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A study of magnetohydrodynamic (MHD) flow with viscous dissipation and heat transfer in
an electrically conducting laminar steady viscous incompressible micropolar fluid between
two infinite uniformly stretching disks is presented. The transformed self similar nonlinear
ODEs are first linearized using a quasi linearization method and then solved by employing
a combination of a direct and an iterative method. The study may be beneficial to flow and
thermal control of polymeric processing.
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1. Introduction

The exploration in the field of flow over a stretching surface has attracted attention of the rese-
arch community due to its significant applications in different industries such as extrusion paper
production, extrusion of polymers sheet, metal and plastic industries (Altan et al., 1979; Fisher,
1976; Tadmor and Klein, 1970). The problem of fluid flow between parallel disks is also impor-
tant due to its applications in many technological and engineering processes. These applications
include semiconductor-manufacturing processes with rotating wafers, magnetic storage devices,
gas turbine engines, hydrodynamical machines and apparatus, crystal growth processes, rotating
machinery, biomechanics, geothermal, geophysical, heat and mass exchanges, computer storage
devices, viscometry, lubrication, oceanography radial diffusers, etc. Robert et al. (2010) presented
the analytical solution of axi-symmetric flow between two infinite stretching disks whereas Fang
and Zhang (2008) found the exact solution for the axi-symmetric flow between two stretchable
infinite disks. Munawar et al. (2011) studied flow of an incompressible viscous fluid between
two continuously stretching coaxial disks by employing the optimal HAM. Xinhui et al. (2012)
studied asymmetric flow and heat transfer of a viscous fluid between contracting/expanding
rotating disks by using the homotopy analysis method.

All the above cited researchers are, however, confined to the flow and heat transfer pro-
blems of classical Newtonian fluids. The Newtonian model is, however, inadequate to complete-
ly describe some modern scientific, engineering and industrial processes which involve materials
possessing an internal structure. The scope of non-Newtonian fluids has significantly increased
mainly due to their connection with applied sciences. The governing equations of motion for
non-Newtonian fluids are highly nonlinear and complicated as compared to those for Newtonian
fluids. The flow problems of non-Newtonian fluids are challenging for researchers due to their
inherent complexity. Hoyt and Fabula (1964) predicted experimentally that fluids having poly-
meric additives display a significant reduction of shear stress and polymeric concentration (see
Eringen, 1965). Deformation of such materials can be well explained by the theory of micropolar
fluids given by Eringen (1964, 1966). Micropolar fluids have applications in colloidal fluids flow,
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blood flows, dumbbell molecules or short rigid cylindrical elements, liquid crystals, lubricants,
turbulent shear flow and flow in capillaries, fluid suspensions, animal blood, fluid with bar like
elements, heat and mass exchangers, etc. The steady laminar incompressible flow of a micropolar
fluid between two parallel disks in which the lower disk is taken to be impermeable while the
upper one is permeable was discussed numerically by Ashraf et al. (2009a). The magnetohydro-
dynamics (MHD) has attracted the research community due to its novel industrial applications.
Rashidi et al. (2014) investigated velocity and temperature profiles as well as entropy genera-
tion in magnetohydrodynamic (MHD) and slip flow over a rotating porous disk with different
properties using numerical methods. Neetu (2014) found the analytical solution to magnetohy-
drodynamic flow problem of an incompressible micropolar fluid between two eccentrically disks.
MHD steady and axisymmetric flow of an incompressible viscous fluid between two radially
stretching sheets was analyzed by Hayat and Nawaz (2010). Hayat et al. (2011) examined a
time dependent magnetohydrodynamic (MHD) flow problem of a micropolar fluid between two
radially stretching infinite sheets.

The above cited researchers did not take the effects of viscous dissipation in their investi-
gations. Therefore, the aim of the present study is to investigate MHD steady viscous incom-
pressible electrically conducting micropolar fluid flow and heat transfer between two stretching
disks in the presence of a transverse magnetic field and viscous dissipation effects.

