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In this paper, experimental studies are performed and presented to verify the capability of
the adaptive extended Kalman filter (AEKF) approach for identifying and tracking dama-
ges in nonlinear structures. A base-isolated building model consisting of a scaled building
model mounted on a rubber-bearing isolation system has been tested experimentally in the
laboratory. The non-linear behavior of the base isolators is represented by the Bouc-Wen
model. To simulate the structural damages during the test, an innovative device, referred to
as the stiffness element device (SED), is proposed to reduce the stiffness of the upper storey
of the structure. Various damage scenarios have been simulated and tested. The measured
acceleration response data and the AEKF approach are used to track the variation of the
stiffness during the test. The tracking results for the stiffness variations correlate well with
that of the referenced values. It is concluded that the AEKF approach is capable of trac-
king the variation of structural parameters leading to the detection of damages in nonlinear
structures.
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1. Introduction

High damping rubber-bearing isolation systems have been used in buildings and bridges. These
base isolation systems will become more popular in the future due to their ability to reduce
significantly the structural responses subject to earthquakes and other dynamic loads (Naeim
and Kelly, 1999; Komodromos, 2000; Narasimhan et al., 2006; Nagarajaiah et al., 2008). To
ensure the integrity and safety of these base isolation systems, a structural health monitoring
system should be developed. In this regard, analysis techniques for damage identification of
structures, based on vibration data measured from sensors, have received considerable attention.
Various approaches to system identification and damage detection have been proposed in the
literature, such as the least-square estimation (LSE) (Loh et al., 2000; Lin et al., 2001; Yang
et al., 2007), the extended Kalman filter (EKF) (Hoshiya and Saito, 1984; Sato et al., 2001;
Yang et al., 2006; Zhou et al., 2008; Yin et al., 2012), unscented Kalman filter (UKF) (Wu
and Smyth, 2008), sequential non-linear least-square estimation (SNLSE) (Huang and Yang,
2008), quadratic sum-squares error (QSSE) (Yang et al., 2009), Monte Carlo filter (Sato and
Chung, 2005), wavelet multiresolution technique (Chang and Shi, 2010), and others (e.g., Ching
et al., 2006; Yin and Zhou, 2006). In these techniques mentioned above, an adaptive tracking
technique has been proposed for tracking the time-varying parameters on-line (e.g., Zhou et
al., 2008; Huang and Yang, 2008; Yang et al., 2009). Simulation results demonstrate that this
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adaptive EKF approach (AEKF) is capable of tracking the variations of structural parameters,
such as the degradation of stiffness due to structural damages.
In this paper, experimental studies are performed and presented to verify the capability of

the AEKF approach for identifying and tracking damages in nonlinear structures. Experimental
tests using a base-isolated building model consisting of a scaled shear-beam type building model
mounted on a rubber-bearing isolation system have been conducted in the laboratory. The
Bouc-Wen model is selected to describe the non-linear behavior of rubber-bearings, which has
the advantages of being smooth-varying. To simulate structural damages during the test, an
innovative device, referred to as the stiffness element device (SED), is used herein to reduce the
stiffness of the model. Different earthquake excitations have been used to drive the shake table,
including the El Centro earthquake and Kobe earthquake. Various damage scenarios have been
simulated and tested. Measured acceleration data and the AEKF approach are used to track the
stiffness variation of the upper structure during the test. The experimental results demonstrate
that the AEKF approach is capable of tracking the variation of structural parameters leading
to the detection of damages in nonlinear structures.

2. Analytical model for Rubber-bearings

One challenging problem associated with the rubber-bearing isolator is the modeling of its
nonlinear hysteretic behavior. Different hysteretic models for describing the dynamic behavior
of rubber-bearings have been proposed in the literature, including the bi-linear model (Tan and
Huang, 2000), tri-linear model (Furukawa et al., 2005), Bouc-Wen model (Wen, 1989; Ma et
al., 2004; Yin et al., 2010), etc. However, little test data are available aiming at the rigorous
characterization of nonlinear hysteretic models (Abe et al., 2004). Among these models, the
Bouc-Wen model seems to be more flexible, involving more model parameters to be adjusted.
Thus, the Bouc-Wen model is investigated to describe the hysteretic character of the rubber-
-bearings in this paper.
When subject to an earthquake acceleration ẍ0(t), the equation of motion of rubber-bearing

isolation system described by the uniaxial hysteretic Bouc-Wen model can be expressed as

mẍ(t) +RT (x, z) = −mẍ0(t) (2.1)

where x is the relative displacement, z is a hysteretic variable, and m is the mass coefficient.
The total restoring force RT (x, z) consists of elastic and hysteretic components as follows

