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Vibrations of a single preloaded pendulum, with the impact phenome-
non with a stop taken into account, are analysed in the paper. The mo-
del, under some simplification, represents a simple one-degree-of-freedom
element of a vehicle latch system. The response of the system has been
tested numerically for a wide range of parameters and with various exci-
tation amplitudes and frequencies. Elastic and rigid impacts have been
studied, and results for both impact models and for regular and chaotic
motions have been compared. To find all possible solutions to the system,
basins of attraction have been calculated as well. The final verification
of the model response has been presented for the experimental signals
recorded during vehicle side impact tests. It has been shown that the
response of the latch element under study may lead to door opening,
and that is why it has to be replaced with another design.
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1. Introduction

Vehicle door latch systems belong to those elements that should be designed in
such a way that required safety conditions are satisfied. These systems should
not allow the door opening when subjected to high amplitude/high frequency
acceleration signals. They should work properly even in the case of vehicle
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crash that can lead to accelerations acting over a short time but with very
large amplitudes. However, as pointed by Thomsen (2002), low amplitude but
high frequency excitations may change apparent characteristics of mechanical
systems. The excitation may result in loss of contact between latch elements
that are otherwise biased by springs, and next to an impact phenomenon. Sys-
tems with discontinuities are very sensitive to external inputs, and under some
conditions tend to respond with irregular motions (Wiercigroch and Kraker,
2000). Moreover, prediction of their response with analytical methods is limi-
ted to a specific class of models. By these reasons, analyses of models with
impacts are mainly carried out numerically.
The purpose of this paper is to study the behaviour of a simple model

of a latch element represented by a single physical pendulum pushed against
the support with a torque produced by a preloaded spring. The value of the
torque should be large enough to keep the door locked, but it should not
make it difficult to open the door. The model is tested with respect to a range
of external excitations consisting of harmonic acceleration signals with large
amplitudes and high frequencies, and also accelerations recorded during a real
vehicle crash test.

2. System model

Let us consider a model of a latch element that is commonly used in vehicle
door latch systems. After some simplifications, the latch element (or the door
handle) can be represented by a one-degree-of-freedom pendulum-like model
represented in Fig. 1.

Fig. 1. Physical model of the latch element: (a) rigid impact model, (b) soft impact
model

The latch lever, represented by the physical pendulum, is pushed against
the stop by a spring with the stiffness k0 and the preload torque T0. The
pendulummass, its moment of inertia, the centre of mass location and damping
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at the pivot are denoted by m, I0, L, c0, respectively. The element should not
rotate above a pre-specified threshold even if its base is subjected to an external
acceleration. In the presented model, the acceleration is assumed as a harmonic
function of time a = Ag sinωt, where g denotes the acceleration of gravity,
A is the amplitude of dimensionless acceleration expressed with respect to g,
ω denotes the frequency of excitation and t is time. It is worth to note that
the displacement of the base is expressed by y0 = −(Ag/ω

2) sinωt.

The ideal behaviour of the latch system would be if the pendulum stays
in contact with the support, independently of the excitation level. However,
one can expect that under some conditions the loss of contact between the
pendulum and the stop will occur. In such a case, the rotation angle of the
pendulum may increase over the safety limit. The threshold angle that should
not be exceeded is assumed to be φ = 0.1 rad.

The rigid impact model is governed by the classical Newton impact law
(Fig. 1a). Because, in the real system, the support is not ideally stiff but rather
a deformable body, an elastic impact, which seems to be closer to the real
system, is also proposed (Fig. 1b). Both types of impacts were studied in the
literature (Thomsen, 2000; Wiercigroch and Kraker, 2000; Pavlovskaia and
Wiercigroch, 2000). A soft impact with a deformable stop is represented by a
mass-less, viscous-elastic element with the stiffness ks, damping coefficient cs
and location ls from the pivot. The viscous-elastic support, represented by a
spring and a damper, allows for modelling the dissipated energy, deformation
of the stop, and the time duration of the contact between both impacting
bodies. These quantities depend on the force impulse during the impact and
they are not constant in time as in the classical Newton approach. Therefore,
this model is considered as the main contact model in the subsequent analysis.
Nevertheless, for comparison and validation of certain results, the rigid impact
model will also be tested in parallel.

