. 1. (a) CBC criterion on the three control volumes U upwind, D donor,
A acceptor and face f , (b) Normalised Variable Diagram NVD, UDS upwind

scheme, CDS central scheme, DDS downwind scheme

value of the variable at the face of the control volume should satisfy the Co-
nvective Boundedness Criterion (CBC), see Leonard (1991), Ubbink and Issa
(1999), Versteeg and Malalasekera (1998), one can write: φD ¬ φf ¬ φA.
Using this constraint and information about the value of the variable in the
upwind control volume φU , normalised variables are introduced

φ̃f =
φf − φU
φA − φU

φ̃D =
φD − φU
φA − φU

(3.1)

where φD, φA, and φU are the volume fractions in the donor, acceptor and
upwind cells, respectively. It could be noticed that when φ̃f = φ̃D, which
means φf = φD, the cell face value is calculated with the first order accu-

rate Upwind Scheme (UDS). On the other hand, when φ̃f = 1 which entails
φf = φA, the cell face value is calculated with the first order accurate Down-

wind Scheme (DDS). When φ̃D < 0 or φ̃D > 1, the only scheme that satisfies
CBC is UDS. Thus, when 0 < φ̃D < 1, only schemes that satisfy Eq. (3.2),
i.e. lie in the shaded region on Fig. 1b, preserve CBC.

φ̃f =

{
φ̃D for φ̃D < 0, φ̃D > 1

φ̃D ¬ φ̃f ¬ 1 for 0 ¬ φ̃D ¬ 1
(3.2)

One needs to notice that when using Eqs. (3.1) it is possible to find the value
of the volume fraction at the control volume face φf

φf = (1− β̃f )φD + β̃fφA β̃f =
φ̃f − φ̃D

1− φ̃D
(3.3)

which is used for calculation of the volume fraction flux in Eq. (2.3). However,
to calculate φf , one needs to find φ̃f first.
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3.2.2. Compressive Interface Capturing Scheme for Arbitrary Meshes – CICSAM

In the case of the CICSAM scheme, an additional assumption about the de-
pendence of the region where the CBC is satisfied on the CFL condition is
used (Leonard, 1991). The local value of the Courant number, defined at the
face Sf of the control volume Cf = ufSf∆t/V together with the CBC gives

the following formula φ̃D ¬ φ̃f ¬ min{1, φ̃D/Cf}, which can be plotted at a
normalised variable diagram, see Fig. 2. One needs to notice that for explicit
schemes, if a local value of the Courant number is equal to Cf = 1, only the
UDS satisfies the CBC criterion. On the other hand, the smaller the value of
the local Cf the lager the domain where the CBC criterion is satisfied.

Fig. 2. Dependence of the CBC region on the local CFL condition

Coupling of the donor-acceptor scheme (DAS) (Hirt and Nicholls, 1981),
with NVD formulation dependent on the CFL condition, results in the first
component of CICSAM known as the HYPER-C scheme

φ̃fCBC =





φ̃f = φ̃D for φ̃D < 0, φ̃D > 1

min
{
1,
φ̃D
Cf

}
for 0 ¬ φ̃D ¬ 1

(3.4)

The above HYPER-C scheme satisfies the CBC criterion and is shown to be
compressive, which means that it changes any gradient of φ to a step profile
due to DDS employed.

However, the compressive character of the HYPER-C is not always desira-
ble. When the interface is tangential to the flow direction, it is shown that the
aforementioned scheme tends to artificially deform its shape. For this reason, it
is found to be necessary to switch between scheme Eq. (3.4) and an other less
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compressive formulation. In the case of the CICSAM, the Ultimate-Quickest
(UQ) scheme is employed (Leonard, 1991)

φ̃fUQ =






φ̃D for φ̃D < 0, φ̃D > 1

min
{8Cf φ̃D + (1− Cf )(6φ̃D + 3)

