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The main idea of this paper is to demonstrate a stochastic computational
technique consisting of the generalized stochastic perturbation method
using the Taylor expansions of random variables and the classical Finite
Difference Method based on regular grids. As it is documented by com-
putational illustrations, it is possible to determine, using this approach,
also higher probabilistic moments for any random dispersion of input va-
riables unlike in the second order second moment technique worked out
before. A numerical algorithm is implemented here using straightforward
partial differentiation of hierarchical equations with respect to the ran-
dom input quantity and further symbolic computations of probabilistic
moments and characteristics by the system MAPLE.
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1. Introduction

The Finite Difference Method (FDM) implementation (Liszka and Orkisz,
1980; Wasow and Forsythe, 1959) plays an important role in computational
engineering in all those cases where additional differential equations (Collatz,
1960) (ordinary or partial) may not be solved straightforwardly – i.e. in the
heat transfer (Minkowycz et al., 1988), electro-magnetics (Taflove, 1998) and
geodynamics, even in elasto-statics, as it is demonstrated here. So, it seems
to be natural that this method is extended towards its new stochastic ver-
sions for some real systems with random parameters solved before using the
traditional FDM in deterministic cases. One of such extension methods is the
generalized perturbation-based stochastic technique, where the Taylor series
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expansions of all random quantities lead to a system of equilibrium equations
of the ascending order. This method was employed before for different sto-
chastic extensions for the Finite Element Method (Kamiński, 2007; Kleiber
and Hien, 1992), Boundary Element Method as well as even Finite Differen-
ce Method (Kamiński, 2001) (according to the second order second moment
approach) but this implementation for the first time enables for (1) any or-
der stochastic expansion, (2) any probability density function of the random
input variable, (3) parametric study with respect to the perturbation parame-
ter and coefficient of variation for the random input as well as (4) analytical
derivations of most of discrete hierarchical equations implemented in the sym-
bolic package MAPLE (other systems like freeware Scilab are also available of
course).

The major difference in the comparison with stochastic versions of the
FEM and BEM is the necessity of double differentiation with respect to the
space variable discretized by ∆x (4th order derivatives transformed to the
finite differences) as well as with respect to the input random variables. For-
tunately, since the application of symbolic calculus, this second differentiation
is performed analytically for any available derivative orders, but in the case
of a general computer program those derivatives must be implemented into it
in form of the ready-to-use-formulas (or we need to assure the interoperabili-
ty with the MAPLE environment). The remaining implementation issues are
almost the same like in the case of the SFEM and the SBEM, but in a further
perspective, a comparison with other stochastic methods like polynomial cha-
os expansions (Ghanem and Spanos, 1991) or Monte-Carlo simulations would
be interesting (Hurtado and Barbat, 1998).

The stochastic implementation of the Finite Difference Method is display-
ed and discussed here on the example of the well-known fourth order ordina-
ry differential equations relevant to elastic homogeneous and isotropic beams
with and without an elastic single-parameter foundation. Although the ge-
neral computer program is written in the internal language of the symbolic
computing environment MAPLE, the algorithm has a general character and
the grid applied to any beam may be essentially densified without any larger
programming, where formation and solution of the ascending order hierarchi-
cal equations typical for the perturbation-based methodology will remain the
same. Contrary to the previous second order second moment (SOSM) techni-
que, now it is possible to compute any order moments (up to the fourth order
here) for practically any value of the standard deviation for the random in-
put. This methodology will be further extended towards 2 and 3-dimensional
applications, also for transient problems with random coefficients.
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2. Classical version of the Finite Difference Method

for elastic beams

Let us consider the following ordinary fourth order differential equation for
a linear elastic isotropic and statistically homogeneous beam exposed to the
transversally distributed load q(x)

d2

dx2

(

E(x)J(x)
d2w(x)

dx2

)

= q(x) (2.1)

fulfilling typical boundary conditions applicable in engineering theories of the
elastic beams.

