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In the paper, the problem of identification of substitute thermal capacity
C(T ) is discussed. This parameter appears in the case of modelling of
the solidification process on the basis of one domain approach (fixed do-
main method). Substitute thermal capacity (STC) can be approximated,
among others, by a staircase function and this case is considered. So, it
is assumed that in the mathematical model describing thermal processes
in the system considered the parameters of STC are unknown. On the
basis of additional information concerning the cooling (heating) curves
at a selected set of points, the unknown parameters can be found. The
inverse problem is solved by using the least squares criterion, in which
the sensitivity coefficients are applied. On the stage of numerical simu-
lation, the boundary element method is used. In the final part of the
paper, examples of computations are shown.
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1. Introduction

An inverse problem from the scope of thermal theory of foundry processes is
discussed. The problem belongs to the group of parametric ones. From the
mathematical point of view, a transient non-linear boundary-initial inverse
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task concerning non-homogeneous domains (casting and mould) is considered.
Thermal parameters appearing in the Fourier-Kirchhoff equation correspon-
ding to the casting area (substitute thermal capacity and thermal conductivi-
ty) are temperature-dependent, and they are assumed in the form of piece-vice
constant functions. Successive ’stairs’ of functions determine thermophysical
parameters of the molten metal, the mushy zone and the solid body.
The introduction of substitute thermal capacity (STC) to the mathema-

tical model of solidification and cooling processes proceeding in the casting
domain leads to the model called ”a one domain method” (Mochnacki and
Suchy, 1995; Majchrzak and Mochnacki, 1995; Majchrzak and Szopa, 2001),
because the energy equation concerns an artificially homogeneous object, whi-
le in reality, it is a composition of three time-dependent sub-domains. The
substitute thermal capacity of the molten metal (T > TL) and the solid
body (T < TS), where TS and TL are the border temperatures resulting
from the equilibrium diagram, corresponds to volumetric specific heat, while
for [TS , TL], it is a sum of the mushy zone volumetric specific heat and the
spectral latent heat controlling the solidification process (Mochnacki and Su-
chy, 1995; Kapturkiewicz, 2003). The aim of investigations presented in this
paper is simultaneous identification of all ’stairs’ determining the course of
STC.
Many theoretical and experimental methods for measuring thermophysi-

cal properties have been developed in literature, they include, among others,
the steady state method, the probe method, the periodic heating method, the
pulse heating method, etc. However, all the above methods belong to either
steady-state or constant parameters estimation. Typical simultaneous solu-
tions concern, as a rule, the identification of several thermophysical or boun-
dary parameters treated as constant values (e.g. Huang and Wu, 1995; Kurpisz
and Nowak, 1995; Yang, 1999; Ozisik and Orlande, 1999; Abou Khachfe and
Jarny, 2001). The transient function estimation is an inverse heat conduction
problem, which has never been examined in the open literature from the scope
of thermal theory of foundry processes.

2. Governing equations

The energy equation describing the casting solidification has the following form
(Mochnacki and Suchy, 1995; Majchrzak and Mochnacki, 1995)

c(T )
∂T (x, t)
∂t

= ∇[λ(T )∇T (x, t)] + L
∂fS(x, t)
∂t

(2.1)



Identification of substitute thermal capacity... 259

where c(T ) is a volumetric specific heat, λ(T ) is a thermal conductivity, L is
a volumetric latent heat, fS is a volumetric solid state fraction at a considered
point from the casting domain, T , x, t denote temperature, geometrical co-
ordinates and time, respectively. The form of equation (2.1) shows that only
conductional heat transfer is considered and the convection in the molten
metal subdomain is neglected. The considered equation is supplemented by
the equation (or equations) concerning the mould subdomain

cm(T )
∂Tm(x, t)
∂t

= ∇[λm(T )∇Tm(x, t)] (2.2)

where cm is the mould volumetric specific heat and λm is the mould thermal
conductivity. In the case of typical sand moulds, on the contact surface between
the casting and mould the continuity condition in the form

