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The vast qualitative and quantitative analysis of the characteristics of a
spherical stress wave expanding in a linear-elastic medium was made. The
wave was generated by pressure p0 = const suddenly created in a spherical
cavity of initial radius r0. From the analytical form of the solution to the
problem it results that displacement and stresses decrease approximately in
inverse proportion to the square and cube of the distance from cavity cen-
ter. It was found that the cavity surface and successive spherical sections of
the compressible medium move in the course of time with damped vibrating
motion around their static positions. The remaining characteristics of the
wave behave analogously. Material compressibility, represented by Poisson’s
ratio ν in this paper, has the main influence on vibration damping. The
increase of the parameter ν over 0.4 causes an intense decrease of the dam-
ping, and in the limiting case ν = 0.5, i.e. in the incompressible material
the damping vanishes completely. The incompressible medium vibrates like
a conservative mechanical system of one degree of freedom.

Key words: expanding spherical stress wave, isotropic elastic medium, dyna-
mic load

1. Introduction

The problem of propagation of the spherical stress wave expanding in a com-
pressible isotropic elastic medium was solved in Włodarczyk and Zielenkiewicz
(2009). Linear elasticity theory was used (Achenbach, 1975; Nowacki, 1970),
i.e.
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u – radial displacement of elements of the medium
v – radial velocity of the elements
σr – radial stress
σϕ = σθ – circumferential (tangential) stresses
εr – radial strain
εϕ = εθ – circumferential (tangential) strains
ρ0, ρ – medium densities: initial and disturbed
E – Young’s modulus
ν – Poisson’s ratio
r, t – Lagrangian coordinates.

The wave was generated by pressure p(t) dynamically created inside the
spherical cavity of initial radius r0 (Fig. 1).

Fig. 1. A scheme of the boundary value problem

All wave parameters were determined with the use of a scalar potential
ϕ(x) and its derivatives, namely
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where a denotes the velocity of elastic stress wave propagation
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The apostrophes at the symbol ϕ denote derivatives of this function with
respect to its argument.
The potential ϕ for an arbitrary pressure p(t) has the following form
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For a constant pressure suddenly created in the spherical cavity, i.e.
p(t) ≡ p0 = const , from expression (1.4), we obtain
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The static parameters of the problem, generated by the pressure p0 stati-
cally created on the inside of the cavity, can be determined by the following
formulae
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In order to simplify the quantitative analysis of the particular parameters
of the expanding stress wave, the following dimensionless quantities have been
introduced
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The dimensionless independent variables ξ and η are contained within the
following intervals

1 ¬ ξ ¬ ∞ η 
√

(1 + ν)(1− 2ν)
1− ν (ξ − 1) (1.10)

Using expressions (1.2) and (1.6), the parameters of the expanding stress
wave generated in the linear elastic medium by pressure p0 = const suddenly
created on the inside of the spherical cavity, can be found with the use of
dimensionless quantities (1.9) by means of the following expressions
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According to (1.8) and (1.9), the dimensionless values of static parameters
can be expressed with the following formulae
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The closed analytical formulae presented above were derived in Włodar-
czyk and Zielenkiewicz (2009). They are the basis of quantitative analysis of
parameters of the spherical stress wave expanding in the linear isotropic elastic
medium presented below.

From the introductory analysis of the quoted formulae, it follows that
the dynamic values of mechanical parameters of the expanding stress wave
generated by constant pressure p0 suddenly created in the spherical cavity in
the linear elastic medium, intensively decrease in space with an increase of
distance from the system center. On the other hand, in particular spherical
sections of the medium, the parameters oscillate around their static values. In
a compressible medium, these oscillations decay in the course of time. This
results from the spherical divergence of the expanding stress wave. The decay
of oscillations is caused by the transport of mechanical energy by the stress
wave propagating to successively disturbed regions of the medium.

Now we will perform the detailed analysis of wave parameters. The medium
displacement will be considered first.