Fig. 1. Elastic beam subjected to transversal load q(x)

Let us also note that furtherly we neglect the influence of longitudinal and
transversal forces as well as we reduce the analysis to small deflections, which
significantly simplifies the final form of this equation. Let us divide the entire
domain of the length l into n equidistant sub-domains with the length ∆x. So
that, for the i-th point of this discretization we adopt the following notation

E(i∆x) = Ei J(i∆x) = Ji q(i∆x) = qi (2.2)

On the other hand, it follows the series of approximations for derivatives of
the ascending order with some finite differences as given below:
— first derivative

(∆w

∆x

)

i
=
wi+1 − wi−1

2∆x
(2.3)

— second derivative

(∆2w

∆x2

)

i
=
wi+1 − 2wi + wi−1

∆x2
(2.4)

— third derivative

(∆3w

∆x3

)

i
=
−wi+2 + 2wi+1 − 2wi−1 + wi−2

2∆x3
(2.5)
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— fourth derivative

(∆4w

∆x4

)

i
=
wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

∆x4
(2.6)

Introducing for the fourth order derivatives in Eq. (2.1), the above relation
can be obtained for the i-th point of this grid

Ei−1Ji−1wi−2 − 2(Ei−1Ji−1 + EiJi)wi−1 +

+(Ei−1Ji−1 + 4EiJi + Ei+1Ji+1)wi + (2.7)

−2(EiJi + Ei+1Ji+1)wi+1 + Ei+1Ji+1wi+2 = qi∆x
4

The particular case of E(x)J(x) = const = EJ enables one to transform
Eq. (2.7) into the formula

wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2 =
qi∆x

4

EJ
(2.8)

The entire situation and FDM discretization is schematically presented in
Fig. 2.

Fig. 2. Finite Difference Method discretization of the elastic beam

The situation changes only slightly when the elastic beam rests on a single
parameter elastic foundation (known as the Winkler foundation). Let us assu-
me that this foundation is homogeneous and characterised with the complian-
ce coefficient k. Therefore, the equilibrium equation including the deflection
w(x) possesses a single extra component at the right-hand side. There holds

d2

dx2

(

E(x)J(x)
d2w(x)

dx2

)

= −kw(x) + q(x) (2.9)
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Inserting, as previously, the additional formulas for the derivatives which inc-
lude finite differences expressed by the discrete values of the function w(x) in
the neighborhood of the given i-th point of the grid, it is obtained that

Ei−1Ji−1wi−2 − 2(Ei−1Ji−1 + EiJi)wi−1 +

+(Ei−1Ji−1 + 4EiJi + Ei+1Ji+1 + k∆x
4)wi + (2.10)

−2(EiJi + Ei+1Ji+1)wi+1 + Ei+1Ji+1wi+2 = qi∆x
4

The reduction for the case E(x)J(x) = const = EJ leads to the following
equation

wi−2 − 4wi−1 +
(

6 +
k∆x4

EJ

)

wi − 4wi+1 + wi+2 =
qi∆x

4

EJ
(2.11)

3. Perturbation-based n-th order approach to the finite

difference analysis

Let us denote the corresponding random vector of the problem by b(x), with
the probability density function p(b). Therefore, the m-th order central pro-
babilistic moment of any random function of this parameter, namely F (b), is
defined as

µm
(

F (b)
)

=

+∞
∫

−∞

(

F (b)− E[F (b)]
)m

p(b) db (3.1)

The basic idea of the stochastic perturbation approach follows the classical
expansion idea and is based on the approximation of all input variables and
state functions of the problem via truncated Taylor series about their spatial
expectations in terms of the parameter ε > 0. For example, in the case of a
random deflection, the n-th order truncated expansion may be written as

w(b) = w0(b0) +
n
∑

k=1

εk

k!
(∆b)k

∂kw(b)

∂bk
(3.2)

where

ε∆b = ε(b− b0) (3.3)

is the first variation of b about its expected value and, similarly,

ε2(∆b)2 = ε2(b− b0)2 (3.4)
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is the second variation of b around its expected value, where the n-th order
variation can be expressed accordingly. Traditionally, the stochastic perturba-
tion approach to all physical problems is entered by the respective perturbed
equations of the zeroth, first and successively higher orders being a modifica-
tion of the variational integral formulation. Hence, there holds
— one zeroth order partial differential equation