−λ
∂T (x, t)
∂n

= −λm
∂Tm(x, t)
∂n (2.3)

T (x, t) = Tm(x, t)

can be accepted (∂/∂n denotes the normal derivative).
On the external surface of the system, the condition in the general form

Φ
[

T (x, t),
∂T (x, t)
∂n

]

= 0 (2.4)

is given. For instance, on the outer surface of the mould the Robin condition

−λm
∂Tm(x, t)
∂n

= α[Tm(x, t)− Ta] (2.5)

determines the heat exchange between the mould and environment. In equ-
ation (2.5), α is the heat transfer coefficient, and Ta is the ambient tempera-
ture.
For t = 0, the initial condition

t = 0 : T (x, 0) = T0(x) Tm(x, 0) = Tm0(x) (2.6)

is also known.
It should be pointed out that equation (2.1) constitutes a base for the nu-

merical modelling of solidification both in the macro (Mochnacki and Suchy,
1995; Majchrzak and Mochnacki, 1995) and the micro/macro scale (Kaptur-
kiewicz, 2003; Majchrzak et al., 2006).
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In the case of a typical macro model of alloy solidification, the knowledge
of temperature-dependent function fS in the mushy zone T ∈ [TS , TL] sub-
domain is assumed, and then

∂fs(x, t)
∂t

=
dfs
dT

∂T (x, t)
∂t

(2.7)

Finally, energy equation (2.1) takes the form

[

c(T )− L
dfS
dT

]∂T (x, t)
∂t

= ∇[λ(T )∇T (x, t)] (2.8)

where

C(T ) = c(T )− L
dfS
dT

is the substitute thermal capacity. One can see that for T > TL : fS = 0, while
for T < TS : fS = 1, and then dfS/dT = 0. So, equation (2.8) determines the
thermal processes in the whole conventionally homogeneous casting domain. If
the linear course of C(T ) for T ∈ [TS , TL] is assumed, in particular a function
of the form

fS(T ) =
TL − T (x, t)
TL − TS

(2.9)

fulfilling the conditions fS(TL) = 0, fS(TS) = 1 is taken into account, then

C(T ) =



















cL for T > TL

cP +
L

TL − TS
for TS ¬ T ¬ TL

cS for T < TS

(2.10)

where cL, cS , cP = (cS + cL)/2 are the volumetric specific heats of the molten
metal, solid state and mushy zone, correspondingly. If the constant values
of cL, cS and cP are assumed, the substitute thermal capacity of the alloy
assumes a form of the staircase function – Fig. 1. It should be pointed out
that such approximation of the substitute thermal capacity is very popular
and often used in computations of foundry processes.
If the solidification of pure metals or eutectic alloys is considered, it is

possible to introduce an artificial mushy zone (Mochnacki and Lara, 2003)
corresponding to a certain interval T ∈ [T ∗ − ∆T, T ∗ + ∆T ], where T ∗ is
the solidification point, and then to define the course of fS for the interval
assumed.
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Fig. 1. Distribution of C(T )

3. Formulation of the inverse problem

Let us assume that the parameters appearing in the mathematical model of ca-
sing solidification are known except the segments creating the function C(T ).
In order to solve the parametric inverse problem discussed (Kurpisz and No-
wak, 1995; Ozisik and Orlande, 1999; Alifanov, 1994), it is necessary to know
the values T fgi at the selected set of points xi (sensors) from the casting-mould
domain for times tf

T fgi = Tg(xi, t
f ) i = 1, 2, . . . ,M, f = 1, 2, . . . , F (3.1)

For further considerations, the components of formula (2.10) are denoted in
the following way

C(T ) =















C1 for T > TL
C2 for TS ¬ T ¬ TL
C3 for T < TS

(3.2)

and the parameters Ce, e = 1, 2, 3 will be estimated by using an iterative
procedure.
In order to solve the inverse problem, the least squares criterion is applied

