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The paper presents contemporary developments in the field of deter-
ministic description of turbulence with special reference to Large Eddy
Simulation (LES) methods. The limitations of conventional turbulence
modelling based on stochastic methodology have been discussed, and re-
asons for development of deterministic approach outlined. It has been
shown that the computational power of the fastest available computers
restrict possible DNS (Direct Numerical Simulation) solutions to the
range of small Reynolds numbers. Finally, basic assumptions have be-
en formulated for the LES formalism that seem to offer a reasonable
compromise between the tendency towards the deterministic solution to
Navier-Stokes equations and the existing computational resources.
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Notations

Cs – constant in Smagorinsky model
Dij – mean rate of strain tensor
F – arbitrary physical quantity
f – fluctuating component of arbitrary physical quantity
G – filter for N-S equation
k – kinetic energy of turbulence
L – macroscopic dimension of flow
S – rate of strain tensor for filtered flow-field

1The paper was addressed to researches presenting a wide range of fields of their
interest at XXXII Meeting of Polish Society Of Theoretical and Applied Mechanics.
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Ui – instantaneous velocity component
ui – fluctuating component of velocity
x – space vector
xi – space coordinates
α – coefficient in eddy viscosity definition
∆ – subgrid length scale
δij – Kronecker delta
ε – turbulence energy dissipation
η – Kolmogorov scale
ν – kinematic viscosity coefficient
νT – eddy viscosity
σij – stress tensor
ρ – density
τij – subgrid stress tensor
(−) – time averaging operator
(=) – filtration operator
(∗) – convolution

1. Introduction

Turbulence in viscous flows presents the most common and also the most com-
plex flow both in natural environment and technical applications. The most
important feature of these flows is the existence of vortex structures featuring
the length scales continuously varying from the smallest ones of the order of
10−6m up to macroscopic dimensions of flows equal to hundreds and someti-
mes even thousands of kilometers (Elsner, 1987). The first consequence of such
a turbulence structure is an infinite number of interactions among particular
eddy scales which introduce the need for stochastic description of turbulence.
In this methodology one does not try to describe the behaviour of individual
eddies but instead considers statistically averaged measures which characterise
turbulent eddies and the turbulence structure. One should remember, howe-
ver, that trustworthy description of an eddy structure requires averaging of
a considerable number of particular flow realisations. Equally important con-
sequence of the existence of an eddy structure is enormous intensification of
both mixing processes and transport abilities which result from the infinite
number of interactions between particular eddies in the turbulent flow.

Summing up, one may conclude that a correct description of a turbulent
flow must, on one hand, reflect the existence of the infinite eddy cascade and,
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on the other, it must account for the intense mixing and transport properties
as the important feature of turbulence.

2. Stochastic turbulence modelling

The stochastic treatment of a turbulent flow became possible due to the idea
of Reynolds, who assumed that each physical quantity F which characterises
flow turbulence may be regarded as a superposition of a time invariant mean
quantity F (x) and a fluctuating component f(x, t) being a random function
of space and time

F (x, t) = F (x) + f(x, t) (2.1)

Application of the above hypothesis allows one to describe the velocity field
Ui(xj , t), pressure p(xj , t) and density ρ(xj, t) as the following superposition

Ui(xj , t) = Ui(xj) + ui(xj , t)

p(xj, t) = p(xj) + p
′(xj , t) (2.2)

ρ(xj, t) = ρ(xj) + ρ
′(xj , t)

If one introduces the above relations to Navier-Stokes equations, then for an
incompressible flow (ρ = ρ = idem) of a constant viscosity fluid (ν = idem),
the Reynolds equation may be written

ρ
(∂Ui

∂t
+ Uj
∂Ui

∂xj

)

=
∂

∂xj
(σij) + Fi (2.3)

The above equation was time-averaged which is equivalent to averaging over
an infinite number of realisations of a stochastic process. The stress tensor
from the above equation

σij = −pδij + νρ
(∂Ui

∂xj
+
∂Uj

∂xi

)

− ρuiuj (2.4)

contains an additional term

(σT )ij = −ρuiuj (2.5)

which was not present in the original Navier-Stokes equation. This additional
term is a symmetric, second order turbulent stress tensor commonly called the
Reynolds stress tensor. The diagonal components of the above tensor, i.e.