RT (x, z) = cẋ+ αkx+ (1− α)kz (2.2)

where c and k are, respectively, the damping and stiffness coefficients, and 0 ¬ α ¬ 1 is the ratio
of post-yielding stiffness to pre-yielding stiffness. The restoring force is purely hysteretic if α = 0
and is purely elastic if α = 1. The hysteretic variable is related to the relative displacement,
and a general Bouc-Wen hysteresis model with degradation and pinching given by

ż =
1

η
h(z)[Aẋ − ν(β|ẋ||z|n−1z + γẋ|z|n)] (2.3)

In the above expression ν and η are degradation shape functions, and h(z) is a pinching
shape function. ν and η are defined as

ν(ε) = 1 + δ1ε η(ε) = 1 + δ2ε (2.4)

in which, δ1 and δ2 are two constant degradation parameters, ε is a quantity used as a measure
of response duration and severity, introduced as follows

ε(t) =

t∫

0

zẋ dt (2.5)
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And the pinching function h(z) takes the following form

h(z) = 1− ζ1e
−[z sgn (ẋ)−qzx]2/ζ22 (2.6)

where sgn (ẋ) is the signum function of ẋ, and zx is the ultimate value of z given by

zx =
( A

v(β + γ)

) 1
n

(2.7)

The two functions ζ1(ε) and ζ2(ε) in Eq. (2.6) control the progress of pinching given by

ζ1(ε) = ζs(1− e
−pε) ζ2(ε) = (ψ + δ3ε)(λ+ ζ1) (2.8)

From Eqs. (2.2)-(2.8), there are 13 loop parameters (A, α, β, γ, n, δ1, δ2, ζs, q, p, ψ, δ3
and λ) in the general Bouc-Wen model describing the hysteretic behavior. However, it has been
shown that A = 1 is quite reasonable (Ma et al., 2004), and hence it will be used in this study.
Consequently, there remain 12 parameters (α, β, γ, n, δ1, δ2, ζs, q, p, ψ, δ3 and λ) in the
Bouc-Wen model. To ravel the contributions of these parameters to the system responses, the
one-factor-at-a-time method (Ma et al., 2004; Yin et al., 2010) is adopted to address sensitivity
of the 12 parameters relative to the chosen base values to understand the influence of each
parameter on the system response.
As a typical example of local sensitivity analysis, a SDOF hysteretic structure subject

to an earthquake acceleration ẍ0(t) as shown in Eq. (2.1) is used. Selected base values are:
m = 125.53 kg, c = 0.07 kNs/m, k = 24.5 kN/m, α = 0.2, β = 2, γ = 1, n = 2, δ1 = 0.02,
δ2 = 0.02, ζs = 0.8, q = 0.02, p = 1, ψ = 0.2, δ3 = 0.005, and λ = 0.1. The scaled E-W
component of the El Centro earthquake over a duration of 20 seconds is used as the excitation.
Then, each of these 12 loop parameters is varied, one at a time, by up to ±50% from its ba-
se value while holding all other parameters at the base position. Denote the system response
by [x1, x2, x3]

T = [x, ẋ, RT (x, z)]
T at the base values and by [y1, y2, y3]

T when one parame-
ter, say w, is varied, where x, ẋ and RT (x, z) denote the relative displacement, velocity and
restoring force, respectively. A root-mean-square error is defined as follows

ew =

√√√√ 1
M

M∑

i=1

[(x1i − y1i)2 + (x2i − y2i)2 + (x3i − y3i)2] (2.9)

where M = 1000 is the number of sampling points with the sampling time of ∆t = 0.02 s. As
each w is varied over its range (from −50% to 50% of the base value), the maximum error

