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Rotating discs are the vital part of many kinds of machineries. Usually, they are operating
at relatively high angular velocity and temperature conditions. Accordingly, in practice, the
creep analysis is an essential necessity in the study of rotating discs. In this paper, the ti-
me dependent creep analysis of a thin Functionally Graded Material (FGM) rotating disc
investigated using the Generalized Differential Quadrature (GDQ) method. Creep is descri-
bed with Sherby’s constitutive model. Secondary creep governing equations are derived and
solved for a disc with two various boundary conditions and with linear distribution of SiC
particles in pure Aluminum matrix. Since the creep rates are a function of stresses, time
and temperature, there is not a closed form solution to these equations. Using a solution
algorithm and the GDQ method, a solution procedure for these nonlinear equations is pre-
sented. Comparison of the results with other existing creep studies in literature reveals the
robustness, precision and high efficiency beside rapid convergence of the present approach.
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1. Introduction

A wide area research has assigned to rotating discs because of their numerous utilizations in
various industries and rotating machines such as: gas and steam turbines, pumps, turbo gene-
rators, compressors, flywheels, ship propellers and automotive braking systems (Gupta et al.,
2005; Hojjati and Hassani, 2008; Singh and Ray, 2002). In most of these applications, discs have
to operate at high rotational speed leading to large centrifugal forces, and in the presence of
high temperatures, the materials strength can be reduced explicitly. These operating conditions
lead to a vast continuous time dependent deformations, so the creep phenomenon finds the prio-
rity in the research. Creep deformation can affect the performance of systems entirely. As an
example, in a turbine rotor there is always a possibility that the heat from the external surface
is transmitted to the shaft and then to the bearings, which has adverse effects on the functio-
ning and efficiency of the rotor (Bayat et al., 2008). Under high thermo-mechanical loading,
the monolithic materials cannot do well. Augmenting the second strong and stable phase to
the based phase causes a significant reduction in creep deformations. In other words, increasing
the reinforcements leads to creep strength rising. For this reason and because of more other
great benefits of FGM materials, these materials have attracted the interest of many researchers
(Loghman et al., 2011; Ghorbani, 2012). In recent years, creep analysis in rotating discs made
of functionally graded materials has been addressed by many researchers.
Whal et al. (1954) studied steady state creep behavior of a turbine rotating disc using a

power function creep law and Huber-Mises-Hencky and Tresca yield criteria. They compared
results of their work with the experimental results. Arya and Bhatnagar (1979) investigated
creep responses of an orthotropic rotating disc. They illustrated that tangential stress in all
over the disc and the radial creep rate at inner radius increased with intensification of mate-
rial anisotropy. Nieh (1984) demonstrated that a disc with SiC whiskers in Aluminum matrix
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has a better creep responses than a disc made of pure Aluminum. Białkiewicz (1986) presen-
ted a theoretical finite strain analysis in rotating discs based on creep rupture using Kachanov
theory and Norton’s creep law. Bhatnagar et al. (1986) studied steady state creep behavior in
three different discs with anisotropic materials. The discs had constant, linear and hyperbolic
decreasing thicknesses. The results illustrated that discs with decreasing thickness in the radial
direction had better creep responses. Pandey et al. (1992) studied steady state creep behavior of
an Al-SiC composite rotating disc in a uniaxial load state and temperature between 623-723 K.
They investigated various compositions of particle size (45.9 µm, 14.5µm, 1.7µm) with the total
volume content of 10%, 20%, and 30%. They observed that the disc with finer particles shows
the better creep responses. Gupta et al. (2004) investigated the secondary creep response in
a rotating disc made of pure Aluminum with SiC particle distribution in the radial direction.
The creep law was Sherby’s model. Their results showed that the tangential and radial stres-
ses were not affect by governing temperature and particle distributions. Radial and tangential
creep rate reduced with particle size reduction, additional of particle volume content and de-
creased governing temperature. Singh and Ray (2001) studied secondary creep behavior in a
thin anisotropic rotating disc made of Aluminum with SiC whickers. The effects of anisotropy
and non-homogenous distribution of reinforcements on creep behavior of the rotating disc were
investigated.