Differential equations of motion of the systems represented in Fig. 1 take
the form:

— For the rigid-impact model

I0φ̈+ c0φ̇+ k0φ = −T0 −mAgL sinωt cosφ (2.1)

where, with the Newton impact law, if φ = 0 then φ+ = φ− and φ̇+ = −Rφ̇−,
R designates the coefficient of restitution, and φ

−
and φ+ are the angles before

and after the impact, respectively.

— For the elastic-impact model

I0φ̈+ cRφ̇+ kRφ = −T0 −mAgL sinωt cosφ (2.2)
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where

cR =

{

c0 for φ  0

c0 + csl
2
s for φ < 0

kR =

{

k0 for φ  0

k0 + ksl
2
s for φ < 0

and cR and kR represent the damping and stiffness for both cases: outside of
the contact area and during the contact. The natural frequency of the system
takes two values: for φ  0, ω0 =

√

k0/I0 (outside of contact), and for φ < 0,
ωR =

√

kR/I0 (during contact). It is worth to mention that the proposed soft-
impact model does not take into account the dynamics of the deformable stop.
This assumption can be justified by the fact that after the loss of contact the
natural frequency of the stop is much higher than that of the pendulum, and
due to damping of the stop, the force quickly declines to zero.
To be able to compare both impact models we can assume that the change

of velocity during the elastic impact should relate to the coefficient of restitu-
tion R as follows

φ̇(timpact ) = −Rφ̇(0) (2.3)

what means that over the impact time timpact the velocity is reduced R
times. The time duration of the impact equals to timpact = π/ωd, where
ωd = ωR

√

1− ξ2 represents the natural frequency of underdamped vibrations,
and ξ = cR/(I0ω

2
R
) denotes the dimensionless damping coefficient.

Taking into account (2.3) and the solution for free damped vibrations, one
can write

R = exp
(

−
ξπ

√

1− ξ2

)

(2.4)

Solving (2.4), we can determine the equivalent dimensionless damping coeffi-
cient with respect to the given coefficient of restitution R of the rigid impact

ξ = −
lnR

√

π2 + (lnR)2
(2.5)

Relationship (2.5) is presented in Fig. 2, and is used in the paper for
the determination of the damping coefficient of the viscous-elastic impact
model.
Because mathematical models (2.1) and (2.2) include discontinuous func-

tions, it is difficult, or even impossible, to solve the problem analytically. The-
refore, Eqs. (2.1) and (2.2) are solved numerically using the Runge-Kutta
method of the fourth order. Before starting the main analysis, the proper
integration step size has to be tested. Because the system under conside-
ration is discontinuous in time, this point is crucial for further numerical
analysis.
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Fig. 2. Equivalent damping versus restitution coefficient

Figure 3a presents a phase space diagram received for the soft-impact
model defined by Eq. (2.2). This result was produced after several tests with
an integration step ∆t = 2π/(Nω), where N is the number of steps per the
oscillation period T = 2π/ω. The trajectory presented in Fig. 3a is calculated
for N = 10000 and ω = ω0, which corresponds to ∆t = 3.1416 · 10

−5 s.
This result is in full agreement for soft (2.2) and rigid-impact (2.1) model.
For comparison, the solution plotted in Fig. 3b was received with N = 1000
(∆t = 3.1416 · 10−4) and the same set of parameters. As we can see, this
result is far from the correct one presented in Fig. 3a. On the basis of several
integration step tests carried out for both models, it has been determined that
the integration step should not be larger than 1/10 000 of the vibration period.

Fig. 3. Phase diagrams of free impacts with different integration steps:
(a) N = 10 000, (b) N = 1000

First, the free vibrations of both considered models are analysed. Assuming
that the torque T0 = 0 and the impact duration time is very short, the period
of the pendulum response can be approximated as T ≈ π/ω0. It means that
without the preload torque (T0 = 0), two impacts per period of free vibrations
take place. Comparisons of time histories of the system with and without the
impact are presented in Fig. 4a.



228 J. Warmiński et al.

Fig. 4. Time histories of free vibrations with and without the impact for the preload
torque T0 = 0Nm (a) and T0 = 0.1Nm (b)

Free vibrations change their nature if the preload torque is greater than
zero. The influence of the torque T0 on the free vibrations of the system
is presented in Fig. 4b. If the initial torque T0 = 0 (Fig. 4a), the period of
vibrations with the impact is close to half of the period of free vibrations of
the pendulum and it is constant. For the torque T0 = 0.1Nm (greater than
zero) the period of vibrations with the impact is different, and moreover, it is
decreasing with the decreasing amplitude (Fig. 4b).