S(C1, C2, C3) =
1
MF

M
∑

i=1

F
∑

f=1

(T fi − T
f
gi)
2 (3.3)

where T fi = T (xi, t
f ) are the temperatures being the solution to the direct

problem for the assumed set of parameters at the points xi, i = 1, 2, . . . ,M
for the time tf .
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Differentiating criterion (3.3) with respect to the unknown parameters Ce
and using the necessary condition of minimum, one obtains the following sys-
tem of equations

∂S

∂Ce
=
2
MF

M
∑

i=1

F
∑

f=1

(T fi − T
f
gi)(U

f
ei)
k = 0 e = 1, 2, 3 (3.4)

where

(Ufei)
k =
∂T fi
∂Ce

∣

∣

∣

∣

∣

Ce=Cke

are the sensitivity coefficients, k is the number of iteration, C0e are arbitrarily
assumed values of Ce, while Cke for k > 0 result from the previous iteration.
The function T fi is expanded in the Taylor series about known values of

Ckl

T fi = (T
f
i )
k +

3
∑

l=1

(Ufli)
k(Ck+1l − Ckl ) (3.5)

Putting (3.5) into (3.4), one obtains (e = 1, 2, 3)

M
∑

i=1

F
∑

f=1

[(T fi )
k +

3
∑

l=1

(Ufli)
k(Ck+1l − Ckl )− T

f
gi](U

f
ei)
k = 0 (3.6)

or
M
∑

i=1

F
∑

f=1

3
∑

l=1

(Ufli)
k(Ufei)

k(Ck+1l − Ckl ) =
M
∑

i=1

F
∑

f=1

[T fgi − (T
f
i )
k](Ufei)

k (3.7)

The system of equations (3.7) can be written in a matrix form

(Uk)⊤UkCk+1 = (Uk)⊤UkCk + (Uk)⊤(Tg − Tk) (3.8)

where

U
k =





































(U111)
k (U112)

k (U113)
k

· · · · · · · · ·

(UF11)
k (UF12)

k (UF13)
k

(U121)
k (U122)

k (U123)
k

· · · · · · · · ·

(UF21)
k (UF22)

k (UF23)
k

· · · · · · · · ·

(U1M1)
k (U1M2)

k (U1M3)
k

· · · · · · · · ·

(UFM1)
k (UFM2)

k (UFM3)
k





































Tg =







































T 1g1
· · ·

TFg1
T 1g2
· · ·

TFg2
· · ·

T 1gM
· · ·

TFgM







































T
k =





































(T 11 )
k

· · ·

(TF1 )
k

(T 12 )
k

· · ·

(TF2 )
k

· · ·

(T 1M )
k

· · ·

(TFM )
k
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while

C
k =







Ck1
Ck2
Ck3






C
k+1 =







Ck+11
Ck+12
Ck+13






(3.9)

This system of equations enables finding the values of Ck+1e . The iteration
process is stopped when the assumed number of iterations K is achieved.
It should be pointed out that in order to obtain the sensitivity coefficients,

the governing equations must be differentiated with respect to Ce (direct
approach – see Kleiber, 1997; Majchrzak et al., 2005). So, differentiation of
equation (2.8) (on the assumption that λ = const ) leads to the formula

C(T )
∂Ue(x, t)
∂t

= λ∇2Ue(x, t)−
∂C(T )
∂Ce

∂T (x, t)
∂t

(3.10)

where

∂C

∂C1
=











1
0
0

∂C

∂C2
=











0
1
0

∂C

∂C3
=











0 for T > TL
0 for TS ¬ T ¬ TL
1 for T < TS

The sensitivity equations for the mould (λm = const , cm = const ) sub-
domain have the following form

cm
∂Ume(x, t)
∂t

= λm∇2Ume(x, t) (3.11)

The sensitivity model is supplemented by the following conditions:
— on the contact surface

−λ
∂Ue(x, t)
∂n

= −λm
∂Ume(x, t)
∂n (3.12)

Ue(x, t) = Ume(x, t)

— on the outer surface of the mould

−λm
∂Ume(x, t)
∂n

= αUme(x, t) (3.13)

— and the initial condition

t = 0 : Ue(x, 0) = 0 Ume(x, 0) = 0 (3.14)
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So, for each time step, the basic problem and three additional problems
connected with the sensitivity functions should be solved.