E0J0
d4

dx4
(

w0(x)
)

= q0 (3.5)

— first order partial differential equation

∂E

∂b
J0
d4

dx4
(

w0(x)
)

+ E0
∂J

∂b

d4

dx4
(

w0(x)
)

+ E0J0
d4

dx4

(∂w(x)

∂b

)

=
∂q

∂b
(3.6)

— second order partial differential equation

∂2E

∂b2
J0
d4

dx4
(

w0(x)
)

+ E0
∂2J

∂b2
d4

dx4
(

w0(x)
)

+ E0J0
d4

dx4

(∂2w(x)

∂b2

)

+

(3.7)

+2
{∂E

∂b

∂J

∂b

d4

dx4
(

w0(x)
)

+ E0
∂J

∂b

d4

dx4

(∂w(x)

∂b

)

+
∂E

∂b
J0
d4

dx4

(∂w(x)

∂b

)}

=
∂2q

∂b2

Quite similarly, one can derive the ascending order partial differential equ-
ations for the elastic beam on the elastic foundation starting from relation
(2.9)
— one zeroth order partial differential equation

E0J0
d4

dx4
(

w0(x)
)

= −k0w0(x) + q0 (3.8)

— first order partial differential equation

∂E

∂b
J0
d4

dx4
(

w0(x)
)

+ E0
∂J

∂b

d4

dx4
(

w0(x)
)

+ E0J0
d4

dx4

(∂w(x)

∂b

)

=

(3.9)

=
∂q

∂b
−

(∂k

∂b
w0(x) + k0

∂w(x)

∂b

)

as well as
— second order partial differential equation

∂2E

∂b2
J0
d4

dx4
(

w0(x)
)

+E0
∂2J

∂b2
d4

dx4
(

w0(x)
)

+ E0J0
d4

dx4

(∂2w(x)

∂b2

)

+

+2
{∂E

∂b

∂J

∂b

d4

dx4

(

w0(x)
)

+ E0
∂J

∂b

d4

dx4

(∂w(x)

∂b

)

+
∂E

∂b
J0
d4

dx4

(∂w(x)

∂b

)}

=

=
∂2q

∂b2
−

(∂2k

∂b2
w0(x) + 2

∂k

∂b

∂w(x)

∂b
+ k0
∂2w(x)

∂b2

)

(3.10)
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Derivation of higher order equations proceeds quite similarly – by systematic
differentiation until the n-th order equation is recovered. Having solved tho-
se equations for w0(x) and their higher orders, respectively, (specifically its
partial derivatives w.r.t. random input within all discrete points of the grid),
we derive expressions for the expected values and other moments of elastic
beam deflections. In order to calculate the expected values and higher order
probabilistic moments of w(x; b), the same Taylor expansion is employed for
definitions of its probabilistic moments; there holds

E[w(b)] =

+∞
∫

−∞

w(b)p(b) db =

+∞
∫

−∞

(

w0(b0)+
n
∑

k=1

εk

k!
(∆b)k

∂kw(b)

∂bk

)

p(b) db (3.11)

If there is a high random dispersion in the input random variable and the sym-
metric probability density function is chosen, then the generalized expansion
simplifies to

E[w(b)] = w0(b0) +
n
∑

k=1

ε2k

(2k)!

∂2kw(b)

∂b2k
µ2k(b) (3.12)

where µ2k(b) denotes 2k-th order probabilistic moment of the variable b.
When the probability density function is defined as a Gaussian one with the
standard deviation σ, we obtain additionally

µ2k+1(b) = 0 µ2k(b) = (2k − 1)!σ
2k(b) (3.13)

Using such an extension of the random input, the desired efficiency of the
expected values can be achieved by appropriate choice of the perturbation
parameter and maximum order corresponding to the particular type of the
input probability density function probabilistic moment interrelations, accep-
table error of the computations, etc. This choice can be made reasonably by
comparative studies with the Monte-Carlo simulations or theoretical results
obtained by direct (i.e. symbolic) integration. Consequently, the m-th order
probabilistic moment for the structural response function in the n-th order
stochastic Taylor expansion is introduced as