8
, φ̃fCBC

}
for 0 ¬ φ̃D ¬ 1

(3.5)
To switch smoothly between both schemes, a linear blending is used with the
blending factor 0 ¬ γf ¬ 1. The value of the γf depends on the angle θf , see
Eq. (3.6)2 between the unit vector normal to the interface n = ∇φD/|∇φD|
and the unit vector parallel to the line between centres of the donor D and

acceptor A cells d =
−−→
DA/|

−−→
DA|, see Fig. 3a. When the interface position is

normal to the direction of the flow, γf = 1 and Eq. (3.4) is used. In the case
of tangential orientation of the interface, γf = 0 and Eq. (3.5) is employed

φ̃f = γf φ̃fCBC + (1− γf )φ̃fUQ 0 ¬ γf ¬ 1

θf = arccos |dn| (3.6)

γf = min
{1 + cos 2θf

2
, 1
}

It should be noticed that the above derivation of the high-resolution
CICSAM scheme was carried out only in one-dimension. To extend above
formulation to multiply dimensions, the cell Courant number is introduced
CD =

∑n
f=1max{Cf , 0}, where n denotes the number of control volume fa-

ces.

Fig. 3. (a) Definition of the vector normal to the interface n = ∇φ/|∇φ| and vector

parallel to the line between the centres of D, A control volumes d =
−−→
DA/|

−−→
DA|,

(b) continuity of the HRIC scheme in the time domain



Comparison of CICSAM and HRIC high-resolution schemes... 333

3.3. High Resolution Interface Capturing (HRIC) scheme

To simplify the above procedure and to get rid of the explicit dependence on
the CFL condition, the HRIC (Muzaferija et al., 1998) scheme was introduced.
As it was mentioned, this scheme also relies on the NVD and normalised varia-
bles. Application of the HRIC scheme can be divided into three steps. Firstly,
the normalised cell face value will be estimated from a scheme that conti-
nuously connects the upwind and downwind schemes on the NVD diagram,
cf. Fig. 1b

φ̃f =






φ̃D for φ̃D < 0, φ̃D > 1

2φ̃D for 0 ¬ φ̃D <
1

2

1 for
1

2
¬ φ̃D ¬ 1

(3.7)

Secondly, since DDS can cause alignment of the interface with the mesh and
its artificial deformation (as in the case of the HYPER-C scheme), one needs
an other scheme that satisfies the CBC. In the case of the HRIC, first order
UDS is used as the most straightforward choice. Again, the blending factor γf
connected with the angle θf is introduced, see Eq. (3.8)2, to switch smoothly
between the schemes

φ̃∗f = γf φ̃f + φ̃D(1− γf ) γf =
√
| cos θ| (3.8)

The blending of the UDS and DDS schemes is dynamic and takes into acco-
unt the local distribution of the volume fraction. In the case when the CFL
condition is not satisfied, the dynamic character of this scheme can cause sta-
bility problems. Therefore, φ̃∗f is corrected with respect to the local Courant
number Cf , see Eq. (3.9). The goal of this correction is to force continuous
switching between the schemes also in the time domain, see Fig. 3b

φ̃∗∗f =






φ̃∗f for Cf < 0.3

φ̃D for Cf > 0.7

φ̃D + (φ̃
∗

f − φ̃D)
0.7 −Cf
0.7 − 0.3

for 0.3 ¬ Cf ¬ 0.7

(3.9)

When using this scheme in multiple dimensions, the local Courant number Cf
is again replaced by its cell definition CD.

One can notice that the main difference between the CICSAM and HRIC
is the order of accuracy of the component schemes and the differently included
CFL condition. Next, two tests will be performed to asses how those differences
influence the results obtained with the two presented high-resolution schemes.
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4. Advection test case

The aim of the advection test case is to check how the high-resolution schemes
preserve the initial shape of the interface in a given velocity field. Since it is
known that when convection is the only transport phenomenon, the distance
between two points advected in the uniform flow should remain constant.

