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Imperfections are modeled using actual values measured in situ. The
method proposed in the paper is based on the concept of developing
the imperfections in series of eigenmodes, using a limited number of
most critical eigenmodes. Error minimization of this representation is
performed. The method is applied to the nonlinear stability analysis of
structures made of steel thin-walled cold-formed sigma profiles. FEM
with shell elements and the Riks method are used. Numerical examples
illustrate the influence of initial imperfections on post buckling behavior
of structures.
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1. Introduction

In the case of cold-formed steel members, initial geometric imperfections can
significantly influence stability response, because usually a local buckling appe-
ars closed to the global one. There are several studies which consider different
types of geometric imperfections and ways of their introduction into a nume-
rical model. One way of taking initial geometric imperfections into account,
which dominates in design codes, is to induce them by applying an appropriate
pattern of additional loading. However, it works well only for the global type of
imperfections, e.g. in the case of multistory frames with columns exhibiting de-
viations from the vertical direction. In the case of local sectional imperfections,
it seems reasonable to introduce perturbed geometry by measured values of
imperfections. However, this procedure can be tedious when the finite element
method is used. Moreover, it is not a general procedure since it can be applied
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only to those members for which the imperfections have been measured. An
alternative method of introduction of imperfections, widely discussed in the li-
terature, is stochastic generation of the imperfection signal (Laubscher, 2004).
Another approach to the stability analysis of imperfect structures is based
on the concept of sensitivity analysis. The potential of sensitivity analysis of
thin walled beams and columns accounting for nonlinear effects was discussed
in Chróścielewski et al. (2006), Szymczak (2006). However, keeping in mind
that eigenmodes represent the most dangerous shapes of imperfections, the
introduction of imperfections in the form of eigenmodes (Dubina et al., 2001)
can be considered as a classical approach. It would be reasonable to treat the
perturbation in the geometry as a linear superposition of buckling modes with
scale factors computed from measurements (Fang and Pekoz, 2001; Garstecki
et al., 2002; Lechner and Pircher, 2005). Therefore, proper modeling of imper-
fections, which correspond with real imperfections, can play an important role
in structural analysis and design.

In the paper, the problem of modeling the initial geometrical imperfec-
tions basing on actual imperfections measured in situ is discussed and the
methods presented in Garstecki et al. (2002) and Kąkol et al. (2002) are fur-
ther developed. The present approach is based on the concept of developing
the imperfections in series of eigenmodes computed from a linear stability pro-
blem. A limited number of most critical eigenmodes is used. The coefficients
in the series are evaluated using actual imperfections (Garstecki et al., 2002),
accounting for Gauss probability factors and implementing error minimization
in the approximation. We start from simple examples illustrating the method
and demonstrating its accuracy. Next, the method is applied to stability ana-
lysis of structures made of steel thin-walled cold-formed sigma profiles. The
Riks method is used for solution of the nonlinear stability problem.

2. Method of modeling the imperfection

Notation

N – total number of degrees of freedom in FEM model
r – consecutive number of displacement in FEM model, r = 1, . . . , N
n – total number of eigenmodes in approximation
i – consecutive number of eigenmode, i = 1, . . . , n
m – total number of measurements of imperfections
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k – consecutive number of measurement of imperfection, k = 1, . . . ,m
u – N -dimensional displacement vector of actual imperfections (unk-

nown)
ui – N -dimensional displacement vector representing i-th eigenmode
α – n-dimensional vector of scale factors
v – m-dimensional displacement vector of measured imperfections
vi – m-dimensional displacement vector similar to v but extracted

from ui

The initial geometric imperfections are introduced by perturbations in the
”perfect” geometry. In a continuous formulation, the imperfection can be writ-
ten in the form

ũ(αi, x) =
n∑

i=1

αiui(x) (2.1)

where x is the coordinate vector, ui(x) are test functions and αi are scale
factors. Assume the test functions in the form of buckling modes obtained
from the linear stability problem and associated with n lowest eigenvalues.
Since we apply FEM, the buckling modes ui(x) and similarly ũ(x) have the
form of N -dimensional displacement vectors ui, where N is the number of
DOF in the FEM model. In FEM ũ,ui ∈ R

N , hence Eq. (2.1) takes the form

ũ = [ũr] =
n∑

i=1

αiui =
[ n∑

i=1

αiUir
]⊤
= U⊤α (2.2)

where Uir denotes the displacement r of eigenmode i. Hence the dimensions
of U are n × N . Note, that in the approximation (Eqs. (2.1) and (2.2)) we
used only n eigenvectors, where n ≪ N . Usually, it is recommended to use
those ones, which are associated with the smallest eigenvalues. However, the
assumed set of eigenvalues and eigenmodes must contain those local and global
modes which are similar to the shape of real imperfections. Otherwise, linear
combinations of the limited number of eigenmodes will not be able to capture
the real imperfection pattern.