The Generalized Differential Quadrature method was proposed by Bellman et al. (1972) and
extended by Shu and coworkers (Shu and Richards, 1992). In this numerical method, function
derivatives are approximated in terms of linear summation and weighting coefficients in various
grid points. Computation of the weighting coefficient is done using high order polynomial simu-
lation and linear vector space analysis. The weighting coefficient for the first order derivatives
is computed by a simple algebraic formulation and higher order coefficients are obtained using
a recursive relationship based on the first order weighting coefficient. The major advantage of
the GDQ method over the DQ method which was extended by Bellman et al. (1972), is its ease
in computing the weighting coefficients without any restriction to the grid point selection. The
GDQ method has been successfully applied to some fluid flow problems (Shu et al., 1995) and
structural vibration analysis (Shu, 1996). In all cases, the method valuable characteristic such
as high precision and fast convergence was confirmed.

Fig. 1. Studied disc and its parameter

In this paper, the generalized differential quadrature method is used to obtain numerical
solution of creep governing equations. For this purpose, the thermo-elastic creep equations of an
FGM rotating disc shown in Fig. 1, under free-free and fixed-free boundary conditions is derived.
Using a solution algorithm and the GDQ method, creep response of the considered structure
is achieved. There is no modeling involved, and the convergence to the final response is very
fast. Comparison of the results also illustrates that the method is very efficient and accurate. It
avoids simplifications and restrictions which other creep solution methods in the literature are
involved, therefore it is a great merit for creep studies of structures.
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2. Mathematical formulation

Before starting to develop a closed form solution for the distribution of creep stress and defor-
mation, there are some assumptions that must be asserted. Amongst them presumptions are
made that the material of the disc is isotropic and its yield criterion complies with the Huber-
-Mises-Hencky model. In addition, it is supposed that compared to other dimensions of the disc
its thickness is too small so that axial stresses can be ignored and plain stress conditions can be
assumed.
The total strain in an FGM rotating disc is an ensemble of elastic, thermal and creep strains

in the following form

εtotal = εelastic + εthermal + εcreep (2.1)

For derivation of the primary and secondary creep equation, at first we use a combination of the
strain-displacement relation and Eq. (2.1)

εr =
du

dr
=
1

E
(σr − νσθ) + αT + εr,c

εθ =
u

r
=
1

E
(σθ − νσr) + αT + εθ,c

(2.2)

In the above two equations, εr and εθ are the radial and tangential strains. σr and σθ are the
radial and tangential stresses. u is the radial displacement and E, α and T are the modulus
of elasticity, thermal expansion coefficient and governing temperature in Kelvin, respectively.
εr,c and εθ,c are the radial and tangential creep strains.
The stress relations can be concluded from Eqs. (2.2) as below
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]

(2.3)

Using the equilibrium condition for an element of the rotating disc in form of Fig. 2, we obtain
the equilibrium equation as

dσr

dr
+
σr − σθ

r
+ ρrω2 = 0 (2.4)

With replacing the radial and tangential stresses from Eqs. (2.3) into Eq. (2.4), the simplest
form of the creep equation is obtained as below

A
d2u

dr2
+B
du

dr
+ Cu+D = 0 (2.5)

In which the coefficients A, B, C and D in Eq. (2.5) presented in relations given below. It should
be noted that all FGM disc parameters are a function of the radius
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Fig. 2. Schematic of an element of the rotating disc

Creep governing equation for the rotating disc in terms of the displacement rate can be repre-
sented as

A
d2u̇

dr2
+B
u̇

dr
+ Cu̇ = −Ḋ (2.7)

where u̇ is the radial displacement rate, A, B and C are presented in Eqs. (2.6)1−3 and Ḋ is a
function of the creep rates as below

Ḋ =
E
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1
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(2.8)

where ε̇r,c and ε̇θ,c are the radial and tangential creep rate components, respectively, which can
be computed using Sherby’s creep law as

ε̇r,c =
[M(σe − σ0)]

n

2σe
(2σr − σθ) ε̇θ,c =

[M(σe − σ0)]
n

2σe
(2σθ − σr) (2.9)

where in the above two equations, n is the creep exponent and, in this study, is considered to
be 8. σe is the effective stress which is obtained from the Huber-Mises-Hencky isotropic yield
criterion for the plane stress problem as Eq. (2.10). M and σ0 are creep parameters and depend
on the particle size P which is considered to be 1.7µm, particle distribution function v(r), and
the level of prevailing temperature T . Based on the experimental creep data reported by Pandey
et al. (1992) and using a regression technique, Gupta et al. (2004) represented M and σ0 as the
following functions Eqs. (2.11)

σe =
√

σ2r + σ
2
θ − σrσθ (2.10)

and

lnM = −35.38 + 0.2077 lnP + 4.98 ln T − 0.622 ln v(r)

σ0 = −2.11916 − 0.03507P + 0.01057T + 1.00536v(r)
(2.11)