2. Analysis of the displacement for an infinite pressure impulse of

the intensity p0 = const

According to the general remarks presented above, the maximum displacement
values represented in the dimensionless form by function U(ξ, η) occur on the
cavity surface, i.e. for ξ = 1. In this case, expression (1.11)1 can be reduced
to the form
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From expression (2.1), it follows that function U(1, η) oscillates with dam-
ped motion versus dimensionless time η, and has relative extrema. The abso-
lute maximum occurs at η = ηe determined by the first positive solution to
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the trigonometric equation, namely
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As can be directly seen from relations (2.1) and (2.2), for every value of
Poisson’s ratio ν, the corresponding maximum displacement of cavity surface
Umax = U(1, ηe) can be found. Therefore, alike as in oscillating mechanical
systems of one degree of freedom, the dynamic coefficient of loading characte-
rising an expanding stress wave can be introduced, namely

Ψ(ν) =
U(1, ηe)

Us
(2.3)

Values of the coefficient Ψ(ν) for selected Poisson’s ratios ν, are presented in
Table 1 and their course versus ν is depicted in Fig. 2.

Table 1. Values of the dynamic coefficient of loading, Ψ(ν)

ν 0.1 0.2 0.3 0.4 0.49 0.5

ηe 1.67 1.79 1.92 2.11 2.49 2.72

U(1, ηe) 0.672 0.746 0.832 0.950 1.242 1.500

Us 0.55 0.60 0.65 0.70 0.745 0.75

Ψ(ν) 1.222 1.244 1.280 1.357 1.667 2.000

As can be seen, the maximum effect of the dynamic load occurs in the in-
compressible medium, i.e. for ν = 0.5. The medium compressibility intensively
cushions the effect of dynamic load, which can be seen in Fig. 2.

Fig. 2. Variation of coefficient Ψ(ν) versus Poisson’s ratio ν
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The exemplary variations of relative displacement (U/P ) of the cavity
surface (ξ = 1) versus η = a0t/r0 for several values of Poisson’s ratio ν, are
depicted in Fig. 3. As it turns out, the parameter ν, which is the measure of
medium compressibility, has the significant influence on the course of quantity
U(1, η)/P versus η.

Fig. 3. Variation of relative displacement (U/P ) of cavity surface (ξ = 1) versus
dimensionless time η for selected values of Poisson’s ratio ν

We can mark out two ranges of ν in which the vibration of cavity surface
is damped in a different manner. Thus, Poisson’s ratio in the range below
about 0.4 (media compressibility increase) causes an intense decay of the cavity
surface oscillations. For this values of ν, the displacement of cavity surface
approaches its static value, i.e. (Us/P ) = (1 + ν)/2 already in the first cycle
of vibration (Fig. 3). On the other hand, in the range 0.4 < ν < 0.5, that
is in quasi-compressible media, the damping of vibrations is very low. In the
limiting case, ν = 0.5, i.e. in the incompressible material the damping vanishes
completely and the cavity surface oscillates harmonically around its static
position with the constant amplitude (U/P ) = 0.75 (Fig. 3).

Note the abnormal behaviour of the media in the range 0.4 < ν ¬ 0.5.
In this case, insignificant increments ∆ν cause a considerable increase in the
vibration amplitude of the cavity surface (Fig. 4). For example, for the incre-
ment ∆ν = 0.5 − 0.4 = 0.1, the maximum relative displacement increment is
(∆U/P ) = 1.5− 0.7 = 0.8.
The above-presented graphic analysis of the ratio U(1, η)/P concerns the

movement of spherical cavity surface (ξ = 1). The particular spherical sections
for ξ > 1 oscillate analogously with adequately smaller values resulting from
the spatial divergence of the stress wave (Fig. 5). From this graph, it directly
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Fig. 4. Influence of parameter ν on variation of function U(1, η)/P

Fig. 5. Spatial graph of function U(ξ, η)/P for ν = 0.3

follows that the maximum displacements of particular sections for ν < 0.5
occur in the neighbourhood of the expanding wave front, i.e. near the line

ξ − 1 =
√

1− ν
(1 + ν)(1− 2ν)η

3. Analysis of the stress field for an infinite pressure impulse of

the intensity p0 = const

In real media (metals, rocks and the like), the limit of elasticity is always
finite. The solution obtained for a studied problem is valid only in the elastic
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range. From this fact results the limitation of the maximum value of pressure
created inside the cavity, i.e. p0 ¬ pmax. If p0 > pmax, then in the direct
neighbourhood of cavity surface the elastoplastic strains occur in elastoplastic
metals or cracks in brittle media (cast iron, rocks). In this range of pressure,
the solution quoted in this paper loses its physical sense. Bearing in mind this
limitation, we will perform a thorough analysis of the stress field in the studied
medium.