‖ew‖ = max(ew) (2.10)

is recorded. These maximum values may be used as a measure of sensitivity. Based upon ‖ew‖, all
the 12 loop parameters of the hysteretic model are ranked in Table 1 in the order of decreasing
sensitivity for different earthquake intensities PGA (Peak ground acceleration). In order to
consider the influence of the energy of the excitation, the results for three different PGAs of the
excitations are also listed in Table 1. As can be observed from Table 1, although the order of the
sensitivities of each parameter has slightly changed under different excitations, the parameters
n, α, β and γ have remarkable influence on the response of the structure compared with the other
eight parameters, i.e., δ1, δ2, ζs, q, p, ψ, δ3 and λ. With several different sets of the base values,
it is found that the sensitivity conclusion is the same as that obtained from sensitivity analysis
above. Further, the above conclusion does not change when subject to another excitations, i.e.,
Kobe earthquake. It is emphasized that these conclusions are elicited based on the sets of base
values and excitations used in this study.
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Table 1. Parameter sensitivity ranking

Parameter ‖ew‖

w PGA = 0.3 g Rank PGA = 0.5 g Rank PGA = 1.0 g Rank

α 0.028 4 0.1281 4 0.7452 4

β 0.098 2 0.4716 2 2.8892 2

γ 0.04 3 0.1914 3 1.2095 3

n 5.137 1 11.6161 1 28.7566 1

δ1 0 11 0 11 0.0005 11

δ2 0.001 10 0.0027 10 0.0317 9

ζs 0.008 7 0.0234 7 0.2156 5

q 0.005 9 0.0103 9 0.029 10

p 0.008 7 0.0234 7 0.2149 6

ψ 0.0083 5 0.0293 5 0.2099 7

δ3 0 11 0 11 0 12

λ 0.0083 5 0.0291 6 0.202 8

From the results of the parameter sensitivity analysis above, it seems that the contributions
of these degradation and pinching parameters could gnored. In order to determine the final
hysteretic model for the rubber-bearings, i.e., the parameters contained in the Bouc-Wen model,
a performance testing on the GZN110 rubber-bearing is conducted as shown in Fig. 1a. Sinusoidal
excitations with different frequencies are used to drive the actuator, and the displacement-force
curves of the rubber bearing under different excitation frequencies are given in Fig. 1b. It is
observed from Fig. 1b that there are no significant effects of degradation and pinching. For
this reason, we consider the hysteretic model for the rubber-bearings without degradation and
pinching, i.e., δ1 = 0, δ2 = 0 and ζs = 0 for simplicity. Then, the unknown hysteresis loop
parameters in the Bouc-Wen model are reduced to α, β, γ and n. Equation (2.3) could be
rewritten as

ż = ẋ− β|ẋ| |z|n−1z − γẋ|z|n (2.11)

Fig. 1. (a) Performance testing on GZN 110 rubber bearing; (b) force-displacement curves of GZN 110
rubber bearing

Kasalanati and Constantinou (1999) have proposed that A/(β + γ) = 1. Chen et al. (2006)
used A = 1, β = 0.1, γ = 0.9, n = 2 for the laminated and stirruped rubber bearings. Huang
and Zhao (2000) used A = 1, β = 0.5, γ = 0.5, n = 3 for the laminated rubber bearings. Yin et
al. (2010, 2012) also suggested that A = 1, β = 0.5, γ = 0.5, n = 2 for rubber bearings. In this
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paper, these parameter values suggested by Yin et al. (2010, 2012) are adopted for a reference,
and the following experimental results are compared with these suggested values.

3. Adaptive extended Kalman filter

In this section, a brief summary of the adaptive extended Kalman filter (AEKF) approach to
be used is given, and the details are referred to Yang et al. (2006). Consider a m-DOF structure
with the displacement vector x, and velocity vector ẋ. Let us introduce an extended state
vector, Z(t) = {xT, ẋT,θT}T, where θT = [θ1, θ2, . . . , θn]

T is an n-unknown parametric vector
with θi (i = 1, 2, . . . , n) being the i-th unknown parameter of the structure, including damping,
stiffness, nonlinear and hysteretic parameters. In what follows, the boldface letter represents
either a vector or a matrix. The vector equation of motion of the structure can be expressed as

dZ(t)

dt
= g(Z, f , t) +w(t) (3.1)

in which w(t) is the model noise (uncertainty) vector with zero mean and a covariance matrix
Q(t), and f is the excitation vector. A nonlinear discrete vector equation for an observation
vector (measured responses) can be expressed as follows

