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The influence of backfill on the dynamic response of rigid axisymmetric
foundations is described as reaction of an independent layer. It leads to
the solution of the kinematic interaction problem by means of the com-
plex stiffness matrix of a supporting medium given by a specific increase
in relation to the case of non-embedded foundations. The increases of
stiffnesses are obtained in the closed-form from steady-state solutions
to the equation of motion of an isotropic homogeneous medium under
appropriate displacement boundary and radiation conditions. The ap-
proximate modelling is compared with results of the rigorous boundary
integral equation approach.
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1. Introduction

In the dynamic analysis of foundations supported on a soil, the foundation
block is massive and may be considered as a rigid body. The excitation is
assumed to be harmonic being able to consider other excitations by means
of Fourier transform techniques. The steady-state motion of a massive foun-
dation can be analysed in two steps. In the first step, also called ”kinematic
interaction”, the response of a massless rigid body on a supporting medium
is computed due to the dynamic excitation under consideration. The dynamic
response is determined by the stiffness matrix of the supporting medium for
a given shape of the foundation. It is worth to say that dynamic forces and
displacements related by the stiffness matrix are generally out of phase. It
is convenient then to use complex notation to represent forces and displace-
ments of the foundation and stiffnesses of the supporting medium. The real
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component of the stiffnesses reflects the stiffness and inertia of the soil. The
imaginary component reflects the damping of the system. The main part of the
damping is due to the energy dissipated by the waves propagating away from
the foundation (radiation damping). In addition to the radiation damping, a
hysteretic material damping may exist. Once the dynamic stiffness of the sup-
porting medium is known, the response of the foundation including its mass
may be evaluated from the general equations of translational and rotational
motion of the massive rigid body.

Generally, the foundations are surrounded by a backfill, which modifies
the dynamic stiffness of the supporting medium. The kinematic interaction
problem is governed by a mixed boundary value problem of three-dimensional
elastodynamics if the soil medium is treated as a continuum half-space. The
procedures utilised to solve the problem include the finite element method,
the boundary element method or hybrid approaches (Lysmer, 1980; Apsel and
Luco, 1987; Mita and Luco, 1987; Emperador and Dominguez, 1987; Barros,
2006). Due to unbounded nature of the soil medium, the computational size
of these methods is very large. Furthermore, the foundation embedment con-
ditions are very complex practically due to uncertainties in the state of the
soil. Then, approximate models are justified to supplement more generally ap-
plicable rigorous methods. Approximate approaches to model the embedment
effects of rigid cylindrical foundations in the dynamic soil-structure interaction
analysis include:

• a linear elastic weightless spring system (Prakash and Puri, 1988)
• an empirical approach (Gazetas, 1991)
• a lumped-parameter model (Wolf and Paronesso, 1992; Wu and Lee,
2002)

• a cone model (Meek and Wolf, 1994; Jaya and Prasad, 2002; Takewaki
et al., 2003; Wolf, 1994; Wolf and Preisig, 2003)

• an independent continuum layer (Novak et al., 1977).

The objective of this paper is to present a dynamic local approach to model the
backfill effects on complex stiffnesses of a supporting medium under following
assumptions:

(1) the backfill is modelled as an independent isotropic homogeneous me-
dium in the plane and (or) anti-plane strain cases;

(2) the medium is characterised by the mass density ρB and complex Lame’s
constants µ∗B, λ

∗

B to include material damping.
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The backfill reduces the effect of embedment due to excavating and backfilling
of the soil deposit in the place of building of the foundation. This fact can be
taken into account by the appropriate choice of the mass density and dyna-
mic material parameters. The parameters can be estimated by solution of the
inverse problem if the dynamic response of the embedded foundation is given
from measurements.

2. Statement of the problem

Let Ω = ΩI∪ΩE ⊂ R3 be the domain in three-dimensional space R3 occupied
by a rigid massless inclusion ΩI and an excavated elastic half-space ΩE, see
Fig. 1.

Fig. 1. Description of the model

The rigid massless body ΩI is perfectly bonded to the half-space ΩE along
the surface ∂ΩEC = ∂Ω

E
hor ∪ ∂ΩEver. The body Ω = ΩI ∪ ΩE is in a state of

motion relative to an inertial frame of reference.