As it is mentioned above, no exact solution to Eq. (2.7) can be obtained because its right hand
side contains the functions of creep rates which all are time, stress and temperature dependent.
However, there are numerous numerical methods for solving this problem. In this study, the
Generalized Differential Quadrature method is used with a solution technique which is explained
in the next section.
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3. Solution algorithm

The procedure of creep analysis in an FGM rotating disc is initiated with a GDQ thermo-elastic
solution of Eq. (2.5) in which the creep strains are ignored. Afterwards, using this displacement
field, the radial and tangential stresses are calculated using Eqs. (2.3). Within this stress field,
the distribution of radial and tangential strain rates is obtained using Eqs. (2.9). Then with GDQ
analysis of Eq. (2.7), the displacement rate can be computed so the distribution of the radial
and tangential stress rates are obtained. Afterwards, by selecting a suitable time interval ∆t,
the next radial and tangential stress at the next time step are calculated using equations

σt+1 = σ̇t∆t+ σt εt+1 = ε̇t∆t+ εt (3.1)

This procedure is continued until the stress distributions converge and reach the steady state
condition.
As mentioned above, for the numerical creep analysis of the FGM rotating disc, a numerical

procedure is inevitable. In this study the Generalized differential Quadrature method is used
because of high precision and fast convergence of this method. The Differential Quadrature
idea was proposed by Bellman et al. (1972), and extended by many other researchers later on.
In this method, the partial differential of a function with respect to a coordinate direction is
expressed as a linear weighted sum of all the functional values at all grid points in that direction
(Tornabene et al., 2016). For a smooth function f(r), GDQ discretizes its n-th order derivative
with respect to r at the grid point (ri) as

f (n)r (ri) =
N
∑

k=1

a
(n)
ik f(rk) n = 1, 2, . . . , N − 1 i = 1, 2, . . . , N (3.2)

where N is the number of grid points in the r direction. a
(n)
ik is the weighting coefficient for

the second and higher order derivative which can be completely determined from the first order
derivatives as
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In the above equation a
(1)
ij is the first weighting coefficient to be obtained using

a
(1)
ij =
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where

A(1)(ri) =
N
∏

j=1,j 6=i

(ri − rj) (3.5)

When the coordinates of grid points are known, the weighting coefficient and so the discretized
derivative can be easily calculated from Eqs. (3.2)-(3.5) (Shu and Chew, 1999). Various grid point
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distributions are investigated in the literature. In this study roots of the Chebyshev polynomial
of the first kind are used for grid point generation as (Tornabene et al., 2012)

ri =
gi − g1

gN − g1
gi = cos

(2i− 1

2N
π
)

i = 1, 2, . . . , N (3.6)

where N is the total number of grid points along the radial direction. For the problem studied
herein, the GDQ method which is presented by the above equations demonstrates its numerical
accuracy, high speed and computation amount reduction.

4. Numerical application and discussion

In this Section, the above formulation for creep analysis is applied to a FGM rotating disc with
two different boundary conditions. For this purpose, a FGM disc, as can be seen in Fig. 1, with
inner radius a = 0.05m and outer radius b = 0.2m is considered. It is subjected to T = 623K
temperature and rotates with ω = 15000 rpm. The material of the disc is silicon carbide particles
distributed with a linear volume fraction in pure Aluminum matrix

v(r) = vmax − (vmax − vmin)
r − a

b− a
(4.1)

In the above equation vmax = 0.4 and vmin = 0.1 are the maximum and minimum volume
fraction of silicon carbide at the inner and outer radius, respectively. The boundary conditions
of the disc are are established as:

— free-free boundary condition

σr(r = a) = 0 σr(r = b) = 0 (4.2)

— fixed-free boundary condition

ur(r = a) = 0 σr(r = b) = 0 (4.3)

In the distribution patterns of the non-homogeneous disc, the material heterogeneity is mild and
the change in thermo-mechanical properties is not very high. Therefore, similarly to the work
done by Loghman et al. (2011), the disc parameter such as density, Poisson’s ratio, thermal
expansion coefficient and elasticity modulus can be calculated using a linear mixture rule which
is presented by Eq. (4.4). In other words, based on Eq. (4.4), the material and thermal properties
depend on the reinforcement particles volume fraction at each point

P (r) = PAl + (PSiC − PAl)v(r) (4.4)

In the above equation, P (r) is the intended property in the composite disc, PAl and PSiC are the
value of the same property in pure Aluminum and silicon carbide, respectively. The following
data for pure material properties are used in this paper: EAl = 69GPa, ESiC = 410GPa,
ρAl = 2700Kgm

−3, ρSiC = 3200 kgm
−3, αAl = 23.1 · 10

−6K−1, αSiC = 4 · 10
−6K−1.