Yk+1 = h(Zk+1, fk+1, k + 1) + vk+1 (3.2)

in which Yk+1 is a l-dimensional observation (measured) vector at t = (k+1)∆t (sampling time
step ∆t), i.e., Yk+1 = Y(t = (k+1)∆t), Zk+1 = Z(t = (k+1)∆t), and fk+1 = f(t = (k+1)∆t).
In Eq. (3.2), vk+1 is a measurement noise vector assumed to be a Gaussian white noise vector
with zero mean and a covariance matrix E[vkv

T
j ] = Rkδkj , where δkj is the Kronecker delta.

Let Ẑk+1|k+1 be the estimate of Zk+1 at t = (k+1)∆t, and Ẑk+1|k be the estimate of Zk+1

at t = k∆t. The recursive solution for the estimate Ẑk+1|k+1 of the extended state vector is
given by

Ẑk+1|k+1 = Ẑk+1|k +Kk+1[Yk+1 − h(Ẑk+1|k, fk+1, k + 1)]

Ẑk+1|k = E{Zk+1|Y1,Y2, . . . ,Yk} = Ẑk|k +

(k+1)∆t∫

k∆t

g(Ẑt|k, f , t) dt
(3.3)

in which Kk+1 is the Kalman gain matrix

Kk+1 = Pk+1|kH
T
k+1|k[Hk+1|kPk+1|kH

T
k+1|k +Rk+1]

−1 (3.4)

In Eq. (3.4), Pk+1|k and Hk+1|k are given by

Pk+1|k = Λk+1[Φk+1,kPk|kΦ
T
k+1,k]Λ

T
k+1 +Qk+1

Hk+1|k =

[
∂h(Zk+1, fk+1, k + 1)

∂Zk+1

]

Zk+1=Ẑk+1|k

(3.5)

where Φk+1,k is the transition matrix of the extended state vector from Zk to Zk+1, and Pk|k
is given by

Pk|k = [I2m+n −KkHk|k−1]Pk|k−1[I2m+n −KkHk|k−1]
T +KkRkK

T
k (3.6)

In Eq. (3.5)1, Λk+1 is a diagonal matrix referred to as the adaptive factor matrix. The de-
termination of Λk+1 has been described in Yang et al. (2006). In the recursive solution above,
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Pk|k is the error covariance matrix of the estimated extended state vector. To initiate the re-

cursive solution, the initial values for the unknown extended state vector Z(t) = {xT, ẋT,θT}T,
including the unknown parameters and the unknown state vector, should be estimated. Likewise,
the initial error covariance matrix P0|0 of the estimated extended state vector, the covariance
matrix R of the measurement noise vector v(t), and the covariance matrix Q of the system no-
ise vector w(t) should be assigned as will be described later. Finally, in computing the adaptive
factor matrix Λk+1 for the on-line damage identification, a constrained optimization procedure
was used, in which a small number (constraint) δ = 0.01 was suggested. Further, in computing
the covariance matrix of the predicted output error, it was suggested by Yang et al. (2006) that
G1,0 = 0, G2,0 = 0. These values, i.e., δ = 0.01, G1,0 = 0 and G2,0 = 0, will be used in the
following analysis of all experimental data.

4. Experimental studies

4.1. Experimental set-up

Rubber-bearings GZN110 supplied by Hengshui Zhentai Seismic Isolation Instrument CO.,
LTD were used as the base isolator. The base-isolation system consists of 8 circular rubber-
-bearings each with a diameter of 11 cm and an upper floor mate. A 400mm by 300mm small-
-scale shear-beam type building model mounted on a 600mm by 500mm floor mate of the rubber-
-bearing isolation system, as shown in Figs. 2a is used for the experiments. The base-isolated
building can be simplified to be a 2-DOF shear-beam model consisting of an upper storey and
an isolation storey, as shown in Fig. 2b. The total height of this building model is 660mm, where
the height of upper storey is 345mm and the height of the isolation storey is 315mm. The total
weight of the model is 350 kg, in which the mass of the upper floor is 50 kg and the mass of the
base mate is 300 kg. The first two natural frequencies of the test specimen are: 1.955 Hz and
5.376Hz, respectively. Based on the discretized 2-DOF shear-beam model, the stiffness of each
story was estimated to be 52 kN/m and 46 kN/m, respectively, using the finite-element approach.
The base-isolated building model was placed on the shake table that simulates different kinds
of earthquakes. Two earthquake excitations were used, including the El Centro and the Kobe
earthquakes. During the tests, each floor was installed with one acceleration sensor and one
displacement sensor to measure the floor responses.