In Wacławczyk and Koronowicz (2006) a circular spot advection test case
was carried on to show that both the CICSAM and HRIC schemes are first
order accurate. The main observation concerning properties of the considered
high-resolution schemes was better, i.e. sharper and less diffusive, interface
reconstruction of the advected shape by the CICSAM scheme. However, in that
previously performed test case, we analysed only a two dimensional contour of
the volume fraction distribution φ = 0.5, which did not give whole information
about reconstruction of the advected shape.

Fig. 4. Computational domain for rotation of a solid body with a slot

Another advection test case known in literature (Ubbink and Issa, 1999) is
rotation of a solid body with a slot placed in a rotational velocity field. This
test case allows one to assess how the shape of the interface is reconstructed
in a more complicated velocity field, comparing the whole range of the volume
fraction distribution φ = [0, 1].

Here, a circular solid body with a slot is revolved with a constant angular
velocity ω that is chosen to satisfy CD ≈ 0.15 at the body edges. The final
solution was obtained after 1360 time steps, with ∆t = 0.005 s on 64×64 grid.
Figure 4 depicts the computational domain with the initial distribution of the
volume fraction and used boundary conditions. Inside of the two dimensional
solid body the volume fraction is set to one, outside the body is set to zero
indicating the presence of the background fluid, see Fig. 5a.
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Fig. 5. Final shape of the solid body after one revolution in rotational velocity field,
(a) initial condition, (b) solution with CICSAM, (c) solution with HRIC

Comparing the results obtained with the CICSAM and HRIC schemes,
one can notice that, again, the first one preserves the shape of the interface
better (volume fraction shape is closer to the initial condition) than the latter,
compare Fig. 5a and Fig. 5b, what is visible in the whole range of volume
fraction distribution. The interface calculated with HRIC is more smeared,
non-zero volume fraction values are visible in the slot after one revolution, see
Fig. 5c. Conclusion from this test case is that CICSAM works better, which is
in agreement with the results obtained in the first circular spot advection for
small CD values (see Wacławczyk and Koronowicz, 2006). This behaviour of
both schemes is caused by the existence of numerical diffusion introduced by
the differently included first order upwind scheme. Notice the explicit presence
of the UDS in HRIC formulation during blending with respect to the interface
position, see Eq. (3.8)1, for more details see also Wacławczyk et al. (2007).

5. Sloshing of water in an oscillating tank

To compare the properties of the schemes in more realistic situations, we
carried out simulation of water sloshing in a quadrangle container. This issue
is important for vehicle safety, e.g. ship or rig, when the cargo transported is
liquid. The main goal here is to find resonance periods for swaying motions of
the tank because the sloshing liquid can damage it. In the next sections of the
paper, experimental data from Hinatsu et al. (2001) are compared with the
results of our numerical simulation.

The experimental setup for this test case consists of a tank filled with a
liquid in two different levels. At the south, east and north walls of the tank,
pressure transducers are installed, see Fig. 6, to record the pressure history
during motion of the tank. The parameters governing behaviour of the fluid
inside the tank are: filling level of the tank Φ [%], period T [s] and ampli-
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Fig. 6. Experimental setup for measurements of pressure during sloshing of water in
a quadrangle container, P1, P2, . . . , P9 depict position of transducers for pressure

measurement

tude A [m] of the sway motion. Several cases were investigated in Hinatsu
et al. (2001) with two different filling levels; details are listed in Table 1. In
this paper, we will consider the filling level Φ = 20% and two different time
periods: T = 1.74 s when resonance of the water/tank system is observed and
T = 1.94 s without resonance, to compare dynamic behaviour of the fluids, i.e.
water and air, in both cases.

The measurement data consists of time history of the pressure, i.e., the signal
registered by the set of transducers during motion of the tank. Additionally,
the position and acceleration of the tank were measured as well, see Fig. 7.