Our task is to find the factors αi which minimize the error

u− ũ = u−U⊤α→ min
α

u, ũ ∈ RN (2.3)

However, we do not know the real imperfections u in the space RN , becau-
se the measurements of initial geometry in situ provide only m displacements
representing the imperfections. Usually, m≪ N and m > n. Denote the con-
secutive displacements specifying the measured imperfection by vk and the
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imperfection displacement vector by v = [vk], v ∈ R
m. The error, Eq. (2.3),

can be evaluated using these m displacements, only.
Let the FEM mesh and the nodal displacements are introduced to stabi-

lity analysis in such a form that the measured imperfection displacements vk
coincide with respective nodal displacements ur, and hence there is a unique
mapping r → k

r → k (2.4)

Using Eq. (2.4), we can extract the respective displacements k of the eigen-
mode i, namely a component Vik of the N -dimensional matrix of eigenmo-
des Uir. The rows i of the matrix Vik represent the vectors vi, which will be
used as test functions in error minimization of the approximation.
Now, the approximation of the measured imperfection displacement

vectorv takes the form

ṽ = [ṽk] =
n∑

i=1

αivi =
[ n∑

i=1

αiVik
]⊤
= V⊤α (2.5)

The error of approximation can now be represented by the vector ε in the
space Rm

ε = v −
n∑

i=1

αivi = v − V
⊤
α→ min

α

ε,v ∈ Rm

α ∈ Rn
(2.6)

Following the Galerkin concept, we assume optimal α, when it makes ε
orthogonal to all test functions vi, namely

εvi = 0 (2.7)

where dot denotes scalar product. Introducing (2.6) into (2.7), we obtain

(
v −

n∑

i=1

αivi
)
vj = 0 (2.8)

The matrix form of (2.8) is

Vv − VV⊤α = 0 or VV
⊤
α = Vv (2.9)

Introducing
A = VV⊤ and b = Vv (2.10)

we obtain
Aα = b (2.11)
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hence

α = A−1b

Note that the above presented discrete Galerkin method of evaluation of
optimal α also provides minimum of the quadratic error of ε in the Rm space
I = ε⊤ε

I = εε⊤ = [v − V⊤α]⊤[v − V⊤α] = [v⊤ −α⊤V][v − V⊤α] (2.12)

The stationary condition ∂I/∂α = 0, provides a set of n linear equations
(2.9) and (2.11).

3. Verification of the method

In engineering practice, the number of measurements of imperfections is limi-
ted. Moreover, patterns of imperfections, which are most important for future
stability analyses, are not a priori known. Hence, we face a difficulty that
the measurements of imperfections in situ are not only limited, but often not
in optimal points of the structure. Therefore, the proper calibration of scale
factors αi plays the important role. The proposed method makes it possible
to represent the imperfections as a linear superposition of a limited number
of such eigenmodes which play the crucial role in stability of the structure. It
is particularly important in the class of stability problems when two or more
eigenvalues, which correspond with local and global buckling, coincide or are
close to each other. This interactive buckling is typical for thin-walled struc-
tures under consideration and is usually connected with high sensitivity to
imperfections.

The method of developing the imperfections in series of eigenmodes com-
puted from the linear stability problem is aimed at complex nonlinear stability
analysis accounting for initial imperfections. However, for the sake of simpli-
city, let us start the considerations from the Euler column (Fig. 1).

The buckling modes are

ui = sin iπx (3.1)

where x = [0, 1] is the non-dimensional coordinate measured along the length
of the column. Through the examples, we will study, verify and validate the
proposed algorithm.
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Fig. 1. Simply supported, axially loaded column: (a) geometry, (b) buckling modes.
Coordinates x1, . . . , x6 indicate points of simulated imperfections

3.1. Example 1

In order to check the correctness of the proposed method, let us assu-
me that the measured imperfection corresponds with the second and fourth
buckling mode with amplitudes α0 equal to 0.03 and 0.07, respectively. Let
the imperfections be measured in m = 6 points, placed along the column at
xk = 0.2, 0.3, 0.4, 0.6, 0.7, 0.9. The measured imperfection vector v is

v = [u(xk)] = [0.03 sin 2πxk + 0.07 sin 4πxk] =
(3.2)