−ρuiui
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represent normal stress components, while the off-diagonal ones

−ρuiuj(1− δij)

are the shear components of Reynolds stresses.
Since the additional stress tensor has appeared, then the Reynolds equ-

ations are no longer closed. The closure of the Reynolds equation may be
based on a proposal concerning the mutual relation between the Reynolds
stress components and physical quantities characterising the mean flow field.
Such a concept was proposed by Boussinesq, who introduced a simple linear
relation between the Reynolds stress tensor and the mean flow rate of the
strain tensor, i.e.

−ρuiuj = ρνT
(∂Ui

∂xj
+
∂Uj

∂xi

)

(2.6)

The proportionality coefficient νT , which appears in the above relation is the
kinematic turbulent viscosity and may be regarded analogously to Newton’s
viscosity. One should notice however, that contrary to Newton’s idea, νT is no
longer a physical property of the fluid but it is a property of a turbulent flow
which depends on the turbulence structure in a given point. The Boussinesq
concept enables analytical treatment of a turbulent flow but it is not a closure
of the Reynolds equation because it does not suggest at all how the turbulent
viscosity could be determined. According to the original Boussinesq idea, the
turbulent viscosity νT is a scalar quantity, determined experimentally as a
function of space coordinates, i.e.

νT = νT (x)

which is meant to enable formulation of missing relations between the tur-
bulent stress and the rate of strain tensors. However, such a closure can not
be performed for a turbulent flow, because the eddy viscosity is a function
of the flow-field which is not a priori known. Furthermore, the assumption
concerning scalar behaviour of the eddy viscosity was also a matter of serious
controversies and as it was pointed out by many authors (e.g. Hinze, 1975).
The eddy viscosity should rather be a second order tensor given by the formula

−ρ(uiuj) = (νT )ikDjk (2.7)

where Djk is the mean rate of the strain tensor

Djk =
∂Uj

∂xk
+
∂Uk

∂xj



Some remarks on modelling... 247

This improved proposal is, however, not entirely correct because, as it has
been pointed out by numerous sources (see for example Elsner, 1987), it do-
es not fulfil the basic assumptions concerning the 3D character of turbulent
fluctuations. This limitation may be lifted if Eq. (2.7) is expressed in the form

−uiuj =
1

2
{(νT )ikDkj + (νT )jkDki} − αijk (2.8)

where k = ulul denotes the kinetic turbulence energy and the coefficient αij
takes the following values

{

αij = 0 for i 6= j
αij 6= 0 for i = j

The first term of the r.h.s. of Eq. (2.8) has been written in a form which
provides symmetry of the uiuj tensor indices with respect to i and j. The
second term is related to the kinetic turbulence energy and takes into account
the presence of normal components of turbulent stresses which have non-zero
values even in homogeneous flows where the mean rate of strain tensor is equal
to zero. One should notice, however, that introduction of the eddy viscosity
expressed as the second order tensor is not a closure of the Reynolds equations
but it only illustrates the complexity of the problem.
These closure hypotheses, which have been developed so far and are com-

monly called the eddy viscosity turbulence models, are mostly based on the
idea of scalar eddy viscosity. Within this group of closures, one may distingu-
ish algebraic (zero-order) as well as one and two-equation turbulence models,
with the k − ǫ turbulence model developed at the beginning of the 70’s and
most widely used so far (Launder and Spalding, 1972). Despite the fact that
many spectacular successes have been achieved with eddy-viscosity models,
there is a common knowledge of their inherent limitations resulting e.g. from
the assumed scalar character of eddy-viscosity. Understanding of these limi-
tations was the reason why at the very beginning of turbulence modelling
era, the idea of stress transport models, which do not use the eddy-viscosity
concept, was proposed by Hanjalic (Launder and Spalding, 1972). Stochastic
turbulence models were intensively investigated during the 70’s and 80’s, and
now a selection of excellent books on that subject is available, starting from
the classical (although a bit outdated) book by Wilcox (1993) and ending with
the recent monography by Pope (2000).
During the 90’s the knowledge about turbulence modelling was utilised in

the development of commercial codes, which despite their obvious drawbacks
are at present the only available tools for analysis of turbulent flows. These
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complex software packages based on classical turbulence models solve time-
averaged equations of motion and are widely known as RANS codes (Reynolds
Averaged Navier Stokes equations). However, the limitations of RANS codes
are not known a priori, and that is why the analysis of their applicability to
various types of flows and evaluation of achievable accuracy of computations
is so important that it has been made a subject of an extremely successful EU
project known under the acronim QNET-CFD (2000).