As it is known, plastic strains in metals are caused by the components of
stress deviator. Therefore, it can be assumed that the condition of material
plastic flow depends only on the difference of stresses σϕ − σr. Indeed, the
expression (σϕ − σr)/2 determines the maximum value of tangential stress.
So, according to Tresca’s plasticity condition, and in the case of spherical
symmetry – also Huber-Mises-Hencky’s condition, we have

σz = σϕ − σr = σ0 (3.1)

where σ0 is the dynamic yield point obtained in the tension test of a given
material.

According to the above-mentioned remarks, in further considerations we
will concentrate the main effort on the analysis of relative reduced stress, i.e.
Sz = σz/p0 = (σϕ − σr)/p0.
As was mentioned, function Sz(ξ, η) reaches its maximum on the cavity

surface, i.e. for ξ = 1. According to expressions (1.12) and (1.13) for ξ = 1,
function Sz(ξ, η) can be reduced to the form

Sz(1, η) =
3

2
+
1 + ν

2(1− ν)
[√
1− 2ν sin η√

1− ν2
−cos η√

1− ν2
]

exp
(

−
√

1− 2ν
1− ν2 η

)

(3.2)

From comparison of expressions (2.1) and (3.2), it follows that functions
U(1, η) and Sz(1, η) have analogous forms, so Sz(1, η) reaches its absolute
maximum for η = ηe, too. The value of ηe is determined by trigonometric
equation (2.2). This means that despite rapid pressure rise in the spherical
cavity, the reduced stress Sz(1, η) monotonically increases to its maximum
value and reaches it after the finite time te = (r0/a0)ηe 6= 0. As can be seen,
some ”inertia” occurs in the increasing of stress Sz(1, η) to its maximum value
in comparison with the pressure p0 (Fig. 6).

The variation of quantity Sz(1, η) versus η for selected values of Pois-
son’s ratio ν is shown in Fig. 6. From comparison of graphs depicted in Fig. 3
and Fig. 6, it follows that the courses of functions U(1, η) and Sz(1, η) are
similar. Analogously to U(1, η), the significant influence of medium compres-
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Fig. 6. Variation of relative reduced stress Sz(1, η) versus dimensionless time η for
selected values of Poisson’s ratio ν; (1) Sz = 1.64, ηe = 1.67,

(2) Sz = 1.68, ηe = 1.79, (3) Sz = 1.76, ηe = 1.92, (4) Sz = 1.92, ηe = 2.11,
(5) Sz = 2.47, ηe = 2.49, (6) Sz = 3.00, ηe = 2.72, Szs – static value

sibility (ν parameter) on the pulsating variation of Sz(1, η) versus η is no-
teworthy. In the compressible media for ν < 0.4, the oscillation of function
Sz(1, η) is intensively damped to its static value Szs = 1.5. For example, for
ν < 0.3 already after time t = 4r0/a0 we have Sz(1.4) ≈ Szs = 1.5. On the
contrary, for ν = 0.5, i.e. in the incompressible medium, the damping vanishes
completely and stress Sz(1, η) harmonically pulsates around its static value
Szs = 1.5 with a constant amplitude equal to 1.5. The abnormal influence
of ν on the course of function Sz(1, η) is depicted spatially in Fig. 7.

Fig. 7. Influence of parameter ν on variation of function Sz(1, η)
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In turn, the variation of stress Sz(ξ, ηi) versus ξ for three selected values
of η and ν = 0.3 is shown in Fig. 8. The intense decrease of stress Sz with an
increase in the distance from cavity center is apparent.