2.1. Balance equations for the rigid massless inclusion ΩI

The rigid massless inclusion ΩI is subjected to the external force
~P0(t) = ~P0e

iωt and moment ~M0(t) = ~M0e
iωt vectors acting at the referen-

ce point x0 ∈ ΩI with harmonic time dependence of the type eiωt in which
ω is the circular frequency and i =

√
−1. Furthermore, due to deformation

of the half-space ΩE , it is loaded by a field ~t(x,nI) of contact forces acting
on ∂ΩI , where nI is the unit outer normal vector for ΩI at x ∈ ∂ΩI .
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The momentum balance equation and balance of angular momentum for
the massless rigid inclusion ΩI lead to

~P0e
iωt +

∫

∂ΩI

~t(x,nI)eiωt dS = ~0 x ∈ ∂ΩI

~M0e
iωt +

∫

∂ΩI

(x− x0)× ~t(x,nI)eiωt dS = ~0 x ∈ ∂ΩI
(2.1)

2.2. Field equations for the excavated half-space ΩE

The steady-state time-harmonic motion of the excavated half-space ΩE

includes the fields of displacement ~u(x, t) = ~u(x)eiωt, strain
↔

ε(x, t) =
↔

ε(x)eiωt

and stress
↔

σ(x, t) =
↔

σ(x)eiωt, x ∈ ΩE.
The principle of linear momentum with the conservation of mass on the

assumption of small deformations leads to the Cauchy equation of motion in
the frequency domain (Achenbach, 1973)

∇·↔σ(x) + ρ~b(x) = −ω2ρ~u(x) x ∈ ΩE (2.2)

where ~b(x) stands for the body force vector, ρ is the mass density, ∇ denotes
the del operator and ∇·(·) implies the divergence of (·).
The principle of the angular momentum provides the symmetry of stress

tensor
↔

σ(x). The generalized Hooke’s law in the frequency domain for a linear
inelastic isotropic homogeneous medium is

↔

σ(x) = λ∗ tr
↔

ε(x)
↔

1 + 2µ∗
↔

ε(x) x ∈ ΩE (2.3)

where tr
↔

ε means the trace of
↔

ε ,
↔

1 denotes the unit tensor and λ∗ and µ∗

are complex-valued Lame’ constants.

The kinematical relation within the restrictions of the linearised theory is
given by

↔

ε(x) =
1

2
(∇~u(x) + ~u(x)∇) x ∈ ΩE (2.4)

Substituting Eqs (2.3) and (2.4) into (2.2), leads to the Navier-Cauchy equ-
ation of motion

µ∗∇2~u(x) + (λ∗ + µ∗)∇∇·~u(x) + ρ~b(x) = −ω2ρ~u(x) x ∈ ΩE (2.5)

where ∇2 = ∇·∇ is the Laplacian operator.
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2.3. Elastodynamic problem for the excavated half-space in the frequency

domain

The problem can be stated as follows: to find the solution to Navier-Cauchy
equation of motion (2.5) with the boundary conditions

~u(x) = ~u(x) x ∈ ∂ΩEC (2.6)
~t(x,n) = n · ↔σ(x) = Tn(~u(x)) = ~0 x ∈ ∂ΩEf = ∂ΩE − ∂ΩEC

where ~u(x), x ∈ ∂ΩEC is the prescribed displacement on ∂ΩEC , n denotes the
unit outward normal vector to ∂ΩE and the operator Tn is defined by

Tn(·) = λ∗n∇·(·) + 2µ∗n · ∇(·)↔1 + µ∗n×∇× (·) (2.7)

The considered elastodynamic problem includes the boundary extended to in-
finity, then it is reasonable to require that the displacement at infinity must
be bounded and that no wave can be reflected back from infinity. These condi-
tions, called the radiation conditions are crucial in searching the unique solu-
tion in unbounded domains, particularly in time-harmonic problems (Eringen
and Suhubi, 1975).

2.4. Coupling equations

The excavated half-space and the rigid inclusion substructures can be co-
upled by enforcing the compatibility and the equilibrium conditions at their
common interface ΩI ∩ ΩE . The response of the rigid massless inclusion ΩI
can be described by the displacement ~U0(t) = ~U0e

iωt and the small rotation
~Φ0(t) = ~Φ0e

iωt vectors at the point of reference x0 ∈ ΩI . Then, the compatibi-
lity of interaction displacements at the contact surface between the half-space
and the inclusion requires that

~u(x) = ~U0 + ~Φ0 × (x− x0) x ∈ ΩI ∩ΩE (2.8)

The equilibrium of interaction forces at the medium-inclusion interface requ-
ires that

~t(x,nI) + ~t(x,n) = ~0 x ∈ ΩI ∩ΩE (2.9)

and nI = −n on ΩI ∩ΩE.
Taking the equilibrium of interaction forces (2.9) in equations (2.1) into

account and referring to an orthonormal basis {o; ê1, ê2, ê3} results in the
matrix form