Fig. 2. (a) The based-isolated building model on the shake table; (b) schematic figure for the
rubber-bearing isolated building (shear-beam model)

The damage in a storey unit is assumed to be reflected by the reduction of its stiffness.
To simulate the reduction of stiffness in the upper storey, a stiffness element device (SED),
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consisting of a hydraulic cylinder-piston (HCP) and a bracing system, with an effective stiffness
of Khi is installed in the upper storey, so that stiffness of the upper storey is increased by Khi.
During the experimental test, the effective stiffness of the SED is reduced to zero to simulate
the reduction of the stiffness in the upper storey.

During the tests, the shake table and the masses were each installed with one accelera-
tion sensor and one displacement sensor to measure the responses. The absolute acceleration
responses of the isolation storey a1, and the upper storey a2, as well as the earthquake gro-
und acceleration ad were measured. Also, the displacements of each storey and the base were
measured for the correlation study.

4.2. Experimental results

To demonstrate the capability and accuracy of the adaptive extended Kalman filter (AEKF)
approach for tracking the damage of base-isolated structures, experimental tests were conducted
herein for different damage scenarios. For shake table tests, two earthquakes will be used, inclu-
ding the El Centro earthquake scaled to a peak ground acceleration (PGA) of 0.6 g and the Kobe
earthquake scaled to a PGA of 0.5 g. For each earthquake, the acceleration responses (a1, a2) of
both floors and the shake table acceleration ad were measured. The sampling frequency of all
measurements was 500Hz. To identify the parameters of the rubber-bearing isolated structure,
and to track the damage in the upper storey when it occurs, different unknown parameters in
the Bouc-Wen model will be considered. From the hysteresis loop shown in Fig. 1b, the effects of
degradation and pinching are negligible. Further, from the sensitivity analysis conducted in the
previous section, only four loop parameters, i.e., α, β, γ, n in Bouc-Wen model for the isolation
system will be considered in this study.

4.2.1. Bouc-Wen model I (3 unknown parameters for isolation system)

First, we consider the loop parameters β, γ and n of the Bouc-Wen model for the isolation
storey to be constants, i.e., β = 0.5, γ = 0.5 and n = 2. Hence, the unknown parameters for
the isolation system consist of c, k and α. Hence, the hysteretic non-linear equation can be
rewritten as

ż = ẋ−
1

2
|ẋ| |z|z −

1

2
ẋ|z|2 (4.1)

Case 1: El Cento earthquake (PGA = 0.6 g)

In this test, a stiffness element device (SED) is installed in the upper storey unit as shown in
Fig. 2. The cylinder of the SED is filled by air with an air pressure of 0.7MPa. From the expe-
rimental test, the air pressure at P0 = 0.7MPa results in an effective stiffness of 7.0 kN/m
for the SED, i.e., Khi = 7.0 kN/m. Thus, the stiffness of the upper storey was estimated
to be k2 = 53 kN/m, whereas the stiffness of the base-isolated storey was estimated to be
k1 = 52 kN/m. During the test with the El Centro earthquake excitation, both valves of the
SED unit were open simultaneously at t = 14 seconds, so that the stiffness of the upper storey
reduces abruptly from 53 kN/m to 46 kN/m at t = 14 seconds. The acceleration responses of
both floors and the shake table acceleration, a1, a2 and ad in m/s

2, were measured and presen-
ted in Fig. 3. Further, the displacement responses of both floors and the base were also measured
for correlation studies later.