Fig. 8. Variation of relative reduced stress Sz(ξ, η) versus dimensionless radius ξ for
three selected values of dimensionless time η and for ν = 0.3; Szs – static value

Full spatial graphs of function Sz(ξ, η) for ν = 0.3 and ν = 0.49 are
depicted in Fig. 9 and Fig. 10. The significant influence of ν on the values of
stress Sz(ξ, η) is noticeable there.

Fig. 9. Spatial graph of function Sz(ξ, η) for ν = 0.3

From the analysis of the variations of stress Sz, it results that in the direct
neighbourhood of cavity surface, with a pressure p0 high enough, the medium
yield point will be exceeded. In this range, the solution described in this paper
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Fig. 10. Spatial graph of function Sz(ξ, η) for ν = 0.49

loses its physical sense. The maximum pressure by which the dynamic yield
point is not exceeded in the medium layer directly surrounding the cavity can
be determined from the following expression

pmax =
σ0

Sz(1, ηe)
or

pmax
σ0
=

1

Sz(1, ηe)
(3.3)

The values of pmax/σ0 ratio for selected values of parameter ν, are pre-
sented in Table 2.

Table 2. Values of pmax/σ0 ratio for selected ν

ν 0.1 0.2 0.3 0.4 0.49 0.5

ηe 1.67 1.79 1.92 2.11 2.49 2.72

Sz(1, ηe) 1.64 1.68 1.76 1.92 2.47 3.00

pmax/σ0 0.61 0.60 0.57 0.52 0.40 0.33

The variation of relative circumferential stress Sϕ(1, η) = σϕ/p0 on the
cavity surface versus η for selected values of the parameter ν is shown in
Fig. 11. The courses are analogous to function Sz(1, η) (Fig. 6). Note the fact
that in the initial period of cavity expansion in the compressible medium
(ν < 0.5) the stress Sϕ(1, η) is negative. The negative value of stress Sϕ
propagates at the front of the wave and in its direct neighbourhood, which
can be seen in Fig. 12. It is the dynamic effect of inertial action of the medium
in the direct neighbourhood of strong discontinuity wave front.
The course of relative radial stress Sr(ξ, η) versus η for selected values

of ξ and ν = 0.3 is presented in Fig. 13. Stress Sr(ξ, η) reaches its maximum
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Fig. 11. Variation of relative circumferential stress Sϕ(1, η) versus dimensionless
time η for selected values of Poisson’s ratio ν

Fig. 12. Variation of relative circumferential stress Sϕ(ξ, η) versus dimensionless
time η for selected values of dimensionless radius for ξ = const and ν = 0.3

absolute values on the wave front. This value intensively decreases with the
increase of the distance from cavity center. Note the fact that in the medium
sections sufficiently distant from the cavity surface, behind the front of wave,
regions occur in which the medium is radially stretched (Sr(ξ, η) > 0). It is
the result of vibrating movement of the compressible medium.

At the end of the presented analysis, it can be stated that for the entire
range of the parameter ν the material density varies insignificantly (Fig. 14).
The maximum increments ∆R do not exceed a few tens per cent.
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Fig. 13. Variation of relative radial stress Sr(ξ, η) versus dimensionless time η for
selected values of dimensionless radius for ξ = const and ν = 0.3

Fig. 14. Variation of relative medium density R(1, η) versus dimensionless time η
for ξ = 1 and selected values of Poisson’s ratio ν

4. Final conclusions

From the analysis of the studied problem, the following conclusions can be
drawn:

• From the form of the obtained analytical solution, it results that displa-
cements and stresses decrease approximately in inverse proportion to the
square and cube of the distance from the cavity center. Therefore, the
maximum absolute values of stress wave parameters occur on the cavity
surface. It is the result of the spherical divergence of the expanding wave.



776 E. Włodarczyk, M. Zielenkiewicz

• The cavity surface and successive spherical sections of the compressi-
ble medium move in the course of time with damped vibrating motion
around their static positions caused by the pressure p0 created statical-
ly inside the cavity. The remaining characteristics of the wave behave
analogously.