Figure 5 presents a spectrogram of free vibrations shown in Fig. 4b with
the preload torque T0 = 0.1Nm. This graph illustrates an evident increase
of the vibration frequency with the stiffening effect in the time domain. The
character of this phenomenon is highlighted by the black solid line seen in
Fig. 5.

Fig. 5. Spectrogram of free impact oscillations with the preload torque T0 = 0.1Nm
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3. Dynamics of the system under harmonic excitation

Systems with discontinuities subjected to external excitations usually have
high tendency to produce complex and irregular responses. Therefore, their
dynamics has been tested for different accelerations of the base, with various
amplitudes A and frequencies ω of the excitation. Numerical calculations were
carried out for the following exemplary parameters of the latch element

I0 = 8.888 · 10
−4 kgm2 c0 = 9.3 · 10

−5 Nms

rad
k0 = 0.370

Nm

rad
T0 = 0.1 Nm m = 0.1475 kg L = 0.065 m

R = 0.8 ks = 10
7 N

m
cs = 133.59

Ns

m

ω = 0− 1000
rad

s
A = 0− 100 ls = 0.1 m

According to (3.1), the range of amplitude of acceleration has been assumed up
to 100 g, and frequency up to about 160Hz. These are typical values; however,
in more critical situations, these values may reach 500 g and 300Hz.
The natural frequency of the single pendulum system without impact

with parameters listed above has values of either ω0 ≈ 20.4 rad/s or ωR ≈
10 607 rad/s (when the pendulum is in contact with the support for the elastic
impact model).
Let us assume that the system is excited with the constant frequency

ω = 20 rad/s, close to the natural frequency ω0. The bifurcation analysis
is performed for both models with the amplitude of the excitation A as the
bifurcation parameter. Bifurcation diagrams for rigid and elastic impacts are
presented in Figs. 6a and 6b, respectively.
The results obtained for both models exhibit similar phenomena. Dark are-

as that correspond to non-periodic motion occur for both models in the same
place. However, pure periodic motion is only observed for the rigid impact
model (solid line in Fig. 6a). For the soft impact model, due to deformation
of the support, the corresponding motion is ”almost” periodic and the line
is broader. Dark areas in Fig. 6a and Fig. 6b represent more complex motion:
quasi-periodic or chaotic. An exemplary chaotic attractor for A = 40 is pre-
sented in Fig. 7.
Chaotic motion evidently takes place for both impact models, however, the

soft impact (Fig. 7b) leads to a more complex fractal structure of the chaotic
attractor.
An increase of the excitation frequency results in growth of chaotic motion

zones, as it can be seen in the bifurcation diagrams plotted for ω = 100 rad/s
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Fig. 6. Bifurcation diagrams versus excitation amplitude A (ω = 20 rad/s): (a) rigid
impact model, (b) elastic impact model

Fig. 7. Chaotic attractor for A = 40 and ω = 20 rad/s: (a) rigid impact, (b) elastic
impact

(Fig. 8a). From the practical point of view, the critical situation arises when
the pendulum loses the contact with the support. This may lead to a cascade
of impacts and high amplitude oscillations. Fig. 6 and Fig. 8a show that at the
beginning of the diagrams (A < 1), the response of the pendulum is close to
zero, but after crossing the critical point, the system begins to oscillate.

A zoomed portion of the beginning of the bifurcation diagram in Fig. 8a
is presented in Fig. 8b. It can be seen that for A <∼ 1 the system does not
oscillate, but after that it jumps to periodic motion, and later on the cascade
of period doubling bifurcations goes to chaos. Because the solution presented
in Fig. 8 is very sensitive to initial conditions, an additional analysis of the
basins of attraction has been carried out.

Depending on the initial conditions, the solution can tend either to ze-
ro (trivial solution No. I, see Fig. 9) or to permanent oscillations (non-trivial
solutions No. II and No. III). These three different possible solutions are pre-
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Fig. 8. Bifurcation diagrams of the soft impact model: (a) angular velocity of the
pendulum versus amplitude A (ω = 100 rad/s), (b) zoom

Fig. 9. Basins of attractions for trivial and non-trivial solutions, ω = 100 rad/s,
A = 1

sented as time histories in Fig. 10. Summarising, the response of the system
for certain initial conditions leads to oscillations even for a small amplitude of
the excitation.