Table 1. Sloshing conditions

Φ [%] A [m] T [s] Observed events Active transducers

20 0.06 1.74 resonance P1, P2, P3
20 0.06 1.94 – P1, P2, P3

60 0.015 1.40 - P4, P6, P8, P9
60 0.015 1.47 resonance P4, P6, P8, P9

In the present study, the position and acceleration provided by experimen-
tal data are used to tune sway motion parameters. For the sake of the higher
accuracy amplitude, the period and phase were changed: A1 = 0.0605m,
T1 = 1.74 s, φ1 = 0.41 in the first case with resonance and A2 = 0.064m,
T2 = 1.74 s, φ2 = 0 in the second case without resonance, compare Table 1.
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Fig. 7. Measured (solid line) and theoretical (dashed line) history of swaying motion
and acceleration of the tank for two periods of swaying: A = 0.06, T = 1.74 (top),
A = 0.06, T = 1.94 (bottom), in both cases the tank filling was Φ = 20%

5.1. Numerical simulation – sway of the tank

The numerical simulation was carried out using a two dimensional compu-
tational domain in a real scale, discretized with a uniform orthogonal grid
consisting of 256× 128 control volumes. At all borders of the domain, no-slip
wall boundary condition was imposed. The time step size used during simu-
lation was set to ∆t = 1−4 s to make the maximal cell Courant number CD
smaller than 0.2. During both simulations, the whole set of conservation equ-
ations Eqs. (2.1)-(2.3) was solved, using the following material properties for
air: ρ1 = 1.205 kg/m

3, µ1 = 1.8
−5 kg/ms and for water: ρ2 = 998 kg/m

3,
µ2 = 1

−3 kg/ms. To obtain the effect of acceleration acting on the tank and flu-
id, an external force Fe was added to the right hand side of the x-momentum
equation. Since motion of the tank in time is described by a harmonic function,
the source term that models the external force Fe can be written

Fe = −ẍρV = Aω
2 cos(ωt + φ) (5.1)
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where A, ω = 2π/T , φ are sway motion parameters: amplitude, frequency and
phase, respectively. The external force is added with the opposite sign because
of the reference frame associated with the fluid.

5.2. Discussion of the results

The results obtained during the numerical simulation are presented in Figs. 8,
9, 10. Let us follow the water behaviour in more details. In the first case when
T = 1.74 s, the orientation of the air/water interface is directly compared with
the photographs from Hinatsu et al. (2001), see Fig. 8.

Fig. 8. Comparison of the water/air interface position from experiment (rightmost
column) with numerical results obtained using CICSAM (leftmost column) and
HRIC (middle column) at different times t: A1 = 0.0605m, T1 = 1.74 s, φ1 = 0.41

(first period of sloshing)



Comparison of CICSAM and HRIC high-resolution schemes... 339

Fig. 9. Pressure history obtained from simulation with CICSAM (left column) and
HRIC (right column) schemes compared with experimental data (dashed line)
recorded by transducers P1, P2, P3, A1 = 0.0605m, T1 = 1.74 s, φ1 = 0.41

At the beginning of the simulation, due to the initial movement of the tank,
water accelerates. This can be observed as a smooth variation of the pressure
about t = 1.5 s, see Figs. 9, 10. In the period of time t from 1.5 s to approxi-
mately 2.8 s, in both considered cases, the water wave travels from the west to
the east wall of the tank. The first maximum of the pressure is observed close
to t = 2.9 s. At this time, the travelling wave hits the west wall which causes a
rapid pressure increase that is recorded by all active transducers P1, P2, P3,
see Figs. 8c, 9, 10. Afterwards, splashed water climbs up along the wall and
then collapses due to the gravitational force, however, not immediately. There
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is a time interval from 2.9 s till about 3.3 s, which is needed for collapsing and
forming of the water wave that travels back to the west wall of the tank, see
Fig. 8d.