For the AEKF approach, the test specimen is considered as a 2-DOF shear-beam building
model, and the equations of motion can be written, in which the stiffness and damping of
each storey as well as the nonlinear hysteretic parameters of the base-isolator, are unknown
parameters. Consequently, the vector equation of motion, Eq. (3.1), for the extended state vector
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Fig. 3. Measured acceleration responses and shake table acceleration due to El Centro earthquake

can be established analytically. With the measured shake table acceleration ad and acceleration
responses (a1, a2) shown in Fig. 3, the unknown structural parameters, i.e., ki, ci (i = 1, 2), and
α can be identified on-line using the recursive solution, Eqs. (3.3)-(3.6), of the AEKF approach.

For the AEKF recursive solution described previously, the following initial values are assu-
med: (i) the initial values for ki and ci are: ki0 = 40 kN/m and ci0 = 0.1 kNs/m (i = 1, 2),
(ii) the initial values for the displacements and velocities are zero, i.e., x = [0, 0]T, ẋ = [0, 0]T,
(iii) the initial error covariance matrix P0|0 of the extended state vector is a (10× 10) diagonal
matrix with the first 5 diagonal elements being 1 and the last 5 diagonal elements being 1000,
and (iv) the covariance matrices of the measurement noise vector v(t) and the system noise
vector w(t) are chosen to be R = 0.1I2 and Q = 10

−9I10, respectively, where Ij is a (j × j)
unit matrix. In the following experimental studies in Case 1 and Case 2 to be presented later,
these same initial values will be used.

Fig. 4. The identified system parameters, Case 1: El Centro earthquake

Based on the AEKF recursive solution and the measured data, the identified unknown pa-
rameters for both storeys are presented in Fig. 4 as solid curves (black color). Also shown in
Fig. 4 as dashed curves (grey color) for comparison are the estimated results based on the finite-
element method. Further, the identified inter-storey drifts (x1, x2) and displacements (d1, d2)
of each floor using the AEKF approach are presented in Fig. 5 as solid curves (black color),
whereas the dashed curves (grey color) are the measured experimental results for comparison.
The identified numerical results based on the AEKF approach are as follows: (i) prior to da-
mage, k1 = 51.7 kN/m and k2 = 55.2 kN/m, and (ii) after damage, k1 = 51.7 kN/m and
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k2 = 48.5 kN/m. It is observed from both Fig. 4 (solid curves) and the numerical results above
that the identified structural parameters based on the AEKF approach are very reasonable in
comparison with that estimated by the finite element method (dashed curves). The difference
between the solid and dashed curves has been expected due to the structural uncertainty of
the test model, including the shear-beam assumption. Figures 4 and 5 clearly demonstrate that
the AEKF approach is capable of tracking the variation of stiffness parameters, leading to the
detection of structural damages.

Fig. 5. The identified relative and absolute displacements, Case 1: El Centro earthquake

Case 2: Kobe earthquake (PGA = 0.5 g)

Instead of the El Centro earthquake, the Kobe earthquake was used to drive the shake
table. The test configuration is identical to that of Case 1 presented previously, except that
the air pressure of the SED installed in the first storey is P0 = 0.75MPa. This results in a
stiffness of 7.5 kN/m for the SED. Hence, the stiffness of the upper storey prior to damage is
k2 = 46kN/m + 7.5 kN/m = 53.5 kN/m, whereas the stiffness of the base isolator remains the
same, i.e., k1 = 52 kN/m. During the test, valves of the SED were open at t = 8.0 seconds
following the most intensive portion of the earthquake. After t = 8.0 seconds, k2 is reduced
to 46 kN/m. Acceleration responses (a1, a2) of both floors and the shake table acceleration ad
were measured and presented in Fig. 6. Based on the measured data in Fig. 6 and the AEKF
approach, the identified unknown parameters for both storeys are presented in Fig. 7 as solid
curves (black color), whereas the dashed curves (grey color) are the finite-element results. The
predicted inter-storey drifts (x1, x2) and displacements (d1, d2) of each floor are presented in
Fig. 8 as solid curves (black color), whereas the dashed curves (grey color) are the measured data
for comparison. The identified numerical results using the AEKF approach are as follows: (i) prior
to damage, k1 = 52.2 kN/m and k2 = 55.6 kN/m, and (ii) after damage, k1 = 52.2 kN/m and
k2 = 47.6 kN/m. As observed from Figs. 7 and 8, the AEKF predictions are quite reasonable,
and that the trend of predictions is consistent with that of the previous case.