{P0} =
∫

∂ΩE
C

[g(x;x0)]
⊤{~t(x,n)} dS x ∈ ∂ΩEC = ∂ΩEhor ∪ ∂ΩEver (2.10)
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where {P0} = (P01, P02, P03,M01,M02,M03)⊤, {~t} = (t1, t2, t3)⊤, and

[g(x;x0)] =







1 0 0 0 (z − z0) −(y − y0)
0 1 0 −(z − z0) 0 (x− x0)
0 0 1 (y − y0) −(x− x0) 0






(2.11)

Since the tractions ~t(x,n) on ∂ΩEC are linearly related to the displacement
~U0

and the rotation ~Φ0 of the rigid inclusion Ω
I , the traction vector {~t(x,n)}

can be written in the form

{~t(x,n)} = [Hn(x)]{U0} (2.12)

where {U0} = (U01, U02, U03, Φ01, Φ02, Φ03)⊤ and [Hn(x)] is the 3×6 matrix of
contact tractions on ∂ΩEC for unit rigid-body displacements of the foundation
corresponding to each of the six degrees of freedom. Substitution from (2.12)
to (2.10) gives

{P0} = [K(x0)]{U0} (2.13)

in which

[K(x0)] =

∫

∂ΩE
C

[g(x;x0)]
⊤[Hn(x)] dS x ∈ ∂ΩEC (2.14)

is the 6 × 6 dynamic stiffness matrix of the supporting medium, referred to
the point of reference x0.

The Kpq component (p, q = 1, 2, . . . , 6) of the matrix is given by

Kpq(x0) =

∫

∂ΩE
C

{gp(x;x0)}⊤{Hnq (x)} dS x ∈ ∂ΩEC (2.15)

in which {gp(x;x0)} corresponds to the p-th column of the matrix [g(x;x0)]
and {Hnq (x)} corresponds to the q-th column of the matrix [Hn(x)].
In the case of rigid foundations with a vertical axis of symmetry and

x0 = (0, 0, z0) the integration can be done in cylindrical coordinates (r, θ, z)
and the azimuthal dependence can be factored out. The displacement vector
~u(x) = ~U0+ ~Φ0× (x−x0), x ∈ ΩI ∩ΩE, on the medium-foundation interface
can be written in the matrix form

{u(x)} = [g(x;x0)]{U0} (2.16)
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where {u(x)} = (ur(x), uθ(x), uz(x))⊤, {U0} = (U01, U02, U03, Φ01, Φ02, Φ03)⊤
and the rigid body motion influence matrix is given by

[g(x;x0)] =







cos θ sin θ 0 −(z − z0) sin θ (z − z0) cos θ 0
− sin θ cos θ 0 −(z − z0) cos θ −(z − z0) sin θ r
0 0 1 r sin θ −r cos θ 0






(2.17)

Considering the q-th component (q = 1, 2, . . . , 6) of the generalized displa-
cement vector U0q it is possible to write the corresponding displacement and
traction components in the form

{uq(x)} = {gq(x;x0)}U0q = [Aq(θ)]{gq(r, z)}U0q
{~tq(x,n)} = {Hnq (x)}U0q = [Aq(θ)]{H

n

q (r, z)}U0q (2.18)

x = (r, θ, z) ∈ ΩI ∩ΩE q = 1, 2, . . . , 6

The diagonal matrices [Aq(θ)] represent the azimuthal dependence of the q-th
rigid-body motion and are given by

[A1(θ)] = [A5(θ)] = diag (cos θ, sin θ, cos θ)

[A2(θ)] = [A4(θ)] = diag (sin θ,− cos θ, sin θ) (2.19)

[A3(θ)] = diag (0, 0, 1) [A6(θ)] = diag (0,−1, 0)

The vector {gq(r, z; z0)} corresponds to the q-th column of the matrix
[g(r, z; z0)]

[g(r, z; z0)] =







1 1 0 −(z − z0) (z − z0) 0
−1 −1 0 (z − z0) −(z − z0) −r
0 0 1 r −r 0






(2.20)

Substitution of (2.18) into (2.15) and integration over θ from 0 to 2π leads
to

Kpq(z0) = 2πapq

∫

Lc

{gp(r, z; z0)}⊤{H
n

q (r, z)}r dL(r, z) (2.21)

in which Lc represents the line defined by intersection of the rz-plane (θ = 0)
and ∂ΩEC = ∂Ω

E
hor ∪ ∂ΩEver and the matrix

[a] =
1

2



















1 0 0 0 1 0
0 1 0 1 0 0
0 0 2 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 2



