2. Problem formulation

Consider hydromagnetic steady laminar viscous flow and heat transfer of an incompressible
electrically conducting micropolar fluid between two stretchable infinite disks located at z = −L
and z = L as shown in Fig. 1. A uniform transverse magnetic field B is applied perpendicularly at
the disks. The geometry of the problem suggests that the cylindrical polar coordinate system is
most suitable for the study. Both the disks are stretched uniformly with the velocity proportional
to the r coordinate. The magnetic Reynolds number is assumed to be small, and hence the
induced magnetic field can be neglected as compared to the imposed magnetic field (Shercliff,
1965). We assume that there is no applied polarization voltage, so the electric field is zero. The
components of velocity (u, v,w) and microrotation (υ1, υ2, υ3) along the radial, transverse and
axial directions can be written respectively as

ur = ur(r, z) uθ = 0 uz = uz(r, z)

υ1 = 0 υ2 = υ2(r, z) υ3 = 0
(2.1)

Fig. 1. Physical configuration

Following the work of Eringen (1964, 1966) and in view of Eq. (2.1), the governing equations of
the problem under consideration can be written as
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where η = z/L is the similarity variable, ρ is density, p is pressure, µ is dynamic viscosity
of the fluid, κ is vortex viscosity, j is microinertia, γ is spin gradient viscosity, σe is electrical
conductivity, B0 is strength of the magnetic field. Including viscous dissipation effects, the energy
equation for the problem of flow between two stretching disks can be written as
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where T is temperature, cp is specific heat capacity and k0 is thermal conductivity of the fluid.
The boundary conditions for the problem may be written as,

ur(r,−L) = rE ur(r, L) = rE uz(r,−L) = 0 uz(r, L) = 0

ν2(r,−L) = 0 ν2(r, L) = 0 T (r,−L) = T1 T (r, L) = T2
(2.5)

where E is the parameter determining stretching strength of both the upper and lower disks,
having units of 1/t.
Partial differential Eqs. (2.3) and (2.4) can be converted into ordinary ones by using the

following similarity transformations
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where T1 and T2 are temperatures at the lower and upper disks, respectively. We see that the
velocity field given in Eq. (2.6) identically satisfies continuity Eq. (2.1), and hence represents
possible fluid motion. By using Eq. (2.6) in Eqs. (2.3) and (2.4), we get the following nonlinear
ordinary differential equations in dimensionless form
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(2.7)

where Re = (ρEL2)/µ is the stretching Reynolds number, M =
√

(σeB20)/(ρE) is the magnetic

parameter, C1 = κ/µ is the vortex viscosity parameter, C2 = j/L
2 is the microinertia density

parameter, C3 = γ/µL
2 is the spin gradient viscosity parameter, Pr = (µcp)/k0 is the Prandtl

number and Ec = (r2E2)/[cp(T1 − T2)] is the Eckert number.
Boundary conditions given in Eq. (2.7)2 also get the form

f(−1) = f(1) = 0 f ′(−1) = −2 f ′(1) = −2

g(−1) = 0 g(1) = 0 θ(−1) = 1 θ(1) = 0
(2.8)
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3. Computational procedure

In this paper, we discuss the approach based on quasi-linearization of nonlinear ODEs.

3.1. Quasi-linearization

We use quasi-linearization to construct sequences of vectors {f (k)}, {g(k)}, and {θ(k)}, which
converge to the numerical solutions to Eqs. (2.7), respectively. To construct {f (k)}, we linearize
Eq. (2.7)1 by retaining only the first order terms as follows:
We set

G(f, f ′, f ′′, f ′′′, f ′′′′) ≡ (1 + C1)f
′′′′ − C1g

′′ − Reff ′′′ − ReM2f ′′

and
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which simplifies to

(1 +C1)f
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′′(k) −Ref ′′′(k)f (k)

(3.1)

Now Eq. (3.1) gives a system of linear differential equations with fk being the numerical solution
vector of the kth equation. To solve the linear ODEs, we replace the derivatives with their central
difference approximations, giving rise to the sequence {f (k)} generated by the following linear
system

Bf (k+1) = C with B ≡ Bn×n(f
(k)) and C ≡ Cn×1(f

(k)) (3.2)

where n is the number of grid points. On the other hand, Eqs. (2.7)2,3 are linear in g and θ
respectively and, therefore, in order to generate the sequences {g(k)} and {θ(k)}, we write
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Importantly, f (k+1) is considered to be known in the above equation and its derivatives are
approximated by the central differences.