Fig. 10. Pressure history obtained from simulation with CICSAM (left column) and
HRIC (right column) schemes compared with experimental data (dashed line)
recorded by transducers P1, P2, P3, A2 = 0.064m, T2 = 1.94 s, φ2 = 0

This event can be observed in Figs. 9, 10 as a platou between the pressure
peak (i.e. wave impact) and the region where the pressure starts to decrease.
Observed pressure drop is caused by the wave travelling back to the west wall
of the tank (pressure transducers are mounted on the east side, Fig. 6). Finally,
the whole phenomenon repeats, following the described scenario.
The pressure history obtained during simulations compares well with the

experimental evidence when one considers the shape of the solution and dura-



Comparison of CICSAM and HRIC high-resolution schemes... 341

tion of characteristic events in this flow, e.g., prediction of the wave collision
with the tank wall or time interval of the water column collapsing. However,
the maximal values of the pressure during the collision of the travelling wave
with the wall are overestimated or underestimated when compared with the
experiment. This effect is particularly evident in the case of pressure transdu-
cer P3 and interestingly more significant when the resonance occurs, compare
the pressure recorded by probe P3 in Figs. 9, 10. This transducer records the
highest variations of the pressure signal because it is placed directly in front
of the hitting wave. The pressure variation reconstructed at the positions of
transducers P1, P2 follow more accurately the experimental data, especially
in the case without resonance, see Fig. 10. The pressure maxima that result
from the collision of the approaching wave with the west wall are larger in the
first case T = 1.74 s, which indicates the presence of resonance. This is the ma-
in difference between the no-resonance and resonance frequency of the swaying
tank, compare Figs. 9 and 10, since in the case of resonance, a larger amount
of energy is transported from the moving tank to the air/water system. This
last fact has also influence on the flow, and hence the accuracy of numerical
reconstruction.

5.3. Influence of properties of the high-resolution scheme on results

A qualitative comparison of the air/water interface position shows that simu-
lations carried out with the CICSAM and HRIC schemes recover its shape
accurately during the first period of oscillations, see Fig. 8. The main features
of the flow are reconstructed in the same way by both schemes, but the inter-
face representation with the CICSAM scheme is sharper despite equal mesh
resolution in both cases. The difference in the interface representation can be
noticed while the wave collides with the east wall of the tank, see Fig. 8c, and
the water column collapses, see Fig. 8d.

When the fluid inside the tank experiences violent behaviour due to mo-
tion with the resonance frequency, the air/water system obtains more energy
from the external force, which considerably influences the behaviour of the
flow. When the resonance occurs, a mixture of the fluid inside the tank beco-
mes dispersed and heterogeneous (droplets of water mixed with air). For this
reason, as can be noticed in Fig. 9, every next sloshing period is reconstructed
less accurately by the numerical simulation. This can be compared with the
no-resonance case, see Fig. 10, where there is no visible shift in time between
the numerical simulations (using both schemes) and data from the experiment.

The influence of schemes properties on the solution are compared closely in
Fig. 11. Pressure behaviour during the first period of sloshing in both the reso-
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nance and no-resonance case is predicted reasonably by both high-resolution
schemes (compare the top and bottom rows in the case of the first period of
sloshing registered by probes P1 or P3). Interesting conclusions can be drawn
when one compares the last period of sloshing in the resonance (top row) and
no-resonance case (bottom row). In the resonance case, it is visible that lar-
ger numerical diffusivity of the HRIC scheme introduces larger shift in time,
moreover, the pressure variation becomes smoother. This is connected with
a less accurate representation of the interface in the case of a heterogeneous
multi-dispersed flow. The CICSAM better represents the shape of the pressure
signal but it also introduces smearing and, thus, a time shift in the pressure re-
construction. Unlike in the resonance case, when the flow remains calmer and
the number of interface reconnections is limited, both schemes reconstruct the
pressure history accurately in the first and last period of sloshing, see Fig. 11
(bottom row).

Fig. 11. Comparison of pressure histories from probes P1, P3 (first and last period
of sloshing) in the case with resonance T = 1.74 s (top) and without resonance
T = 1.94 s (bottom) during simulations with the CICSAM and HRIC schemes

It can be also noticed that between succeeding wave impacts, when the
wave travels in the direction of the west wall, overshoots and undershoots
in the pressure history obtained from the numerical simulation are visible.