(2.22)
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Equation (2.21) indicates that generalized force-displacement relationship
(2.13) for a rigid massless foundation bonded to the supporting medium sys-
tem can be written in the form
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KHH 0 0 0 KHM 0
0 KHH 0 −KHM 0 0
0 0 KV V 0 0 0
0 −KMH 0 KMM 0 0
KMH 0 0 0 KMM 0
0 0 0 0 0 KTT





















































U01
U02
U03
Φ01
Φ02
Φ03



































(2.23)

where the terms KHH , KMM , KHM = KMH , KV V , and KTT are the horizon-
tal, rocking, coupling, vertical, and torsional stiffness functions, respectively.
The functions are referred to the point of reference x0 = (0, 0, z0) and can be
written in the form

KHH = GR(kHH + ia0cHH) KV V = GR(kV V + ia0cV V )

KHM = GR
2(kHM + ia0cHM ) KTT = GR

3(kTT + ia0cTT )

KMM = GR
3(kMM + ia0cMM )

(2.24)

in which G is a shear modulus of reference, R denotes the radius of cylindrical
foundation and a0 = ωR/VS is the dimensionless frequency defined on the
basis of the S-wave velocity of reference VS . The terms kpq and cpq are the
normalized stiffness and damping coefficients, respectively.
The key step in the solution is the evaluation of the contact traction matrix

[H
n

(r, z)], (r, z) ∈ Lc = Lhor ∪ Lver.

3. Local modelling

Within the region ΩE one identifies a half-space subregion ΩN to represent
the soil in its natural state and a layer ΩB to represent the disturbed soil
(backfill): ΩE = ΩN ∪ΩB, see Fig. 2.
The perfect bonding exists only between the half-space ΩN and the rigid

body ΩI along the contact surface ΩN ∩ ΩI and between the layer ΩB and
the body ΩI along the contact surface ΩB ∩ΩI . It is assumed however that
at the horizontal interface ΩN ∩ΩB between the half-space and the layer, the
condition of continuity of displacements is not satisfied and that the surfaces
∂ΩN and ∂ΩB of the separated regions are free from tractions. Then, the
tractions at the base of the rigid body are equal to those of the body placed
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Fig. 2. Rigid body ΩI on half-space ΩN , surrounded by backfill layer ΩB

on the soil surface, while the backfill reactions are to be evaluated indepen-
dently by local modelling. These assumptions imply that the Kpq component
(p, q = 1, 2, . . . , 6) of the dynamic stiffness matrix is given by

Kpq(z0) = K
0
pq +∆K

B
pq(z0) (3.1)

where K0pq denotes the component for surface foundation and ∆K
B
pq(z0) re-

presents the increase due to local backfill reactions

∆KBpq(z0) = 2πRapq

HB
∫

0

{gp(R, z; z0)}⊤{H
n

q (R, z)} dz (3.2)

where HB is the thickness of the backfill layer.

The vector of contact tractions {Hnq } can be obtained in a mathematically
accurate form on the following assumptions:

(1) the backfill ΩB is modelled as an inelastic isotropic homogeneous me-
dium in the plane and (or) anti-plane strain cases

(2) the medium is characterised by complex Lame’s constants µ∗B, λ
∗

B and
mass density ρB .

The governing Navier-Cauchy equation of backfill motion as two-dimensional
approximation of the three-dimensional case is derived directly from (2.5)
and solved in cylindrical coordinates under appropriate displacement boun-
dary conditions ~u(x) = ~U0 + ~Φ0 × (x − x0), x ∈ ΩI ∩ ΩB resulting from
the rigid-body motion ~U0, ~Φ0 of the inclusion Ω

I at the point of reference
x0 = (0, 0, z0). The vectors of contact tractions {Hnq } are given explicitly for
all the six cases of unit rigid-body motions U0q, q = 1, . . . , 6
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(1) {U0} = (1, 0, 0, 0, 0, 0)⊤

{Hn1 } =











(λ∗B + 2µ
∗

B)ŝ
2
1K1(ŝ1R)A

−µ∗B ŝ2K1(ŝR)B
0











(3.3)

where

ŝ = iω

√

ρB
µ∗B

ŝ1 = iω

√

ρB
λ∗B + 2µ

∗

B

A = −L(ŝ, R)
M(R)

B = −L(ŝ1, R)
M(R)

L(s,R) = sK0(sR) + 2R
−1K1(sR)

M(R) = ŝ1ŝK0(ŝ1R)K0(ŝR) + ŝ1R
−1K0(ŝ1R)K1(ŝR) +

+ŝR−1K1(ŝ1R)K0(ŝR)

and K0, K1 are the modified Bessel functions of the second kind,

(2) {U0} = (0, 1, 0, 0, 0, 0)⊤
{Hn2 } = {H

n

1 } (3.4)