µm
(

w(b)
)

=

+∞
∫

−∞

[(

w0(b0) +
n
∑

k=1

εk

k!
(∆b)k

∂kw(b)

∂bk

)

− E[w(b)]
]m

p(b) db =

(3.14)

=

+∞
∫

−∞

(

n
∑

k=1

εk

k!
(∆b)k

∂kw(b)

∂bk

)m

p(b) db
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Taking the first few components only, one can demonstrate that the relevant
expansions for the 3-rd and 4-th order moments (Kamiński, 2007) equal to

µ3
(

w(b)
)

=
3

2
ε4µ4(b)

(∂w

∂b

)2∂2w

∂b2
+
1

8
ε6µ6(b)

(∂2w

∂b2

)3

(3.15)

and

µ4
(

w(b)
)

=
3

2
ε4µ4(b)

(∂w

∂b

)4

+
3

2
ε6µ6(b)

(∂w

∂b

∂2w

∂b2

)2

+
1

16
ε8µ8(b)

(∂w

∂b

)3(∂2w

∂b2

)4

(3.16)
The discrete equations for the Stochastic Finite Difference Method built upon
the above equations for the perturbation-based analysis are essentially different
in the case of an elastic beam with and without the foundation beneath it.
Putting here k = 0 returns various order relations, as for example:
— zeroth order relation

w0i−2 − 4w
0
i−1 + 6w

0
i − 4w

0
i+1 + w

0
i+2 =

q0i (∆x
0)4

E0J0
(3.17)

— n-th order relation

∂nwi−2

∂bn
− 4
∂nwi−1

∂bn
+ 6
∂nwi

∂bn
− 4
∂nwi+1

∂bn
+
∂nwi+2

∂bn
=
∂n

∂bn

(qi∆x
4

EJ

)

(3.18)

so that the uniformly distributed load gives here nonzero equations of up to
the first order only, random length results in up to the fourth order equations,
whereas the cross-sectional and/or material randomness brings here an infinite
number of equations at the R.H.S. Looking for the perturbation-based SFDM
equations for beams on the elastic foundation, one can receive:
— zeroth order equations

w0i−2 − 4w
0
i−1 +

(

6 +
k0(∆x0)4

E0J0

)

w0i − 4w
0
i+1 + w

0
i+2 =

q0i (∆x
0)4

E0J0
(3.19)

— n-th order equations

∂nwi−2

∂bn
− 4
∂nwi−1

∂bn
+ 6
∂nwi

∂bn
+
n
∑

p=1

(

n

p

)

∂p

∂bp

(k∆x4

EJ

)∂n−pwi

∂bn−p
+

(3.20)

−4
∂nwi+1

∂bn
+
∂nwi+2

∂bn
=
∂n

∂bn

(qi∆x
4

EJ

)

Let us also note that n−1 of those equations may be generated automatically
from the zeroth order formula using the symbolic computations systems like
MAPLE in the computational illustrations below.
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4. Computational illustrations

4.1. Deflection of the linear elastic beam with linearly varying

cross-sectional area

Let us determine the first four probabilistic moments for the cantilever
beam with linearly varying cross-sectional area under the constant distri-
buted load q = 1.0 kN/m. Young’s modulus of this beam is introduced as
the input Gaussian random variable, where the expected value is given as
E[E] = 206.01GPa, the grid for this structures consisting of 6 elements with
the constant length equal to ∆x = 0.1m is proposed below (see Pietrzak et
al., 1986 for deterministic test).