4. System response under vehicle impact excitation

The final test of the response of the latch element has been carried out for an
excitation in form of a short time shock. The lateral acceleration signal was
recorded during a real vehicle crash test by one of OEM customers of Ma-
gna Closures of America. The acceleration of the base of the latch can reach
very large values, with amplitudes up to 500 g and frequency in the range of
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Fig. 10. Time histories of the pendulum angular displacement rotation angle for
various initial conditions (ω = 100 rad/s, A = 1): (a) φ = 0.8, φ̇ = 0, (b) φ = 0.56,

φ̇ = 0, (c) φ = 0.9, φ̇ = 0

0-3000 rad/s. Recalling the results with harmonic excitation, it has been noti-
ced that even for a low excitation amplitude, the pendulum swings out of the
allowed range (which for the real mechanism corresponds to angles of about
0.1 rad/s).

Therefore, one can assume that for the model under consideration, du-
ring the side impact excitation will be sufficiently produced to lead to do-
or opening. In Fig. 11a, the time history of the lateral acceleration recor-
ded during the vehicle side crash test is presented. During the short time
event (35ms duration), the amplitude of the acceleration reached almost
A = 1000 of the gravity acceleration g. Figure 11b presents the respon-
se of the latch element model to this input. It can be seen that the pen-
dulum angle (in radians in Fig. 11b) reached high values. This test showed
that during the side impact with given severity the latch subsystem consi-
sting of the single pendulum would not work properly and the door would
open.
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Fig. 11. Vibration of the system under shock excitation: (a) latch lateral
acceleration measured during the crash test (in m/s2), (b) pendulum response

(angular displacement in radians)

5. Conclusions

The results obtained for a single pendulum model of a vehicle latch element
show that the response of the system may lead to the loss of the contact
between the pendulum and its support, and to the impact phenomenon. Har-
monic excitations transit the system to high-level regular or chaotic motions.
The analysis of basins of attraction shows three different solutions for low
acceleration amplitudes (A < 1), one trivial and two nontrivial. An increase
of the latch base excitation amplitude causes transition to chaos of the pen-
dulum after period doubling bifurcation (as shown in Fig. 8b). Two different
approaches for the impact phenomenon gave equivalent results, however the
soft (elastic) impact exhibits attractors with a more fractal nature. Numeri-
cal simulations performed for various physical parameters revealed that the
amplitude of the system response cannot be reduced. The acceleration signals
obtained from the real vehicle side crash test and applied to the model al-
so showed that the behaviour of the single pendulum latch element did not
satisfy the imposed safety conditions. Therefore, a modification of the latch
subsystem will be developed in forthcoming investigations, based on adding a
second pendulum that will play the role of a counterweight.
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Drgania regularne i chaotyczne napiętego wstępnie układu

mechanicznego z wahadłem

Streszczenie

W niniejszej pracy przedstawiono drgania pojedyńczego wahadła fizycznego na-
piętego wstępnie sprężyną, z uwzględnieniem możliwości zjawiska uderzenia w ogra-
nicznik ruchu. Rozważany układ reprezentuje prosty model jednego z elementów me-
chanizmu zamykania drzwi pojazdu samochodowego. Zbadano numerycznie odpo-
wiedź układu dla sztywnego i lepko-sprężystego modelu uderzenia w szerokim zakre-
sie wymuszeń harmonicznych. Porównano dla obu modeli uderzenia obszary występo-
wania ruchu regularnego i chaotycznego. Przeprowadzono również analizę obszarów
przyciągania rozwiązań, określając wszystkie możliwe rozwiązania systemu. Końcową
weryfikację odpowiedzi układu przeprowadzono dla sygnału eksperymentalnego, za-
rejestrowanego podczas próby bocznego zderzenia pojazdów. Pokazano, ze odpowiedź
mechanizmu może doprowadzić do otwarcia drzwi pojazdu i dlatego inne rozwiązanie
techniczne powinno zostać użyte.

Manuscript received June 18, 2007; accepted for print October 23, 2007