= [6.97,−1.26,−4.89, 4.89, 1.26,−8.42] · 10−2

The imperfection pattern will be approximated using only four eigenmodes,
n = 4. The discrete representation of the test function ui at k = 1, . . . ,m
points of measurement of the imperfections can be calculated as

V = [Vik] = [ui(xk)] = [sin iπxk] =
(3.3)

=




58.78 80.90 95.11 95.11 80.90 30.90
95.11 95.11 58.78 −58.78 −95.11 −58.78
95.11 30.90 −58.78 −58.78 30.90 80.90
58.78 −58.78 −95.11 95.11 58.78 −95.11


 · 10

−2
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Matrices A and b are

Aij = Aji =
m=6∑

k=1

ui(xk)uj(xk)

(3.4)

A =




3.59017 0.37738 0.19098 0.01599
0.37738 3.75 0.42898 −1.11804
0.19098 0.42898 2.440983 −0.21041
0.05199 −1.11804 −0.21041 3.75




and

bj =
m=6∑

k=1

uj(xk)u(xk) b =




0.01493336
0.03423762
−0.00185886
0.22895898


 (3.5)

hence

α = A−1b =




α1
α2
α3
α4


 =




0
0.03
0
0.07


 (3.6)

As a result, the expected exact value of α is obtained.

Several other testing examples were solved for different numbers of measu-
rement points and test functions. However, in order to check the correctness
of the method, in all those examples, idealized patterns of imperfections were
introduced. They took the form of linear combinations of such eigenmodes
which were used as test functions in the approximation. No wonder that the
examples demonstrated that the exact approximation was always obtained in
cases when the number of measurements m was equal or greater than the
number of test functions n. This is illustrated in Table 1.

The error of approximation can be calculated in the space L2

‖ũ(x)− u(x)‖L2 =

√√√√√
1∫

0

ε2 dx =

√√√√√
1∫

0

∑

i

[αiũi(x)− u(x)]2 (3.7)

Basing on the orthogonality of eignmodes, the error (Eq. (3.7)) takes the form

‖ũ(x)− u(x)‖L2 =

√√√√√
1∫

0

[ 4∑

i=1

(αi − α
0
i )
2 sin2 iπx

]
dx (3.8)
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Table 1. Error of the approximation for different numbers and distributions
of points of simulated measurements

No. of mea-
Points of

measurements
Approximated
values α

Error of
No. surement approxim.

points m in space L2

1. 6
xk = 0.2, 0.3, 0.4, α1 = 0.0, α2 = 0.03, 0.0
0.6, 0.7, 0.8 α3 = 0.0, α4 = 0.07

2. 6
xk = 0.1, 0.2, 0.3, α1 = 0.0, α2 = 0.03, 0.0
0.4, 0.5, 0.55 α3 = 0.0, α4 = 0.07

3. 4
xk = 0.2, 0.3,
0.4, 0.6

α1 = 0.0, α2 = 0.03, 0.0
α3 = 0.0, α4 = 0.07,

xk = 0.5, 0.6,
0.7, 0.8

α1 = −5.54 · 10
−15

4. 4 α3 = −4.02 · 10
−15 0.0

α2 = 0.03, α4 = 0.07

α1 = 0.057, α2 = −0.01,
5. 3 xk = 0.1, 0.2, 0.3 α3 = 6.09 · 10

−3, 3.82 · 10−2

α4 = 0.068

6. 3 xk = 0.2, 0.3, 0.4
α1 = −0.034, α2 = 0.067, 1.05·10−2
α3 = −0.019, α4 = 0.075

Note that in the above idealized example the distribution of simulated
measurement points did not affect the result of the approximation, provided
that m  n.

In the next examples presented in the paper, a more general pattern of
imperfections will be used.

3.2. Example 2

Following example 1, we use the first four buckling modes (3.1) in the
series approximating the imperfection pattern. However, we assume now that
the imperfections correspond with the second, fourth and seventh buckling
mode with amplitudes α0 equal to 0.03, 0.07 and 0.01, respectively. It means
that the seventh buckling mode with a multiplier 0.01 is superposed on the
imperfection pattern from example 1.