(3) {U0} = (0, 0, 1, 0, 0, 0)⊤

{Hn3 } =



















0
0

−µ∗B ŝ
K1(ŝR)

K0(ŝR)



















(3.5)

(4) {U0} = (0, 0, 0, 1, 0, 0)⊤

{Hn4 } =



















(z0 − z)Hn12
(z0 − z)Hn22

−µ∗B
[ ŝRK0(ŝR)

K1(ŝR)
+ 1
]



















(3.6)

(5) {U0} = (0, 0, 0, 0, 1, 0)⊤

{Hn5 } =



















−(z0 − z)Hn11
−(z0 − z)Hn21

µ∗B

[ ŝRK0(ŝR)

K1(ŝR)
+ 1
]



















(3.7)
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(6) {U0} = (0, 0, 0, 0, 0, 1)⊤

{Hn6 } =



















0

µ∗B

[ ŝRK0(ŝR)

K1(ŝR)
+ 2
]

0



















(3.8)

The components ∆KBpq, p, q = H,M,V, T of dynamic stiffness matrix of back-
fill (3.2) are found to be

∆KBHH = πµ
∗

BHBâ
2
0

4K1(â0)K1(b̂0) + â0K0(â0)K1(b̂0) + b̂0K1(â0)K0(b̂0)

â0b̂0K0(â0)K0(b̂0) + â0K0(â0)K1(b̂0) + b̂0K1(â0)K0(b̂0)

∆KBHM =
(1

2
HB − z0

)

∆KBHH

∆KBMM =
(1

3
H2B −HBz0 + z20

)

∆KB11 + πµ
∗

BHBR
2
[ â0K0(â0)

K1(â0)
+ 1
]

(3.9)

∆KBV V = 2πµ
∗

BHBâ0
K1(â0)

K0(â0)

∆KBTT = 2πµ
∗

BHBR
2
[ â0K0(â0)

K1(â0)
+ 2
]

where

â0 = iωR

√

ρB
µ∗B

b̂0 = â0

√

µ∗B
λ∗B + 2µ

∗

B

(3.10)

4. Numerical results

Application of the closed-form solution require the model of material damping
in the backfill to be specified. It is introduced by complex Lame’s constants
µ∗B and λ

∗

B of the form

µ∗B = µB(1 + i2ξ
B
S )

λ∗B + 2µ
∗

B = (λB + 2µB)(1 + i2ξ
B
P )

(4.1)

where µB ≡ GB and λB are real Lame’s constants and ξBS and ξBP repre-
sent the hysteretic damping ratios for the S- and P -waves, respectively. The
corresponding complex S- and P -wave velocities are
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V̂ BS = V
B
S

√

1 + i2ξBS ≈ V BS (1 + iξBS )

V̂ BP = V
B
P

√

1 + i2ξBP ≈ V BP (1 + iξBP )
(4.2)

in which V BS =
√

µB/ρB and V
B
P =

√

(λB + 2µB)/ρB correspond to the real
S- and P -waves velocities.
The complex Poisson ratio ν̂B is

ν̂B =
1− 2

(

V̂ B
S

V̂ B
P

)2

2
[

1−
(

V̂ B
S

V̂ B
P

)2]
≈ νB − i(ξBS − ξBP )

(

V B
S

V B
P

)2

1−
(

V B
S

V B
P

)2
(4.3)

where

νB =
1− 2

(

V B
S

V B
P

)2

2
[

1−
(

V B
S

V B
P

)2]
(4.4)

is real Poisson’s ratio of the backfill.
The stiffness functions ∆KBHH , ∆K

B
HM = ∆KBMH , ∆K

B
MM , ∆K

B
V V

and ∆KBTT expressed by Eqs. (3.9) and referred to the point of reference
x0 = (0, 0,HB) can be written in the form analogous to (2.24)

∆KBHH = GBR(k
B
HH + ia

B
0 c
B
HH)

∆KBHM = GBR
2(kBHM + ia

B
0 c
B
HM )

∆KBMM = GBR
3(kBMM + ia

B
0 c
B
MM ) (4.5)

∆KBV V = GBR(k
B
V V + ia

B
0 c
B
V V )