Comparison of CICSAM and HRIC high-resolution schemes... 343

For instance, in Fig. 9 for time t = 5 s till t = 6 s. This effect is connected
with the choking phenomenon that appears, when movement of the water
column is so rapid that the air is entrapped in the water near the south-east
corner of the tank, which results in a series of oscillations. This effect was not
recorded during the experiment, however, other numerical simulations, e.g.
Nielsen (2003), also show this deviation from the experimental evidence.

6. Conclusions

In the present paper, the VOF method with high-resolution scheme metho-
dology was successfully applied and tested. Two high-resolution schemes the
CICSAM and HRIC were employed to discretize the convective term in the
equation for transport of the volume fraction, Eq. (2.3), in order to capture the
interface position without introduction of numerical diffusion, keeping values
of the variables bounded.

Results of computations were compared with the experimental evidence,
showing good quantitative and qualitative agreement. The main features of
the flow in a rectangular tank are properly recovered, see Fig. 8, by both high-
resolution schemes. However, one needs to notice that when the air/water
system becomes dispersed, both the CICSAM and HRIC introduce an artifi-
cial time shift in the pressure history, see Fig. 9. This artificial effect is smaller
in the CICSAM scheme. Moreover, the results obtained with the CICSAM are
less affected by diffusivity and preserve the shape of the pressure signal mo-
re accurately. It also important to notice that in the case without resonance,
see Fig. 10, the results obtained with both schemes follow experimental data
without a visible decrease of accuracy in time. Not enough accurate reconstruc-
tion of the dispersed flows was partially caused by the fact of neglecting the
three dimensional effects and usage of the first order upwind scheme in both
formulations. Therefore, the main disadvantage of the high-resolution schemes
presented here is their low order of accuracy, and thus the further work should
be connected with developing of higher order high-resolution schemes.
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Porównanie własciwości schematów o wysokiej rozdzielczości
CICSAM i HRIC

Streszczenie

Tematem niniejeszej pracy jest modelowanie przepływu w układzie płynów o du-
żym stosunku gęstości i lepkości z dobrze określoną powierzchnią rozdziału: wody
i powietrza. Symulacje komputerowe przeprowadzono za pomocą własnego kodu z za-
implementowaną metodą Volume of Fluid (VOF), w której pozycja powierzchni roz-
działu zostaje określona poprzez śledzenie rozkładu objętościowego współczynnika
wypełnienia w czasie. Dwa schematy o wysokiej rozdzielczości CICSAM i HRIC słu-
żące do dyskretyzacji członu konwekcyjnego w równaniu transportu objętościowego
współczynnika wypełnienia zostały porównane w dwóch przypadkach testowych: rota-
cji ciała ze szczeliną oraz ruchu wody w zbiorniku wywołanego działaniem zewnętrznej
siły. Głównym wnioskiem z wykonanych symulacji oraz porównania wyników obliczeń
z danymi doświadczalnymi jest fakt zależności otrzymanych wyników od właściwości
numerycznych analizowanych schematów, a w szczególności sposobu rekonstrukcji po-
wierzchni rozdziału. W przypadku niejednorodnej mieszaniny płynów oba wspomnia-
ne schematy wprowadzają dodatkowe przesunięcie w czasie do historii zmian ciśnienia
oraz tłumienie ekstremalnych wartości amplitudy ciśnienia wskazujące na nieprawi-
dłową rekonstrukcję dynamiki mieszaniny. Schemat CICSAM rekonstruje zachowanie
płynów w sposób bardziej zbliżony do danych doświadczalnych w prównaniu ze sche-
matem HRIC. Dowodem na to jest mniejsze przesunięcie w czasie względem danych
doświadczlnych oraz mniej wyraźne tłumienie ekstremalnych wartości ciśnienia.
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