We outline the computational procedure as follows:

• Provide the initial guess f (0), g(0) and θ(0), satisfying the boundary conditions given in
Eq. (2.8)

• Solve the linear system given by Eq. (3.2) to find f (1)

• Use f (1) to solve the linear system arising from the FD discritization of Eqs. (3.3), to get
g(1) and θ(1)

• Take f (1), g(1) and θ(1) as the new initial guesses and repeat the procedure to generate
the sequences {f (k)}, {g(k)} and {θ(k)} which, respectively, converge to f , g and θ (the
numerical solutions to Eqs. (2.7)
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• The three sequences are generated until

max
{

‖f (k+1) − f (k)‖L∞ , ‖g
(k+1) − g(k)‖L∞ , ‖θ

(k+1) − θ(k)‖L∞

}

< 10−6

It is important to note that the coefficient matrix B in Eq. (3.2) will be pentadiagonal and
not diagonally dominant, and hence the iterative method (like SOR) may fail or work very
poorly. Therefore, some direct method like LU factorization or Gaussian elimination with full
pivoting (to ensure stability) may be employed. On the other hand, Eqs. (3.3) will give a rise to
the diagonally dominant algebraic system when discretized using the central differences, which
allows us to use the SOR method. Lastly, we may also improve the order of accuracy of the
solution by using the polynomial extrapolation scheme.

4. Results and discussion

In this Section, the results are presented in tabular and graphical forms together with their
discussion and interpretations. Our objective is to develop a better understanding of the effects
of the micropolar structure of fluids on flow and heat transfer characteristics. The parameters of
the study are the Reynolds number Re, the magnetic parameter M , the micropolar parameters
C1, C2, and C3, the Eckert number Ec and the Prandtl number Pr. The physical quantities of
our interest are the shear stress, the couple stress and the heat transfer rate at the disks which
are, respectively, proportional to f ′(−1), g′(−1), θ′(−1) and θ′(1). It is important to note that
f ′′(−1) = f ′′(1), g′(−1) = g′(1) and θ′(−1) = θ′(1) for Ec = 0 due to symmetry of the problem.
But in the case when Ec 6= 0, the symmetry of temperature profiles no longer exists, and thus
θ′(−1) 6= θ′(1) as C3 affects the temperature distribution only (clear from decoupled Eqs. (2.7).
Therefore, in the presence of viscous dissipation, we will consider f ′′(−1), g′(−1), θ′(−1) and θ′(1)
as well. We shall study the effects of the parameters described above on f ′′(−1), g′(−1), θ′(−1)
and θ′(1) as well as on the velocity profiles f(η), f ′(η), the microrotation profile g(η) and the
temperature profile θ(η).

The sets of values of the dimensionless micropolar parameters C1, C2 and C3 used in the
present work are given in Table 1. In order to establish the validity of our numerical computations
and to improve the order of accuracy of the solutions, numerical values of radial velocity f ′(η)
are computed for three grid sizes h, h/2 and h/4 and then Richardson extrapolation is used
as presented in Table 2. It also shows the convergence of our numerical results as the step size
decreases. Table 3 shows that the shear and couple stresses increase, where the heat transfer rate
increases at the upper disk and decreases at the lower disk as the stretching Reynolds number
increases. The increased stretching rate of the disks forces the fluid to move rapidly towards the
disks, thus increasing both the shear and couple stresses. Moreover, the fluid is carrying away
the heat from the flow region, resulting in an increase in the temperature difference and, hence,
the heat transfer rate.

Table 1. Five cases of values of micropolar parameters C1, C2 and C3

Case No. C1 C2 C3

1(Newtonian) 0 0 0

2 0.5 0.1 0.2

3 1 0.3 0.4

4 3 0.5 0.6

5 5 0.7 0.8
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Table 2. Dimensionless radial velocity f ′(η) on three grid sizes and extrapolated values for
Re = 15, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

f ′(η)

η
1st grid
(h = 0.02)

2nd grid
(h = 0.01)

3rd grid
(h = 0.005)