Fig. 3. A cantilever beam with linearly varying cross-sectional area

The following central finite difference equations hold true in this particular
case

J0w−1 − 2(J0 + J1)w0 + (J0 + 4J1 + J2)w1 − 2(J1 + J2)w2 + J2w3 =
q∆x4

E

J1w0 − 2(J1 + J2)w1 + (J1 + 4J2 + J3)w2 − 2(J2 + J3)w3 + J3w4 =
q∆x4

E

J2w1 − 2(J2 + J3)w2 + (J2 + 4J3 + J4)w3 − 2(J3 + J4)w4 + J4w5 =
q∆x4

E
(4.1)

J3w2 − 2(J3 + J4)w3 + (J3 + 4J4 + J5)w4 − 2(J4 + J5)w5 + J5w6 =
q∆x4

E

J4w3 − 2(J4 + J5)w4 + (J4 + 4J5 + J6)w5 − 2(J5 + J6)w6 + J6w7 =
q∆x4

E
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J5w4 − 2(J5 + J6)w5 + (J5 + 4J6 + J7)w6 − 2(J6 + J7)w7 + J7w8 =
q∆x4

E

Introducing the fictitious nodes as well as using kinematic boundary condi-
tions, we obtain

(2J0 + 4J1 + J2)w1 − 2(J1 + J2)w2 + J2w3 =
q∆x4

E

−2(J1 + J2)w1 + (J1 + 4J2 + J3)w2 − 2(J2 + J3)w3 + J3w4 =
q∆x4

E

J2w1 − 2(J2 + J3)w2 + (J2 + 4J3 + J4)w3 − 2(J3 + J4)w4 + J4w5 =
q∆x4

E
(4.2)

J3w2 − 2(J3 + J4)w3 + (J3 + 4J4 + J5)w4 − 2(J4 + J5)w5 + J5w6 =
q∆x4

E

J4w3 − 2(J4 + J5)w4 + (J4 + 4J5)w5 − 2J5w6 =
q∆x4

E

2J5w4 − 4J5w5 + 2J5w6 =
q∆x4

E

This system of linear equations may be used for further analytical partial dif-
ferentiation with respect to the random input variable and formation of the
higher order equations. The symbolic computations package MAPLE, v. 11
is employed for derivation of up to the tenth order equilibrium perturbation-
based equations and determination of the expected values (each time for the
maximum deflection at the cantilever end) according to the 2nd, 4th, 6th, 8th
and 10th approaches (Fig. 4, the additional order results are marked with the
corresponding number close to the right vertical axes), computations of stan-
dard deviations and variances in the framework of the 2nd, 4th and 6th order
theories (Figs. 5 and 6, the successive orders notations as before) as well as, fi-
nally, derivation of the third (Fig. 7) and fourth central probabilistic moments
(Fig. 8). All those computations are performed with respect to the perturbation
parameter ε belonging to the interval [0.8, 1.2] and, secondly, the coefficient
of variation of the randomized Young’s modulus α(b) – standard deviation
vs. the expected value – for the beam taken from the interval [0.0, 0.3]; the
probabilistic moments are given here as the decimal powers, respectively. Pro-
blems with this coefficient equal to 0 are adequate to deterministic tests, of
course, so that they can be treated as evaluation tests being quite insensitive
to the perturbation parameter at all. Generally, it is clear that the particular
values of all probabilistic characteristics increase together with the order of
the method, and, furthermore, that the difference between the results of the
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ascending order methods systematically decrease. It is important to mention
that for the clarity of the presentation, those differences are visualised using
the largest perturbation parameter value – 1.2 remaining not so transparent
for its value taken in most of the engineering computations as 1.0. Anyway,
even for the most extreme combinations of the problem parameters, the diffe-
rences between neighboring order results are smaller than a single percent of
the computed deflection value.

Fig. 4. Expected values as function of the perturbation parameter and input
coefficient of variation (2nd, 4th, 6th, 8th and 10th orders)

Fig. 5. Standard deviations as function of the perturbation parameter and input
coefficient of variation (2nd and 4th orders)

Further, as one may recognize, an increase of the perturbation parameter
and, at the same time, the additional increase of the coefficient of variation
each time leads to the nonlinear increase of the probabilistic moment being
computed. The impact of the perturbation parameter is very small in the se-
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Fig. 6. Variances as function of the perturbation parameter and input coefficient of
variation (2nd and 4th orders)

Fig. 7. 3rd central probabilistic moments as function of the perturbation parameter
and input coefficient of variation

Fig. 8. 4th central probabilistic moments as function of the perturbation parameter
and input coefficient of variation
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cond order approach and becomes more and more important together with an
increase of the theory order having similar importance as the variation coeffi-
cient for the tenth order technique. Neglecting the theory order, the coefficient
of variation of the input Young modulus being randomized here is more de-
cisive for the parameter variability of the probabilistic characteristics of def-
lections.