Let the imperfections be measured in m = 6 points, placed along the
column at xk = 0.2, 0.3, 0.4, 0.6, 0.7, 0.9. Now, the assumed imperfection
vector v is
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v
⊤ = [u(xk)] = [0.03 sin 2πxk + 0.07 sin 4πxk + 0.01 sin 7πxk] =

(3.9)
= [6.0,−0.9523,−4.3, 5.5, 1.6,−7.6] · 10−2

Following the presented above algorithm, we obtain the approximated va-
lues of α

α = A−1b =




α1
α2
α3
α4


 =




0.0045
0.025
0.0029
0.065


 (3.10)

Now, the approximated imperfection vector ṽ is

ṽ
⊤ = [u(xk)] = [α2 sin 2πxk + α4 sin 4πxk + α7 sin 7πxk] =

(3.11)
= [5.247,−1.134,−4.125, 5.30, 1.752,−6.842] · 10−2

The error of approximation in the space L2 is

√√√√√
1∫

0

[ 4∑

i=1

(αi − α
0
i )
2 sin2 iπx+ (α7 − α

0
7)
2 sin2 7πx

]
dx = 4.99 · 10−2 (3.12)

where according to the assumption α01 = α
0
3 = α+7 = 0, α

0
2 = 0.03, α

0
4 = 0.07,

α07 = 0.01.

The exactness of approximation can be checked using the mean quadratic
error in the R6 space

ε2average =
1

m

m∑

i=1

(ṽi − vi)
2 = 2.2 · 10−5 (3.13)

The effectiveness of approximation was analysed for different numbers m
and various distributions xk of points of simulated measurements. It was
demonstrated that the number and distribution of measurement points can
strongly affect the error of approximation. This is illustrated in Table 2.

In examples 1 and 2, we considered discrete representations of the imper-
fection pattern. Note that in the case of a continuous representation of the
imperfection pattern in the form of a sine series, the variation of imperfection
by superposition of the seventh mode could not be captured using a series
limited to four terms, because this variation is orthogonal to each of the four
modes.
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Table 2. Error of the approximation for different number and distribution of
points of simulated measurements

No. m
Points of

measurements xk

Approximated
values α

Error of
No. of mea- approximation

surem. in L2 α2average

xk = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95

α1 = 0.0, α2 = 0.03,
α3 = 0.0, α4 = 0.07

1. 10 0.0 0.0

xk = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9

α1 = 0.0, α2 = 0.03,
α3 = 0.0, α4 = 0.07

2. 9 0.0 0.0

3. 8
xk = 0.2, 0.3,
0.4, 0.5, 0.6, 0.7,
0.8, 0.9

α1 = 8.333·10
−4,

α2 = 0.028,
α3 = −2.182·10

−3,
α4 = 0.067

4.96·10−2 6.096·10−6

4. 4
xk = 0.2, 0.3,
0.4, 0.6

α1 = 0.017,
α2 = −2.064·10

−3,
α3 = 0.018,
α4 = 0.053

5.30·10−2 1.57·10−4

5. 3 xk = 0.2, 0.3, 0.4

α1 = −0.017,
α2 = 0.04,
α3 = −2.39 ·10

−3,
α4 = 0.058

1.64·10−2 1.93·10−4

3.3. Example 3

Assume now that the simulated measurements are contaminated with a
white noise produced by m = 6 independent sources, each with a random
output following a uniform distribution between −0.5 and 0.5.

Now, we assume the basic imperfection vector v0 to be similar to v from
example 1

v
0 = [u(xk)] = [0.03 sin 2πxk + 0.07 sin 4πxk] =

(3.14)
= [6.97,−1.26,−4.89, 4.89, 1.26,−8.42] · 10−2

The random generator of the white noise produced the vector

whiten(6)⊤ = [−0.499,−0.307, 0.085,−0.15, 0.323,−0.326] (3.15)



Modeling of initial geometrical imperfections... 677

Assume a white noise amplitude c = 0.2. The output vector v is

v
n = whiten(6)c (3.16)

The imperfection vector with the white noise can be expressed as

v
⊤ = [v0 + vn]⊤ = [7.3,−2.0,−5.8, 3.9, 1.6,−7.6] · 10−2 (3.17)

Approximated components of the vector α are

α = A−1b =




α1
α2
α3
α4


 =




0.004667
0.026
0.009102
0.066


 (3.18)

Now, the approximated imperfection vector ṽ is

ṽ = [7.3,−1.6,−5.4, 5.4, 1.6,−8.9] · 10−2 (3.19)

The mean quadratic error in the R6 space can be calculated according to the
following formula

1

m

m∑

i=1

(ṽi − vi)
2 = 5.299 · 10−6 (3.20)

The error of approximation for different values of the white noise amplitu-
de c is presented in Fig. 2.