Based on the creep analysis algorithm and the above specified parameters, a computer code
has been developed to find the creep response of the FGM rotating disc. Before providing the
results of the FGM rotating disc, to validate the analysis and the developed computer code, the
results of tangential strain rate have been computed for a disc which was used by Loghman et
al. (2011) and Ghorbani (2012). A comparison between the results is shown in Fig. 3. It can
be seen that there is a good agreement between the results. However, the time consumed and
computation amount by the other method is much higher.
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Fig. 3. Results validation

The radial stress distribution versus the radial direction is presented in Fig. 4. Through the
free-free boundary condition, the value of radial stress in the inner and the outer radius of the
disc becomes zero and the maximum value of radial stress occurs near the middle of the disc.
The disc with the fixed-free boundary condition behaves in a different manner. As it can be
seen, for this condition the radial stress has its maximum value at the inner radius and then a
decreasing trend along the radial direction appears, so the minimum values are observed at the
outer radius.

Fig. 4. Radial stress distribution for two various boundary conditions

Figure 5 confirms that the tangential stress for both boundary conditions show a decreasing
trend in the radial direction. It means that tangential stress experiences a maximum near the
inner radii and gradually decreases to reach a minimum at the outer rim. It seems that the
reason for this type of behavior is the existence of a relatively higher content of particles at the
inner radius in comparison with other points in the disc. But it is obviously seen that the values
of tangential stress in the disc with fixed-free boundary conditions is lower than in the other
disc.
The distribution of the radial component of creep strain rate along the disc radius is presented

in Fig. 6. As it can be seen, for both boundary conditions the radial creep rate has its maximum
value at the inner rim and a decreasing trend along the radial direction. But their behaviour
is different, the fixed-free disc has a positive radial creep rate and the free-free disc has a
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Fig. 5. Tangential stress distribution for two various boundary conditions

Fig. 6. Radial strain rate distribution for two various boundary conditions

negative one, as well as the absolute value of the radial creep rate in the disc with the fixed-free
boundary condition is higher than the disc with the free-free boundary condition. Therefore, it
is important to choose appropriate boundary conditions during the disc installation because of
high dependency of the FGM disc behavior on boundary conditions. As depicted, the strain rate
values in fixed-free boundary conditions are much higher than in the other ones, however this
situation is the most practical condition.

Figure 7 shows the disc with the fixed-free boundary condition. It has an increasing-
-decreasing trend via the radial direction, but in the disc with the free-free boundary condi-
tion, the tangential creep rate is maximal at the inner side of the disc and minimal at the
outer side. It has a monotonic decreasing behavior at the intermediate radii. It is observed that
similarly to the radial creep rate, the maximum rate of the tangential creep rate takes place
near the inner radius of discs, also the maximum value of the effective stress occurs at the inner
rims, so it is necessary to reinforce the inner side of disc with high strength materials. The-
refore, the FGM materials with the higher values of particle reinforcements at the inner radii,
in other words, discs with the decreasing type of particle distribution along the radial direc-
tion have a better creep responses in comparison with the increasing type ones or homogenous
materials.
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Fig. 7. Tangential strain rate distribution for two various boundary conditions

Fig. 8. Radial displacement rate distribution for two various boundary conditions

The variation of the radial displacement rate for two boundary conditions is presented in
Fig. 8. As it can be seen, the disc with the free-free boundary condition has a decreasing trend and
the disc with the fixed-free boundary condition has an increasing trend along the radial direction,
as expected. Obviously, becouse of the integrated nature of the displacement (compared to the
differential nature of strain) this picture does not reveal many details appearing in the previous
stress or strain curves.

5. Conclusion

In this paper, the generalized differential quadrature method is used to obtain the time dependent
creep responses of an FGM rotating disc. The creep equations are derived for a disc with a linear
distribution of the particle content and are solved for two various boundary conditions. It can
be demonstrated that the GDQ method is an efficient and accurate method in creep analysis
of rotating discs. As it is shown, comparisons of the results with other available approaches
show a good agreement. However, the time consumed by the other methods for solving the
same problem is much higher. The results also illustrate that the material inhomogeneity has
a considerable effect on the creep behavior of FGM rotating discs. Creep rates and stress fields
at the inner side of the disc is much greater, so the disc must to be reinforced at this internal
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side. Making use of the decreasing type of particle distribution leads to better creep responses
as well as higher creep life time.
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