∆KBTT = GBR
3(kBTT + ia

B
0 c
B
TT )

in which aB0 = ωR/V
B
S is the dimensionless frequency and the terms k

B
mn and

cBmn denote the normalized stiffness and damping coefficients of the backfill,
respectively. They depend on the dimensionless parameters:

kBHH , c
B
HH , k

B
HM = k

B
MH , c

B
HM = c

B
MH , k

B
MM , c

B
MM : HB/R,

V BP /V
B
S , ξ

B
P , ξ

B
S , a

B
0 ; k

B
V V , c

B
V V , k

B
TT , c

B
TT : HB/R, ξ

B
S , a

B
0

(4.6)
The normalized stiffness and damping coefficients have been calculated
for the case of the backfill characterised by the values HB/R = 1,
V BP /V

B
S ∈ {

√
2.25,
√
3,
√
3.94,
√
101}, ξBP = 0.005, ξBS = 0.01 and aB0 in the

range from 0.25 to 6. To the given values of V BP /V
B
S there correspond the follo-

wing values of Poisson’s ratio νB ∈ {0.1, 0.25, 033, 0.495}. Note that the range
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Table 1

V B
P
/V B
S
=
√
2.25 V B

P
/V B
S
=
√
3 V B

P
/V B
S
=
√
3.94 V B

P
/V B
S
=
√
101

(νB = 0.1) (νB = 0.25) (νB = 0.33) (νB = 0.495)

aB
0
= ωR
V B
S

kB
HH

cB
HH

kB
HH

cB
HH

kB
HH

cB
HH

kB
HH

cB
HH

0.25 3.010 11.234 3.244 12.078 3.438 12.843 4.228 17.308
0.50 3.399 9.429 3.642 10.138 3.833 10.791 4.302 14.666
0.75 3.587 8.803 3.814 9.480 3.973 10.110 3.755 13.778
1.00 3.691 8.505 3.890 9.179 4.000 9.816 2.744 13.394
1.25 3.754 8.340 3.924 9.025 3.979 9.682 1.326 13.233
1.50 3.797 8.239 3.942 8.938 3.945 9.620 −0.473 13.199
1.75 3.831 8.170 3.957 8.883 3.916 9.593 −2.638 13.250
2.00 3.858 8.121 3.974 8.846 3.899 9.580 −5.155 13.367
2.25 3.880 8.084 3.992 8.818 3.895 9.572 −8.014 13.538
2.50 3.899 8.054 4.011 8.794 3.901 9.565 −11.202 13.759
2.75 3.913 8.030 4.029 8.775 3.914 9.558 −14.706 14.025
3.00 3.924 8.010 4.046 8.758 3.931 9.550 −18.506 14.335
3.25 3.933 7.994 4.061 8.743 3.950 9.542 −22.582 14.687
3.50 3.938 7.979 4.074 8.729 3.970 9.533 −26.910 15.078
3.75 3.942 7.967 4.085 8.717 3.988 9.525 −31.459 15.508
4.00 3.943 7.957 4.093 8.707 4.004 9.516 −36.199 15.974
4.25 3.942 7.948 4.099 8.697 4.019 9.508 −41.095 16.473
4.50 3.940 7.940 4.103 8.689 4.032 9.500 −46.110 17.004
4.75 3.937 7.933 4.106 8.681 4.043 9.493 −51.204 17.561
5.00 3.933 7.927 4.106 8.674 4.051 9.486 −56.337 18.143
5.25 3.927 7.922 4.106 8.668 4.058 9.480 −61.472 18.744
5.50 3.921 7.917 4.104 8.662 4.063 9.474 −66.568 19.362
5.75 3.914 7.913 4.101 8.657 4.066 9.469 −71.589 19.990
6.00 3.906 7.909 4.096 8.653 4.068 9.464 −76.502 20.626

of Poisson’s ratio cover fully drained (νB = 0.1-0.2) to undrained (νB = 0.495)
conditions. The numerical results are presented in Tables 1, 2 and 3.

To validate the proposed approach, the impedance functions Kpq(HE),
p, q = H,M,V, T for the rigid massless cylindrical foundation embedded to
a depth HE in a uniform inelastic half-space are considered, where the po-
int of reference is the centre of the bottom of the foundation (z0 = HE).
The uniform half-space is characterised by complex-valued Lame’s constants
µ∗ = µ(1 + i2ξS), λ

∗ + 2µ∗ = (λ+2µ)(1 + i2ξP ), where µ ≡ G and λ are real
Lame’s constants and ξS and ξP represent the hysteretic damping ratios for
the S- and P -waves, respectively. The corresponding complex S- and P -wave
velocities are V̂S = VS(1 + iξS), V̂P = VP (1 + iξP ), in which VS =

√

µ/ρ and
VP =

√

(λ+ 2µ)/ρ represent the real S- and P -waves velocities, respectively,
and ρ is the mass density.
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Table 2