The obvious motivation for this analysis is the limited versatility of both
eddy-viscosity based and stress transport turbulence models. This limitation
results directly from time-averaging of N-S equations that requires the ability
of turbulence models to cope with the whole range of eddy scales encounte-
red in all possible types of turbulent flows. Many decades of intense research
have not resulted in the development of a truly universal turbulence model
(Shah and Ferziger, 1997), and unfortunately a pessimistic forecast of Ferziger
(1977) formulated as early as at the end of the 70’s seems to be true so far.
The research performed currently in this field proposes no more than only mi-
nor modifications to already existing turbulence models which result at most
in slight improvements of computational accuracy in selected types of flows.
One may conclude, therefore, that stochastic turbulence models which we use
now as the closure for the Reynolds averaged N-S equations should not be
regarded as a promising perspective. On the other hand, the urgent need for
CFD design tools, which is evident in all fields of engineering, requires the
fluid mechanics to find a new solution, which could bring a real breakthro-
ugh in CFD and propose a trustworthy description of turbulent flows (Rodi
et al., 1997).

3. New perspectives for deterministic turbulence modelling

The research performed during the 90’s revealed that, contrary to previous
expectations, the N-S equations are capable to describe correctly the struc-
ture of turbulent flows in ranges of Reynolds and Mach numbers which are
potentially interesting from the engineering point of view. As it was stated by
Lesieur (1990), there are simple, good quality solutions to N-S equations for
very high Mach numbers (Ma ≈ 15), which were obtained at grids with mesh
sizes smaller than viscous Kolmogorov scales, but still these sizes are much
larger than the molecular free-path. If such a solution gives correct values of
velocity, pressure, temperature and density of the flowing medium, then it
seems logical to put forward a question concerning the mutual relation betwe-
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en the flow turbulence and Newton’s determinism. Bearing in mind the flow
physics, this important question may be formulated as follows:

”...if at the initial time-instant to one knows the initial positions
and velocities of all scales of motion, then there should be only one

possible state of flow for every time instant t > t0.”

From the point of view of a mathematician, this question concerns the
problem of existence and uniqueness of a solution to the N-S equation, which
so far has only been proved for 2D space (Temam, 1977), while in 3D the N-S
solution exists only for a finite time. There seems to be however, a reasonably
justified hope (see Lesieur (1990) among others) that the presence of viscosity
in the N-S equation will tend to ”smooth” the solution at a degree which will
be sufficient to prevent singularities and bifurcations to another solution (Iooss
and Joseph, 1980).
The above statements suggest the possibility of deterministic treatment of

turbulence even if the solution resulting from non-linear interactions among
the particular scales of turbulent motion reveal very complex behaviour. The
perspective for the analytical N-S solution is of course unrealistic, but the im-
pressive progress in computational resources enables one to obtain numerical
solutions to the true N-S equation at least for moderate Reynolds numbers.
This type of solutions known as DNS (Direct Numerical Simulations) is sim-
ply a direct solution to the N-S equation obtained in the time domain with
all scales of turbulent motion accounted for. The DNS solution does not requ-
ire any hypotheses or turbulence models, and the consecutive DNS solutions,
obtained in the time domain, are equivalent to particular realisations of a sto-
chastic process. One may notice, therefore, the fundamental advantage of the
DNS approach, which avoids averaging of the equations and replaces this draw-
back by correct averaging of process realisations that finally lead to statistic
measures characterising the flow-field considered.
The next advantage of the DNS method is its ability to correctly reproduce

the whole range of linear and time scales of turbulence motion, because the
eddy cascade is a resolved quantity and not a modelled one. However, one
must be aware that this DNS feature is also its basic limitation, if the amount
of computational effort is to be considered. The largest scale, comparable with
the macroscopic flow dimension is of the order

L =

√
k3

ε
(3.1)

where ε is the viscous energy dissipation. This scale determines the size of the
computational domain.
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If one intends to correctly resolve the turbulence structure, then the mesh
size of the computational grid should be of the order of the smallest eddy
scales, which, for most applications, corresponds to the Kolmogorov scale, i.e.