4.2.2. Bouc-Wen Model II (5 unknown parameters for isolation system)

In this situation, we consider the parameter n of the Bouc-Wen model for the isolation storey
to be 2.0, i.e., n = 2, and the other loop parameters, α, β, and γ to be unknown in Eqs. (2.2)
and (2.11). Then, the hysteretic non-linear equation can be rewritten as

ż = ẋ− β|ẋ| |z|z − γẋ|z|2 (4.2)

For the AEKF recursive solution, the initial values assumed for Case 3 and Case 4 are similar
to that of Case 1 and 2, except that P0|0 is a (12×12) diagonal matrix with the first 5 diagonal
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Fig. 6. Measured acceleration responses and shake table acceleration due to Kobe earthquake

Fig. 7. The identified model parameters, Case 2: Kobe earthquake

Fig. 8. The identified relative and absolute displacements, Case 2: Kobe earthquake

elements being 1 and the last 7 diagonal elements being 1000, R = 0.1I2 and Q = 10
−9I10. In

the following experimental studies in Case 3 and Case 4 to be presented, these initial values will
be used. Note that these initial values are basically identical to that of Case 1 and Case 2.

Case 3: El Centro earthquake (PGA = 0.6 g)

Similar to Case 1, a scaled El Centro earthquake was applied to the base. Based on the
acceleration measurements shown in Fig. 3 and the AEKF solution, the identified parameters
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are presented in Fig. 9. Further, the identified displacements are shown in Fig. 10 as black solid
curves, whereas the measured displacements are shown as grey dashed curves for comparison. It
is observed from Fig. 10 that the identified displacements match the experimental ones well.

Fig. 9. The identified model parameters, Case 3: El Centro earthquake

Fig. 10. The identified relative and absolute displacements, Case 3: El Centro earthquake

Case 4: Kobe earthquake (PGA = 0.5 g)

Similar to Case 2, a scaled Kobe earthquake was applied to the base. Based on the acce-
leration measurements shown in Fig. 6 and the AEKF solution, the identified parameters are
presented in Fig. 11. As observed from Fig. 11, all parameters converge nicely after 2.5 seconds.
The identified displacements are shown in Fig. 12 as black solid curves, whereas the measured
displacements are shown as grey dashed curves for comparison. Again, the AEKF approach is
capable of identifying structural damages.

5. Conclusions

Recently, a new adaptive extended Kalman filter (AEKF) has been proposed for the on-line
damage identification of structures based on simulation results. In this paper, we have perfor-
med experimental studies to verify the capability of this AEKF in identifying the damage of
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Fig. 11. The identified model parameters, Case4: Kobe earthquake

Fig. 12. The identified relative and absolute displacements, Case 4: Kobe earthquake

base-isolated structures by conducting a series of experimental tests on a scaled rubber-bearing
isolated building model. The Bouc-Wen models with 3 and 5 unknown parameters, respectively,
have been investigated to represent the hysteretic behavior of rubber-bearing isolators. To si-
mulate the structural damage during the test, an innovative stiffness element device (SED) has
been used to reduce the stiffness of the upper storey. Different damage scenarios under different
earthquakes have been simulated and tested. The measured acceleration response data and the
AEKF approach have been used to identify the unknown structural parameters, and to track
the stiffness variation of the structure during the test. The identified stiffness parameters based
on the AEKF approach correlate reasonably well with those estimated by the finite-element
method despite the stiffness of the upper storey is uniformly bigger than that estimated by the
finite-element method. This trend is consistent for all the test results, including different loading
conditions and different damage scenarios. Such discrepancies have been expected due to the
structural uncertainties of the test model. Experimental studies conducted herein demonstra-
te that the AEKF approach is capable of: (i) identifying nonlinear structural parameters, and
(ii) tracking the variation of stiffness parameters leading to the detection of structural damages.
In addition to the AEKF approach, the initial values, such as the initial parametric values and
the covariance matrices of the measurement noise vector v(t), have an important influence on
the stability and convergence of the AEKF and, consequently, on the estimations of the struc-
tural parameter and the measured noise level, e.g., stiffness coefficients ki and R, conducted
previously and experientally.
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