Fig. 2. The mean quadratic error for different values of the white noise amplitude c
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4. Measurement of actual imperfections

In this Section the actual imperfections of steel thin-walled cold-formed profiles
are discussed. The measurements were performed on sigma sections 300mm
high with walls 1.5mm thick (Σ300× 1.5), shown in Fig. 3a.

Fig. 3. Profile Σ300× 1.5 (a) design dimensions, (b) measured dimensions

Eighteen members were examined and initial local-sectional geometric im-
perfections were identified. Thickness and width of all walls of the cross-section
and variations of the contour were measured in 5 cross-sections along the length
of the members. A statistical data processing of the measured values was per-
formed. The Gauss distribution and the confidence level 95% were assumed.
Thus, we arrived at the limit values

alower/upper = amean ∓ 1.64σ (4.1)

where σ is the standard deviation of a. The limit values of imperfections are

δamin/max = alower/upper − adesign (4.2)

The results are presented in Table 3. The rows a-h refer to width of the
walls, whereas the next rows describe deformations of the contour. The limit
values of imperfections are presented in columns 5 and 6.

The design cross-sectional dimensions are shown in Fig. 3a. All these di-
mensions were compared with actual values measured in situ and thus the
dimensional imperfections were evaluated. Figure 3b shows the next class of
measured imperfections, namely shape imperfections. Table 3 presents the re-
sults of statistical processing of all design and shape imperfections.
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Table 3. Profile Σ300× 1.5. Values of imperfections in mm

Symbol
Design Arithmetic Standard Maximum Minimum
dimension mean deviation imperf. imperf.

1 2 3 4 5 6

a 25.00 28.61 1.98 6.86 0.37

b 80.00 80.89 1.09 2.67 −0.89

c 63.50 63.97 1.36 2.70 −1.75

d 19.00 17.24 1.84 1.26 −4.77

e 139.00 138.64 0.88 1.08 −1.80

f 19.00 17.55 1.59 1.16 −4.06

g 59.50 60.50 1.32 3.16 −1.17

h 70.00 70.39 1.31 2.55 −1.76

l 0.00 0.00 1.10 1.80 −1.80

m 0.00 0.17 1.58 2.77 −2.43

n 0.00 0.11 1.65 2.82 −2.59

o 0.00 −0.14 1.17 1.78 −2.07

p 0.00 −0.06 1.29 2.06 −2.19

r 0.00 −0.11 1.25 1.95 −2.16

s 0.00 0.01 0.73 1.20 −1.18

The shape imperfections can be classified as symmetric ”opening” (SO),
symmetric ”closing” (SC) or asymmetric deformation (AS). They are presen-
ted in Fig. 4. These three forms of local imperfections appeared periodically
throughout the length of elements, which suggests that they originated in the
cold-forming process.

Fig. 4. Demonstrative imperfection patterns along the Σ members

The average values of shape imperfections l-s in different cross sections x
are presented in Fig. 5. These values can be used as coordinates vk of the
vector v to calculate scale factors αi in series (1) using equation (2.12).
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Fig. 5. Spectrum of average shape imperfections in a bar

5. Eigenvalue problem

The eigenvectors ui(x) representing the buckling mode are computed from the
linear eigenvalue problem

(K0 + λKG)U = 0 (5.1)

where K0 denotes the small-displacement stiffness matrix, KG is the geometric
stiffness matrix, λ is the load multiplier and the eigenvectors U represent
the buckling mode shapes.
Numerical examples were solved using the general purpose finite element

program ABAQUS. A simply supported axially loaded column was analysed.
To consider local imperfections presented in Section 4, local buckling modes
had to be captured. Therefore, four-node doubly curved shell elements with
reduced integration were employed. In the FEM 2D model, the boundary
conditions were introduced so as to represent a spherical hinge support. Hence,
in all nodes of the boundary cross-section, displacements in the direction x
(longitudinal axis of the column) were unconstrained except for the center
point at one support. The transversal displacements at the supports were
assumed to be zero. Nodal forces were applied at the boundary cross-section in
the longitudinal direction x with the magnitude σx representing the force P .
Assume the length of the axially compressed column to be 4.0m. Five

different eigenmodes were extracted from linear stability analysis. During the
analysis, from the eigenvectors ui(x), the matrix Vik representing the buckling
mode at the points of measurement was calculated. Figure 6 shows the shapes
of buckling modes related to the lowest eigenvalues. The next eigenvalues
were much higher. Since the first three eigenvalues are close to each other,
at least these three eigenmodes should be used in the series approximating the
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initial imperfection pattern. However, for better illustration of the interaction
of global and local imperfections, in the following example we will use only
the first two eigenmodes. Mode 1 is a global one and mode 2 represents a local
buckling form.