η =
ν3

ε
(3.2)

The turbulence is inevitably a 3D phenomenon, so if one takes into account
relations (3.1) and (3.2), then the number of grid nodes needed for a correct
DNS solution may be evaluated as

NDNS ≈ Re9/4 (3.3)

For typical technical applications, the Re number based on turbulence
macroscale is of the order of 104-106, and for geophysical flows it may be
even as large as 107-108, so the number of nodes calculated from Eq. (3.3)
is enormous and the same is the size of computer memory needed for the
accurate DNS solution. The most powerful computers, which exist nowadays,
enable one to obtain DNS solutions for turbulent flows characterised by Re
numbers

Re ≈ 103

which is certainly not sufficient for most practical applications. Summing up,
DNS is the most promising perspective in research aimed at development of
methods enabling the most accurate description of turbulent flows. However,
one should also be aware that the distant time horizon needed for effective
application of the DNS approach is not solely determined by the development
of computing power. There is still a gap in our knowledge concerning the
dynamics of the smallest scales of turbulence as well as formulation of initial
and boundary conditions.

4. Large eddy simulation as a perspective for turbulence analysis

Large Eddy Simulation (LES), originally proposed in 1963 for modelling of at-
mospheric flows (Smagorinsky, 1963), was for the first time successfully applied
to industrial flows as early as in 1970 (Deardorff, 1970). The basic assumption
of the LES method is separation of the continuous spectrum of eddy scales
into resolved (i.e. computed) and modelled scales. It means that turbulent flow
quantities like velocity, pressure, etc. are computed for scales comparable to
the mesh size of the computational grid, while the same quantities resulting
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from scales smaller than the mesh size are being modelled. This assumption
correctly reflects one of the basic features of turbulence, i.e. the tendency
towards isotropy in small scales, which allows one to expect a much better
chance for reliable modelling within this range of scales. On the other hand,
the anisotropy, which prevails in larger scales, may properly be resolved in
LES computed solutions, provided of course that a properly universal subgrid
turbulence model may be found.
The separation of scales is achieved by filtration performed with the use

of G(x) filter, that allows one to transform an arbitrary flow-field quantity

F (x) to its filtered form F (x), which is then being resolved numerically. The
filtration procedure may be written as a convolution, which, for a simple one-
dimensional case, may be written as

F (x) = G(x) ∗ F (x) =
+∞
∫

−∞

G(x− ξ)F (ξ) dξ (4.1)

where the symbols (·) and ∗ denote the result of the filtration and convolution
operators, respectively.

Application of the above filtration procedure to N-S equations transforms
them into the following from

∂U i

∂t
+
∂(U i · U j)
∂xj

= −1
ρ

∂p

∂xi
+
∂

∂xj

[

ν
(∂U i

∂xj
+
∂U j

∂xi

)

− τij
]

(4.2)

where one may notice the appearance of the so-called subgrid stress tensor τij
which is given by the formula

τij = UiUj − Ui · Uj (4.3)

The results obtained by Ferziger and Vreman (Ferziger, 1977; Vreman et
al., 1997) reveal that the subgrid turbulence contains 20-30% of the total
kinetic energy of velocity fluctuations. If one recalls the tendency towards
isotropy in small scales, then both these facts confirm that the chance of
successful modelling of the subgrid turbulence is certainly larger than in the
case of the classical RANS approach.

The first reviews of the state-of-art in the field of subgrid modelling ha-
ve been recently given by Domaradzki and Saiki (1997), Lesieur and Metais
(1996) as well as by Jimenez and Moser (2000). However, the amount of valu-
able results obtained in this field is too large to make even a brief summary.
Nevertheless, let us try to present at least a classification of subgrid models
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based on the proposal given by Domaradzki and Saiki (1997), who distingu-
ished three main groups of subgrid models, i.e.:

• viscosity-based models
• mixed models
• dynamic models.