A comparison of the deflections in the deterministic case together with the
expected values computed for the standard deviation of it equal to 10% of the
Young modulus expected value is given below. As it is clear from this table,
the expected values are larger than the corresponding deterministic values,
which of course reflects the perturbation-based formula for expectations, see
Eq. (3.2), where deterministic value is the first component, while the second
one remains always positive.

Table 1. Deflections and their expected values for grid points in test No. 1

Node w E[w]
number [m] [m]

1 0.828443 · 10−5 0.816330 · 10−5

2 0.311575 · 10−4 0.310456 · 10−4

3 0.664578 · 10−4 0.664655 · 10−4

4 0.111347 · 10−3 0.111559 · 10−3

5 0.162304 · 10−3 0.162775 · 10−3

6 0.215525 · 10−3 0.216275 · 10−3

4.2. Deflection of the linear elastic beam resting on the elastic Winkler

foundation

The second case deals with quite a similar cantilever beam with the con-
stant cross-sectional area however, where J = 1.71 · 10−6m4, resting now
on the elastic foundation characterised by the coefficient k = 5 · 107 N/m3.
The external distributed load is constant along this beam q = 10000 N/m for
l = 3.0m; the structure is discretized with ∆x = 0.5m, and, analogously to
the previous case, the Young modulus is the input Gaussian random variable
with the expectation equal to E = 206.01 GPa (see the deterministic test in
Pietrzak et al., 1986). The fundamental zeroth order SFDM equation has the
following form

wi−2 − 4wi−1 + 14.8709wi − 4wi+1 + wi+2 = 0.0177416 (4.3)
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with the following boundary conditions

w0 = 0 w−1 = w1

w7 = 2w6 − w5 w8 = 4w6 − 4w5 + w4
(4.4)

where the nodes 7 and 8 are fictitious, as before. A comparison of the deflec-
tions in the deterministic case together with the expected values computed
for the standard deviation of it equal to 10% of the Young modulus expected
value is given below. As it is clear from this table, the expected values are
larger than the corresponding deterministic values, which of course once more
reflects the perturbation-based formula for the expectations.

Table 2. Deflections and their expected values for grid points in test No. 2

Node w E[w]
number [m] [m]

1 0.149565 · 10−2 0.151058 · 10−2

2 0.200862 · 10−2 0.202867 · 10−2

3 0.203892 · 10−2 0.205927 · 10−2

4 0.200995 · 10−2 0.203001 · 10−2

5 0.199978 · 10−2 0.201974 · 10−2

6 0.199808 · 10−2 0.201802 · 10−2

The polynomial response function between the Young modulus of this ela-
stic beam and its deflection at the right-hand side has been numerically de-
termined using the polynomial interpolation option in the system MAPLE.
This function is shown in Fig. 9. It was the basis for further symbolic deriva-
tion of higher order partial derivatives of the deflection with respect to the
randomized Young modulus and probabilistic moments. The presentation of
computational results is quite similar to that given in Sec. 4.1 – probabilistic
moments for the maximum deflection at the end of the cantilever beam are
collected in Figs. 10-14: the expected values, standard deviations, variances
as well as third and fourth order central probabilistic moments. The elastic
foundation for the elastic beam having exactly the same parameters reduces
the maximum deflection by two orders of the magnitude (by comparison of
Figs. 4 and 10), so that the standard deviations are reduced by two orders
as well (the following numbers are slightly different) the variances – by four
orders (as the second powers of the standard deviations), whereas the third
and fourth central probabilistic moments – by six and eight orders, respec-
tively. Finally, comparing the ascending order moment diagrams, it is clear
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that the higher moment is computed, the bigger influence of the perturbation
parameter on the overall result is noticed.