Extrapolated
values

-1 -1.995047 -1.998750 -1.999686 -1.999998

-0.6 0.092943 0.093467 0.093599 0.093642

-0.2 0.606570 0.607070 0.607195 0.607237

0 0.652236 0.652728 0.652851 0.652892

0.2 0.606570 0.607070 0.607195 0.607237

0.6 0.092943 0.093467 0.093599 0.093642

1 -1.995047 -1.998750 -1.999686 -1.999998

Table 3. The effect of the stretching Reynolds number on the shear and couple stresses as well
as the heat transfer rate with M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

R f ′′(−1) g′(−1) θ′(−1) −θ′(1)

0 5.245037 5.710461 0.556018 1.556018

5 6.656467 6.023234 0.515410 2.005796

10 7.898473 6.213057 0.453647 2.412162

15 8.998815 6.329128 0.385683 2.777904

20 9.986100 6.399389 0.317821 3.110079

Table 4 shows that the magnetic parameter increases both the shear and couple stresses
while reducing the heat transfer rate at the disks. From the mechanical point of view, the
magnetic field exerts a friction like force, called the Lorentz force, which tends to drag the fluid

Table 4. The effect of the magnetic parameter on the shear and couple stresses as well as the
heat transfer rate with Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5

M f ′′(−1) g′(−1) θ′(−1) −θ′(1)

0 6.270359 5.982139 0.798720 3.468070

0.4 6.509053 6.014097 0.721225 3.365199

0.8 7.172924 6.101533 0.558495 3.132747

1.2 8.142989 6.225003 0.427947 2.903393

1.6 9.300534 6.364672 0.382388 2.746286

towards the disks. This not only results in increasing the shear stress at the disks but also
causes greater spinning of the micro fluid particles, and hence increases the couple stress as
well. Furthermore, the frictional force tends to raise the fluid temperature and thus decreases
the temperature difference between the fluid and the disks. Therefore, the heat transfer rate,
which is directly proportional to the temperature difference, also decreases. The influence of the
micropolar parameters C1, C2 and C3 on the shear and couple stresses is given in Table 5. The
first case corresponds to the Newtonian fluid whereas the remaining ones are taken arbitrarily
to investigate their influence on the flow as chosen in the literature (Ashraf and Batool, 2013;
Ali et al., 2014, 2009b). It may be concluded that the micropolar structure of the fluid tends to
decrease the shear stress, which is in accordance with the experimental prediction of Hoyt and
Fabula (1964) that the micro fluid particles cause significant reduction in the shear stress near a
rigid body. Moreover, the particles also cause microrotation in the fluid, which is responsible for
the couple stress at the disks, as shown in Table 5. It is also clear from the table that the role
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Table 5. The effect of micropolar parameters on the shear and couple stresses as well as the
heat transfer rate with Re = 1, M = 1.5, Pr = 2, Ec = 0.2

Cases f ′′(−1) g′(−1) θ′(−1) −θ′(1)

1 7.014810 0.000000 0.697019 1.960602

2 6.473276 3.912051 0.698798 1.973223

3 6.190115 3.896368 0.704141 1.984454

4 5.478203 6.449680 0.729788 2.024384

5 5.183083 7.439771 0.745661 2.046135

of microfluid particles in increasing the heat transfer rate is not as pronounced as compared to
its effect on the shear and couple stresses. Table 6 shows that the viscous dissipation may cause
thermal reversal at the lower disk, thus decreasing the temperature of the fluid which, in turn,
increases the temperature difference between the fluid and the upper disk, and hence the heat
transfer rate at the upper disk.

Table 6. The effect of viscous dissipation on the heat transfer rate with Re = 20, M = 1.5,
C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.3

Ec −θ′(−1) −θ′(1)

0.0 0.844799 0.844799

0.2 0.608888 1.080710

0.4 0.372977 1.316622

0.6 0.137066 1.552533

0.8 -0.098845 1.788444

Now we present a graphical interpretation of our results. Streamlines for the present problem
are given in Fig. 2. It is obvious that the streamlines near the walls are very close to each other
showing larger gradients of the stream function which, in turn, predicts a greater fluid velocity