V B
P
/V B
S
=
√
2.25 V B

P
/V B
S
=
√
3 V B

P
/V B
S
=
√
3.94 V B

P
/V B
S
=
√
101

(νB = 0.1) (νB = 0.25) (νB = 0.33) (νB = 0.495)

aB
0
= ωR
V B
S

kB
MM

cB
MM

kB
MM

cB
MM

kB
MM

cB
MM

kB
MM

cB
MM

0.25 3.861 5.080 3.939 5.361 4.004 5.616 4.267 7.105
0.50 3.648 5.054 3.730 5.291 3.793 5.508 3.950 6.800
0.75 3.455 5.228 3.531 5.454 3.584 5.664 3.511 6.887
1.00 3.309 5.371 3.375 5.595 3.412 5.808 2.993 7.000
1.25 3.201 5.473 3.258 5.701 3.276 5.920 2.392 7.104
1.50 3.122 5.545 3.170 5.778 3.171 6.005 1.698 7.198
1.75 3.063 5.596 3.105 5.834 3.091 6.070 0.906 7.289
2.00 3.017 5.633 3.055 5.875 3.030 6.119 0.013 7.382
2.25 2.980 5.660 3.018 5.905 2.985 6.156 −0.984 7.478
2.50 2.951 5.680 2.988 5.927 2.951 6.184 −2.083 7.582
2.75 2.925 5.696 2.964 5.944 2.926 6.205 −3.281 7.694
3.00 2.903 5.707 2.944 5.956 2.906 6.220 −4.573 7.816
3.25 2.884 5.716 2.927 5.966 2.890 6.232 −5.955 7.947
3.50 2.866 5.724 2.911 5.973 2.876 6.241 −7.417 8.090
3.75 2.849 5.729 2.897 5.979 2.864 6.248 −8.951 8.243
4.00 2.833 5.734 2.883 5.984 2.853 6.254 −10.548 8.406
4.25 2.818 5.738 2.870 5.988 2.843 6.258 −12.195 8.580
4.50 2.803 5.741 2.857 5.990 2.834 6.261 −13.880 8.762
4.75 2.789 5.744 2.845 5.993 2.824 6.264 −15.591 8.953
5.00 2.775 5.746 2.833 5.995 2.814 6.266 −17.315 9.151
5.25 2.761 5.748 2.821 5.996 2.805 6.267 −19.039 9.355
5.50 2.748 5.749 2.808 5.998 2.795 6.268 −20.749 9.564
5.75 2.734 5.751 2.796 5.999 2.785 6.269 −22.434 9.777
6.00 2.721 5.752 2.784 6.000 2.775 6.270 −24.082 9.991

In accordance with the local modelling of embedment effects, the impe-
dance functions Kpq are given by (3.1)

Kpq(HE) ≈ K0pq +∆KBpq(HE) (4.7)

where K0pq denotes the component for surface foundation and ∆K
B
pq(HE)

represents the increase due to local backfill reactions at the point of refe-
rence x0 = (0, 0,HE). Assuming the parameters of backfill µB = µ ≡ G,
λB = λ, ρB = ρ, ξ

B
P = ξP , ξ

B
S = ξS and HB = HE, the functions ∆K

B
pq(HE),

p, q = H,M,V, T can be calculated from equations (3.9) and (3.10) and expres-
sed in form (4.5).
A test of all five impedance functions KHH , KHM = KMH , KMM , KV V ,

and KTT is realised by comparison of the results of Apsel and Luco (1987)
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Table 3

aB
0
= ωR
V B
S

kB
V V

cB
V V

kB
TT

cB
TT

0.25 2.231 8.873 11.999 3.173
0.50 2.524 7.513 11.314 4.074
0.75 2.674 7.033 10.801 4.755
1.00 2.762 6.795 10.440 5.197
1.25 2.815 6.658 10.183 5.486
1.50 2.848 6.570 9.996 5.681
1.75 2.869 6.511 9.854 5.817
2.00 2.880 6.468 9.745 5.915
2.25 2.885 6.437 9.657 5.987
2.50 2.886 6.414 9.585 6.041
2.75 2.883 6.395 9.525 6.083
3.00 2.878 6.380 9.474 6.116
3.25 2.871 6.369 9.429 6.142
3.50 2.863 6.359 9.389 6.163
3.75 2.854 6.351 9.353 6.181
4.00 2.843 6.344 9.321 6.195
4.25 2.832 6.338 9.290 6.207
4.50 2.820 6.334 9.262 6.216
4.75 2.808 6.329 9.236 6.225
5.00 2.795 6.326 9.211 6.232
5.25 2.782 6.322 9.187 6.238
5.50 2.768 6.320 9.164 6.243
5.75 2.755 6.317 9.142 6.248
6.00 2.741 6.315 9.121 6.252

based on the rigorous non-singular integral equation approach to the dyna-
mic response of embedded foundations with the values estimated from formu-
la (4.7), where the functions K0pq for the surface foundation were calculated
by the approach of Wong and Luco (1976). The dimensionless normalized
stiffness kpq and damping cpq coefficients defining the form of generalized
force-displacement relationship given by (2.23) and (2.24) were calculated for
embedment ratios HE/R = 0.25, 0.5, 1, 2 at fixed values of VP /VS =