The viscosity-based models utilise the Boussinesq (Lesieur and Metais,
1996) concept, transformed as follows

τij = νtSij +
1

3
τllSij (4.4)

where τij denotes the subgrid stress tensor given by Eq. (4.3), νt is the subgrid
eddy viscosity coefficient, while the expression

Sij =
∂Ui

∂xj
+
∂Uj

∂xi
(4.5)

is the rate of the strain tensor of the filtered flow field. The first subgrid closure
was proposed by Smagorinsky (1963), who developed a subgrid analogy to the
mixing length model, given by the following formula

νt = (Cs∆)
2|S| (4.6)

where ∆ denotes the characteristic subgrid length scale (or filter width), Cs is
a constant adjusted arbitrarily for a given flow type (solution), while the ab-
solute measure of local strain is given by the formula

|S| =
√

2SijSij (4.7)

Despite 40 years, which passed since Smagorinsky proposed his model, it
is still being used due to its simplicity and highly dissipative behaviour, which
stabilizes the computation process. Smagorinsky’s models reveal also some
serious limitations. First of all, one should mention among them too large
value of the subgrid eddy viscosity νt in the vicinity of walls, which requires
using of some correcting functions. Furthermore, it is difficult to propose a
sound physical explanation for the proper value of the characteristic subgrid
length scale ∆, see Eq. (4.6), and that is why this important parameter has
to be selected in an arbitrary manner. Finally, Smagorinsky’s model is unable
to correctly predict the laminar-turbulent transition process which is due to
its dissipative behaviour. However, the simplicity of this idea was the reason
for its development, which was especially successful at LEGI Grenoble, where
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a series of valuable ideas were proposed. Among the most successful proposals
and improvements of the original Smagorinsky idea, the following seem to be
the most valuable:

• Structure Function Model by Metais and Lesieur (1992)
• Selective Structure Function Model by David (1993)
• Filtered Structure Function Model developed by Ducros (1995).

One should also notice a group of models based on spectral formulation by
Kraichnan (1976), which are discussed in more detail in Lesieur (1990), Lesieur
and Metais (1996) as well as an interesting generalisation of the Smagorinsky
model, which was presented as the HS (Hyper Smagorinsky) model by Jimenez
and Moser (2000).

Mixed models have been originally proposed by a famous research group
at Stanford University (Bardina et al., 1983), and this type of closure together
with the dynamic model proposed by Germano et al. (1991) are not models
in the traditional sense. In fact, both mixed and dynamic models are rather
complex algorithms which try to relate subgrid stresses with scales of resolved
motion (Tyliszczak, 1998).

The variety of subgrid models developed so far is, on one hand, a proof of
the importance of this branch of CFD, but on the other, it is also a sign of
its weakness. In particular, none of the models developed so far seems to be
versatile enough to provide a correct description of the turbulence structure
for various flow types. Nevertheless, both the older (Rogallo and Moin, 1984)
and the more recent (Ferziger, 1996; Härtel, 1996) reviews on the subject prove
that subgrid modelling is still the key issue for further development of the LES
technique.

5. Summary

A brief description of current trends in the modelling of turbulence proves the
important role of the deterministic approach. Both DNS and LES techniqu-
es do not, however, continue the trends developed by the traditional RANS
modelling, but in fact both these approaches are novel treatments of the tur-
bulence closure problem. The DNS method is the ultimate goal in this field,
but, for the time being, the still limited computational resources suggest the
important role of the LES, which presents a reasonable compromise between
the accuracy of solution and demand for computational effort.
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Uwagi o modelowaniu i symulacji turbulencji

Streszczenie

Praca przedstawia współczesny stan wiedzy w dziedzinie numerycznego mode-
lowania turbulencji ze szczególnym uwzględnieniem metody LES (ang. Large Eddy
Simulation). Przedstawiono ograniczenia modeli turbulencji typu RANS, opartych
o uśrednione w czasie równania Reynoldsa oraz wskazano perspektywy determini-
stycznego ujęcia turbulencji z użyciem metod DNS (ang. Direct Numerical Simula-
tion). Wykazano również, że możliwości najszybszych dostępnych obecnie kompute-
rów ograniczają możliwe obszary aplikacji DNS do przepływów o stosunkowo niskich
liczbach Reynoldsa. Następnie sformułowano podstawowe zależności dla metod LES
i wskazano ich perspektywiczne znaczenie dla inżynierskiego modelowania przepływów
turbulentnych.
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