Fig. 2. Variation of streamlines for Re = 5, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6

closer to the disks. In order to further validate the presented solution method, we consider the
case when the distance between the disks is infinite and the upper disk is at rest. In this situation,
the problem reduces to the micropolar fluid flow over a stretchable disk which was studied by
Ashraf and Batool (2013). Figure 3 shows an excellent comparison of our numerical results with
those of Ashraf and Batool (2013).
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Fig. 3. Comparison with the results by Ashraf and Batool (2013)

Figures 4-6 show the influence of the magnetic parameter M for typical values of the stret-
ching Reynolds number, the micropolar parameters, the Eckert number and the Prandtl number.
The magnetic parameter decreases the velocity as well as the microrotation distribution across
the disks (Fig. 4 and 5). On the other hand, the external magnetic field decreases the thermal

Fig. 4. Variation of (a) axial, (b) radial velocity for Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7,
Ec = 0.5 and various M

Fig. 5. Variation of microrotation for Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5 and
various M
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reversal by decreasing the temperature distribution across the disks, whether we consider the
viscous dissipation effects or not, as shown in Fig. 6a.

Fig. 6. Variation of temperature for (a) Re = 15, C1 = 3, C2 = 0.5, C3 = 0.6, Pr = 0.7, Ec = 0.5 and
various M , (b) Re = 15, M = 1.5, C1 = 3, C2 = 0.5, C3 = 0.6, Ec = 0.4 and various Pr

We have noted that the effect of Re on the velocity and microrotation distribution is similar
to that of M . The Reynolds number always tends to flatten the temperature profiles almost in
the middle of the two disks, thus developing an equi-temperature region. On the other hand, it
discourages thermal reversal near the lower disk, for the case Ec 6= 0.
The effect of the micropolar structure of the fluid on the velocity, microrotation and tempe-

rature profiles is opposite to that of the magnetic field. Thus, the external magnetic field tends
to balance the effect of micropolar parameters. The viscous dissipation tends to eliminate the
symmetry of temperature profiles by raising them near the lower disks, thus causing the thermal
reversal. Viscous dissipation plays a vital role like an internal heat generation source in the ener-
gy transfer, which depends on the temperature distributions and heat transfer rates. This heat
source is caused by the shearing of fluid layers. The merit of the effect of the viscous dissipation
depends on whether the disks walls are hot or cold. Finally, the Prandtl number increases the
thermal reversal by increasing the temperature distribution across the disks in the presence of
viscous dissipation (Fig. 6b).

Table 7. The effect of the Prandtl number on the heat transfer rate with Re = 20, M = 1,
C1 = 2, C2 = 0.2, C3 = 0.3

Pr
Ec = 0.0 Ec = 0.3

−θ′(−1) −θ′(1) −θ′(−1) −θ′(1)

0.0 0.500000 0.500000 0.500000 0.500000

0.2 0.719813 0.719813 0.494006 0.945619

0.4 0.976928 0.976928 0.482008 1.471849

0.6 1.254718 1.254718 0.426965 2.082470

0.8 1.536267 1.536267 0.278411 2.794123

On comparison of our results with those given by Khan et al. (2015) (where the classical
Newtonian fluid has been taken into consideration between the two stretchable disks), we notice
that the role of the external magnetic field and the disk stretching remains the same, even when
the micropolar fluid is introduced in place of the classical Newtonian fluid. That is, both the
factors increase the shear stresses at the disks. Micropolar fluids however show a remarkable
reduction in the shear stress but introduce couple stresses at the disks due to the spinning of
the fluid particles.
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5. Conclusions

In this paper, we numerically study how the governing parameters affect the flow and heat
transfer characteristics of a steady laminar incompressible electrically conducting micropolar
fluid between two stretchable infinite disks. The following conclusions can be drawn.

Micropolar fluids exhibit significant reduction in the shear stress at the disks compared to
Newtonian ones, which may be beneficial for many industrial processes (e.g. in flow and thermal
control of polymeric processing). The external magnetic field is responsible for a remarkable
rise in both the shear and couple stresses while reduction the heat transfer rate at the two
disks. We, therefore, conclude that the external magnetic field may serve as a controlling agent
to neutralize the effects of the micropolar structure of the fluid. Thus, in experimental setups
involving micropolar flows caused by moving disks, the possibility of interference of the external
magnetic field should be eliminated in order to obtain accurate and reliable data.
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