√
3,

ξP = 0.005, ξS = 0.01. The calculations were performed for a number of valu-
es of the dimensionless frequency a0 = ωR/VS in the range from 0.25 to 6.00.
Comparisons are presented in Figs. 3-7. Inspection of the Figures indicates
that the stiffness coefficients for embedded foundations, obtained by the pre-
sent approach, generally underestimate the values from the integral equation
approach, with the exception of kV V for HE/R = 1, 2 where a small overe-
stimation can be observed in limited ranges of the dimensionless frequency.
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On the contrary, the damping coefficients determined by the present approach
generally overestimate the values from the integral equation approach at low
dimensionless frequencies and tend to the Apsel and Luco solution as frequency
increases.

Fig. 3. Comparision of normalized horizontal stiffness and damping coefficients for
cylindrical foundations with embedment ratios HE/R = 0.25, 0.5, 1, 2: rigorous
integral equation approach of Apsel and Luco (1987) – solid lines, local modelling of

embedment – dotted lines

Fig. 4. Comparision of normalized coupling stiffness and damping coefficients for
cylindrical foundations with embedment ratios HE/R = 0.25, 0.5, 1, 2: rigorous
integral equation approach of Apsel and Luco (1987) – solid lines, local modelling of

embedment – dotted lines
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Fig. 5. Comparision of normalized rocking stiffness and damping coefficients for
cylindrical foundations with embedment ratios HE/R = 0.25, 0.5, 1, 2: rigorous
integral equation approach of Apsel and Luco (1987) – solid lines, local modelling of

embedment – dotted lines

Fig. 6. Comparision of normalized vertical stiffness and damping coefficients for
cylindrical foundations with embedment ratios HE/R = 0.25, 0.5, 1, 2: rigorous
integral equation approach of Apsel and Luco (1987) – solid lines, local modelling of

embedment – dotted lines

5. Conclusions

The dynamic generalized force-displacement relationship for a rigid massless
foundation bonded to a supporting medium which represents the kinematic
interaction can be expressed in the form of stiffness functions which depend
on the soil properties, frequency of excitation and geometry of the foundation.
On the assumption of local modelling of the backfill, the complex stiffnesses
of the supporting medium are decomposed into the sum of two parts: the first
one corresponding to the kinematic interaction of the rigid massless foundation
placed on the surface of the supporting medium and the second one represen-
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Fig. 7. Comparision of normalized torsional stiffness and damping coefficients for
cylindrical foundations with embedment ratios HE/R = 0.25, 0.5, 1, 2: rigorous
integral equation approach of Apsel and Luco (1987) – solid lines, local modelling of

embedment – dotted lines

ting the increases generated by the backfill. For rigid cylindrical foundations,
the second part of the stiffness functions can be expressed in the closed-form.
The accuracy of the simplified dynamic model is contained within the limits
of the strength-of-materials approach to the foundation dynamics.

Once the response of a massless rigid foundation is computed, the dynamics
of massive foundations can be studied by the methods of structural dynamics.
Then, the presented local modelling is, among others, a simple, yet rational
way to include the effect of backfill in the analysis of the dynamic response of
embedded foundations, preferred in the preliminary stage of practical design.
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Lokalne modelowanie wpływu zasypki na dynamicznie obciążane sztywne

osiowo-symetryczne fundamenty

Streszczenie

Wpływ zasypki na dynamiczną odpowiedź sztywnych osiowo-symetrycznych fun-
damentów opisano jako reakcję niezależnej warstwy. Rozwiązanie problemu interakcji
kinematycznej dane jest w postaci przyrostu zespolonej macierzy sztywności podło-
ża względem przypadku fundamentów niezagłębionych. Przyrosty sztywności otrzy-
mano z rozwiązań w dziedzinie częstości równań ruchu izotropowego jednorodnego
ośrodka z odpowiednimi przemieszczeniowymi warunkami brzegowymi i warunkami
wypromieniowania. Modelowanie przybliżone porównano z wynikami numerycznego
rozwiązania problemu w postaci brzegowego równania całkowego.
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