4. Example of computations

The recurrent fragment of steel casting shown in Fig. 2 (Majchrzak and Szopa,
2001) has been considered (in particular, the symmetrical part of the domain
has been taken into account).

Fig. 2. Considered domain

The following thermophysical parameters of subdomains have been intro-
duced: casting domain λ = const = 35W/(mK), cS = 4.875MJ/(m3K),
cL = 5.904MJ/(m3K), L = 1984.5MJ/m3, TS = 1470◦C, TL = 1505◦C,
T0 = 1550◦C, core domain λm1 = 0.7W/(mK), cm1 = 1.88MJ/(m3K), mo-
uld domain λm2 = 1.2W/(mK), cm2 = 1.76MJ/(m3K) and Tm0 = 20◦C.
The positions of sensors are marked in Fig. 2. Both the basic problem and
the additional ones have been solved by using the boundary element method
supplemented by the temperature field correction method (Majchrzak, 2001).
In Figs. 3 and 4, the temperature field and shape of the solidified part of

casting after 10 and 30 minutes are shown. This solution enables determination
of the set of T fgi at the selected points from the domain considered. In Fig. 5,
the iteration process of identification of parameters Ce, e = 1, 2, 3 is marked
(starting point C01 = C

0
2 = C

0
3 = 10MJ/(m

3K)). The same computations for
other initial values of Ce are shown in Fig. 6 and 7.
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Fig. 3. Temperature distribution after 10 minutes

Fig. 4. Temperature distribution after 30 minutes

5. Conclusions

It should be pointed out that for the initial values assumed, the iteration
process is convergent and the final values of STC are very close to the real ones.
The information concerning T fgi and resulting from the basic problem solution
was undisturbed, but similar inverse problems were also solved (Mochnacki and
Metelski, 2005) by using the ’measured temperatures’ disturbed in a random
way. It is also possible to apply the heating curves at points from the mould
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Fig. 5. Iteration process (variant I)

Fig. 6. Iteration process (variant II)

Fig. 7. Iteration process (variant III)
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subdomain (Mochnacki and Majchrzak, 2006), and this information can be
interesting from the practical point of view.
Summing up, the proposed approach to the solution to inverse problems

seems to be an effective and simple tool for numerical analysis of heat transfer
proceeding in the casting-mould system.
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Identyfikacja zastępczej pojemności cieplnej krzepnącego stopu

Streszczenie

W pracy omówiono problem identyfikacji parametru nazywanego zastępczą po-
jemnością cieplną stopu. Zastępcza pojemność pojawia się w przypadku modelowania
krzepnięcia stopów (a również czystych metali) na podstawie opisu matematycznego
nazywanego metodą jednego obszaru. Przebieg tej funkcji można aproksymować na
wiele sposobów, w pracy wykorzystano aproksymację funkcją kawałkami stałą. Za-
łożono, że przedmiotem identyfikacji są wartości kolejnych ”schodków” tworzących
pojemność zastępczą. Dodatkową informacją niezbędną do rozwiązania zadania od-
wrotnego są krzywe stygnięcia w wybranych punktach z obszaru krzepnącego i sty-
gnącego metalu. Problem rozwiązano wykorzystując kryterium najmniejszych kwa-
dratów, do którego wprowadzono współczynniki wrażliwości. Zadanie podstawowe
i zadania analizy wrażliwości rozwiązano metodami numerycznymi, a w szczególności
metodą elementów brzegowych. W końcowej części pracy pokazano przykład obliczeń
(zadanie 2D).
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