• Material compressibility, represented in this paper by Poisson’s ratio ν,
has the main influence on the vibration damping. Poisson’s ratio in the
range below about 0.4 (media compressibility increase) causes an intense
decay of the wave oscillations. For such values of ν, the wave parame-
ters approach their static values already in the first cycle of vibration
(Fig. 3 and Fig. 6). On the other hand, in the range 0.4 < ν < 0.5
(quasi-compressible media) the damping of vibrations is very low. In the
limiting case ν = 0.5, i.e. in the incompressible material, the damping
vanishes completely and the cavity surface pulsates harmonically around
its static position with the constant amplitude (U/P ) = 0.75 (Fig. 3).

• The velocity of propagating spherical stress wave in a compressible line-
arly elastic medium is an increasing function of Poisson’s ratio ν

a =

√

(1− ν)E
(1 + ν)(1− 2ν)ρ0

This velocity determines the rate of energy transfer to successive layers
of the medium from the loaded cavity surface. In the limiting case, the
medium becomes incompressible and vibrates like a conservative mecha-
nical system with one degree of freedom and the natural frequency

ω0 =
2

r0

√

E

3ρ0

Note that the frequency varies in inverse proportion to the radius of
cavity.

• In the incompressible medium (ν = 0.5), the parameters of the problem
are determined by the following formulae

U(ξ, η) =
3

4
P
1

ξ2

(

1− cos 2√
3
η
)

V (ξ, η) =

√
3

2
P
1

ξ2
sin
2√
3
η

εr(ξ, η) = −
3

2
P
1

ξ3

(

1− cos 2√
3
η
)



Analysis of the parameters of a spherical stress wave... 777

εϕ(ξ, η) =
3

4
P
1

ξ3

(

1− cos 2√
3
η
)

R(ξ, η) = 1

Sr(ξ, η) = −
1

ξ3

[

1 + (ξ2 − 1) cos 2√
3
η
]

Sϕ(ξ, η) =
1

2ξ3

[

1− (2ξ2 + 1) cos 2√
3
η
]

Sz(ξ, η) = Sϕ(ξ, η)− Sr(ξ, η) =
3

2ξ3

(

1− cos 2√
3
η
)

• The circumferential stress Sϕ(1, η) on the cavity surface during its move-
ment increases from the initial negative value. From this it follows that
the maximum value of reduced stress Sz max depends on the pressure
pulse duration. We will consider this problem in a separate paper.

• The results of analyses presented in this paper can be used, among others
to investigate spherical ballistic casings. In addition, from our point of
view, the results of this analysis are a modest contribution of knowledge
to the theory of stress waves propagation in elastic media.
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Analiza parametrów kulistej fali naprężenia ekspandującej w liniowym

sprężystym ośrodku izotropowym

Streszczenie

Dokonano obszernej jakościowej i ilościowej analizy charakterystyk ekspandującej
kulistej fali naprężenia w liniowym sprężystym ośrodku izotropowym. Falę wygene-
rowano nagle wytworzonym w kulistej kawernie o początkowym promieniu r0 sta-
łym ciśnieniem p0 = const . Z postaci analitycznego rozwiązania problemu wynika,
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że przemieszczenie i naprężenia maleją w przybliżeniu odwrotnie proporcjonalnie do
kwadratu i sześcianu odległości od centrum kawerny. Stwierdzono, że powierzchnia ka-
werny i kolejne przekroje sferyczne ośrodka ściśliwego przemieszczają się z upływem
czasu tłumionym ruchem drgającym wokół przemieszczenia statycznego. Podobnie za-
chowują się pozostałe charakterystyki fali. Na tłumienie drgań decydujący wpływ ma
ściśliwość ośrodka, reprezentowana w pracy przez liczbę Poissona ν. Wzrost parame-
tru ν ponad 0.4 powoduje gwałtowny spadek intensywności tłumienia, a w granicznym
przypadku dla ν = 0.5, tj. w ośrodku nieściśliwym, tłumienie całkowicie zanika. Ośro-
dek nieściśliwy drga, jak zachowawczy układ mechaniczny o jednym stopniu swobody.
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