Fig. 6. Shapes of buckling modes for 2× Σ column

Since λ1 is close to λ2, an interactive buckling can appear. Hence, we
can expect unstable postbuckling behavior, reduction of load capacity and
sensitivity to imperfections. To study this issue, we will carry out a nonlinear
stability analysis allowing for different kinds of initial geometric imperfections,
global, local and global/local.

6. Nonlinear stability analysis

The imperfections were introduced into stability analysis by perturbing the
initial geometry by imperfections in the form of Eqs. (2.1) and (2.2). Our ob-
jective is to study the influence of actual magnitudes of global and local imper-
fections. Therefore, the proportionality factor associated with global buckling
mode 1 in Fig. 6 has been assumed α1 = 4, thus modeling the global imperfec-
tion amplitude to be in accordance with the design code provisions referring
to allowable execution tolerances. The scale factor for local mode 2 has been
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evaluated as α2 = 2.04, using the procedure described in Section 2 and basing
on measurements described in Section 4.

Fig. 7. Load proportionality factor for the column made of 2Σ with different shapes
of imperfections

Figure 7 shows plots of the load proportionality factor λ/λcr versus the
total arc length in the Riks algorithm, where λcr is the critical load factor for
the ideal column with perfect geometry obtained from linear stability analysis.
The plots in Fig. 7 refer to global (g), local (l) and global-local (g+l) shapes
of imperfections. As expected, for the global imperfections, the post buckling
path is stable, however the maximum load capacity is reduced by 20% in rela-
tion to λcr. Conversely, for local imperfections, the maximum load is reduced
only by 10% but the post buckling is unstable. The interaction of global and
local imperfections represents the worst case when the post buckling path is
unstable and 20% reduction of maximal load is observed.

7. Concluding remarks

In the paper, the modeling of initial geometrical imperfections in stability ana-
lysis was presented. Local sectional imperfections of cold-formed thin-walled
steel sigma cross-section had been measured in situ. The measured values were
then subjected to statistical processing.
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The paper presents a method of modeling initial imperfections. The imper-
fections are modeled in the form of a displacement vector with the dimension
and physical meaning adequate to the displacement vector in the FEM model
of the structure. The vector of initial imperfections is assumed in the form of
a series of a limited number of eigenfunctions obtained from linear stability
analysis. Such representation of imperfections makes it easy to employ FEM
in non-linear stability analysis. The scale coefficients in the series were evalu-
ated basing on measurements and using the discrete Galerkin approach, thus
providing the minimum of discrepancy between the measured values of initial
imperfections and their approximated representation. The method was verified
by making use of idealized examples and examples where idealized simulated
measurements were contaminated with a white noise.

The stability analysis of a column made of a cold-formed thin-walled steel
sigma cross-section was carried out. Particular attention was paid to the inte-
raction of global and local buckling which can result in excessive sensitivity to
imperfections and in unstable behavior. It was found that the initial sectional
imperfections did not remarkably reduce the maximum bearing capacity of
the column, but they made the post buckling behavior unstable.
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Modelowanie początkowych imperfekcji geometrycznych w zagadnieniach

stateczności konstrukcji cienkościennych

Streszczenie

W pracy przedstawiono metodę modelowania początkowych imperfekcji geome-
trycznych na podstawie rzeczywistych imperfekcji pomierzonych „in situ”. Zapropo-
nowana metoda polega na automatycznym tworzeniu sygnału imperfekcji w postaci
serii funkcji własnych uzyskanych z liniowej analizy stateczności. Do modelowania im-
perfekcji użyto niewielkiej liczby najbardziej niekorzystnych postaci własnych. Efek-
tywność metody analizowano ze względu na liczbę punktów pomiaru oraz sposób ich
rozmieszczenia na długości pręta, minimalizując błąd aproksymacji. W dalszej części
pracy, propopnowana metoda została zastosowana do nieliniowej analizy stateczno-
ści z uwzględnieniem imperfekcji prętów cienkościennych typu „Σ”. Do rozwiązania
problemu nieliniowej analizy stateczności zastosowano metodę Riks’a. Przykłady nu-
meryczne ilustrują wpływ początkowych imperfekcji geometrycznych na pokrytyczne
zachowanie konstrukcji.
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