Fig. 9. The response function of the 6th node deflections of the beam

Fig. 10. Expected values as function of the perturbation parameter and input
coefficient of variation (2nd, 4th and 6th orders)

This study brings also the following important remark – looking for the
variability of 3rd and 4th order probabilistic moments in the range of ap-
plicability of the second order second moment technique within the interval
[0.0, 0.1] (Kleiber and Hien, 1992), one can observe that they are almost insen-
sitive to any parameter of this study and practically do not differ much from
0. Their largest increase is noticed for the input coefficient of variation larger
than 0.15 (the bigger coefficient – the larger moment increase).
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Fig. 11. Standard deviations as function of the perturbation parameter and input
coefficient of variation (2nd, 4th and 6th orders)

Fig. 12. Variances as function of the perturbation parameter and input coefficient of
variation (2nd, 4th and 6th orders)

Fig. 13. 3rd central probabilistic moments as function of the perturbation parameter
and input coefficient of variation



A generalized version of the perturbation-based stochastic... 973

Fig. 14. 4th central probabilistic moments as function of the perturbation parameter
and input coefficient of variation

5. Concluding remarks

• Theoretical considerations presented here and the additional computa-
tional implementation show how to make an efficient stochastic exten-
sion of any order for the well-known Finite Difference Method in the case
when some parameters in the governing differential equations remain un-
certain. This uncertainty is represented by the truncated Gaussian input
random variable uniquely defined by the first two probabilistic moments
and, by formation and straightforward solution of the ascending order
equilibrium equations, results in probabilistic moments of the structural
response. Although the entire methodology is displayed on the example
of elastic statistically homogeneous and isotropic beams, it remains so
general that any 2 and/or 3D problems may be solved quite analogously.
The probabilistic moments of up to the fourth order are computed sym-
bolically, using the system MAPLE, so that unlike most of the previous
implementations (Kamiński, 2001; Kleiber and Hien, 1992), they include
analytical functions with respect to the perturbation parameter as well
as the input coefficient of variation for the random input. Furthermo-
re, having in the mind the stochastic convergence of the entire method,
we compare up to the tenth order perturbation theories in the case of
expected values and up to sixth order approaches in the case of second
order characteristics.

• As one may expect, the computations performed show that the coeffi-
cient of variation for the random input was determined as more impor-
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tant than the perturbation parameter. Further, the differences between
the neighboring order approaches decrease together with the increase of
this order, which partially demonstrates the convergence of this metho-
dology. Comparison of the expected values for the beam without and
with the elastic foundation shows that the application of this foundation
decreases the maximum deflection by more than two orders of magnitu-
de. Finally, we need to point out that the Stochastic Finite Difference
Method may be directly used for any order stochastic reliability studies
since all moments and probabilistic characteristics are easily available.
Although the computer code is not very large, it can be easily gene-
ralized towards larger space dimensions of structures, other probability
density functions as well as to automatic formation of the ascending or-
der equations typical not only for the SFDM but also for other discrete
techniques implemented before.
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O zastosowaniu uogólnionej Stochastycznej Metody Elementów

Skończonych opartej na technice perturbacji do analizy belek sprężystych

Streszczenie

Głównym celem niniejszej pracy jest zastosowanie probabilistycznej analizy nume-
rycznej składającej się z uogólnionej metody perturbacji opartej na szeregu Taylora ze
współczynnikami losowymi oraz z Metody Różnic Skończonych dla siatek regularnych.
Jak wykazano w przykładach numerycznych, używając tego podejścia można również
wyznaczać momenty probabilistyczne wyższych rzędów dla dowolnych funkcji loso-
wych, co było niemożliwe dla zastosowań metod drugiego rzędu znanych wcześniej.
Zastosowany tutaj algorytm numeryczny jest oparty na różniczkowaniu bezpośred-
nim hierarchicznych równań równowagi względem przyjętych zmiennych i na symbo-
licznym wyznaczaniu momentów i charakterystyk losowych przy pomocy programu
MAPLE.
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