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The paper deals with cold-formed thin-walled beams with the Z-, S- and
Clothoid-section. A short survey of optimal designs of thin-walled beams
with open cross-sections is given. Geometric properties of three cross-
sections are described. Strength, local and global buckling conditions for
thin-walled beams are presented. The optimal design criterion with a
dimensionless objective function as a quality measure is defined. Results
of numerical calculations for optimal shapes of three cross-sections are
presented in tables and figures.
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Notations

a, b, c, d – dimensions of cross-sections
r – radius of the circular arc
t – thickness of the beam wall
u – dimensionless parameter of the clothoid
A – area of the cross-section
H – depth of the beam
L – length of the beam
JS−V – geometric stiffness for Saint-Venant torsion
Jy, Jz – inertia moments
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Jω – warping moment of inertia
M0 – loading moment
R – principal radius of the clothoid
α, β – angles of the S-section
λ – relative length of the beam
θp – angle to the principal axes
ω – warping function
Φj – objective function

1. Introduction

Shapes of open cross-sections of contemporary cold-formed thin-walled beams
are rather complicated. They are usually mono-symmetrical, although some-
times anti-symmetrical too. The main constraints in designing thin-walled
structures are strength and stability conditions. The beginnings of the opti-
mal design of thin-walled structures reach back to 1959. The first paper on
optimal design of a thin-walled beam with an open cross-section (I-section) in
pure bending state was presented by Krishnan and Shetty (1959). A complete
survey of optimal design problems of structures for the second half of the twen-
tieth century was given by Gajewski and Życzkowski (1988) and Krużelecki
(2004). A bibliography on the problems of topology and shape optimization
of structures using FEM and BEM for 1999-2001 was collected by Mackerle
(2003). Optimal design criteria for shapes of thin-walled beams cross-sections
under strength and local and global stability constraints was presented by
Cardoso (2000). Karim and Adeli (1999) presented global optimum design
of cold-formed steel hat-shape beams under uniformly distributed load using
a neural network model. Variational and parametric design of an open cross-
section of a thin-walled beam under stability constraints was described by Ma-
gnucki and Magnucka-Blandzi (1999), Magnucki and Monczak (2000). Vinot
et al. (2001) presented a methodology for optimizing the shape of thin-walled
structures. Magnucki (2002) studied optimization of an open cross-section of a
thin-walled beam with flat web and circular flange analytically and numerical-
ly. Knowledge-based global optimization of cold-formed steel columns under
pure axial compression was presented by Liu et al. (2004). In result of the stu-
dy, five anti-symmetrical open cross-sections were proposed. Theoretical and
experimental study on the minimum weight of cold-formed channel thin-walled
beams with and without lips were analysed by Tian and Lu (2004). Optimum
design of cold-formed steel channel beams under uniformly distributed load
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using micro Genetic Algorithm was presented by Lee et al. (2005). Global opti-
mization of cold-formed steel thin-walled beams with lipped channel sections
were described by Tran and Li (2006). Optimal design of open cross-sections
of cold-formed thin-walled beams with respect to the dimensionless objective
function as the quality measure was presented by Magnucka-Blandzi and Ma-
gnucki (2004b), Magnucki and Ostwald (2005a,b), Magnucki et al. (2006a,b),
Magnucki and Paczos (2008). Kasperska et al. (2007), Ostwald et al. (2007),
Ostwald and Magnucki (2008), Manevich and Raksha (2007) described bicrite-
rial optimal design of open cross-sections of cold-formed beams. Strength, glo-
bal and local buckling and optimization problems of cold-formed thin-walled
beams with open cross-sections were collected and described by Magnucki and
Ostwald (2005a,b), Ostwald and Magnucki (2008).
The present paper provides further development of optimal shaping of

anti-symmetrical open cross-sections of cold-formed thin-walled beams in pure
bending state. These beams of the length L, depth H, and wall thickness t
are simply supported and carry two equal moments M0 applied to the beam
ends (Fig. 1). The optimization includes three anti-symmetrical cross-sections:
Z-section, S-section and clothoid-section.

Fig. 1. A scheme of the thin-walled beam

2. Geometric properties of three cross-sections

2.1. Anti-symmetrical Z-section

A scheme of the cross-section with principal axes yz is shown in Fig. 2.
The middle line of the Z-section is a broken line situated symmetrically with
respect to the origin O(0, 0).
Geometric properties of the cross-section are defined by the following di-

mensionless parameters

x1 =
b

a
x2 =

c

b
x3 =

t

b
x4 =

d

a
(2.1)

where: a, b, c, d – sizes of the cross-section, t – thickness of the wall.



556 J. Lewiński, K. Magnucki

Fig. 2. A scheme of the Z-section

Depth of the beam is

H = 2a+ t = a(2 + x1x3) (2.2)

Total area and geometric stiffness for Saint-Venant torsion of the cross-section

A = 2atf0(xi) JS−V =
2
3
at3f0(xi) (2.3)

where

f0(xi) = x1(1 + x2) + x4 +

√
(1− x4)2 +

1
4
x21

The product of inertia with respect to the principal axes yz is zero

Jyz = 2a3tx1[−3(x1x2 − x4)(2− x1x2 − x4) + (1− x1)
√
x21 + 4(1 − x4)2] = 0

(2.4)
from which

x2 =
1
x1
(1 +

√
1− C0) (2.5)

where
C0 = (2− x4)x4 +

1
3
(1− x1)

√
x21 + 4(1− x4)2

Moments of inertia of the plane area (Fig. 2) with respect to the y and z axes
are

Jy = 2a3tf2(xi) Jz = 2a3tf3(xi) (2.6)

where

f2(xi) =
1
4
x21

[
x1
(1
3
+ x2
)
+ x4 +

1
6

√
x21 + 4(1 − x4)2

]

f3(xi) = x1 +
1
3
[2− (1− x1x2)3 − (1− x4)3] +

1
6
(1− x4)2

√
x21 + 4(1 − x4)2
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The warping function ω(s) for the Z-section (half section) is shown in
Fig. 3.

Fig. 3. Geometric interpretation of the warping function ω(s)

The warping function in characteristic points of the Z-section have the
following values

ω1 = 0 ωi = aiω̃i i = 2, 3, 4 (2.7)

where

ω̃2 =
1
2
x1x4 ω̃3 =

(
1 +
1
2
x4
)
x1 ω̃4 =

[
1 +
1
2
(x1x2 + x4)

]
x1

The warping moment of inertia

Jω = 2a5tf5(xi) (2.8)

where

f5(xi) =
1
3
[x4ω̃22 + x1(ω̃

2
2 + ω̃2ω̃3 + ω̃

2
3) + x1x2(ω̃

2
3 + ω̃3ω̃4 + ω̃

2
4)]

The centroid and the shear center of the plane area of anti-symmetrical cross-
sections are located in the origin O(0, 0).

2.2. Anti-symmetrical S-section

A scheme of the cross-section with auxiliary axes y1z1 and principal
axes yz is shown in Fig. 4. The middle line of the S-section is a composite
curve (two circles and one line segment) situated symmetrically with respect
to the origin O(0, 0).
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Fig. 4. A scheme of the S-section

Geometric properties of the cross-section are defined by the following di-
mensionless parameters

x1 =
r

a
x3 =

t

r
and β (2.9)

where: a, r – sizes of the cross-section, β – angle, t – thickness of the wall.
Depth of the beam is

H = 2a cos θp + 2r + t = 2a
[
cos θp + x1

(
1 +
1
2
x3
)]

(2.10)

Total area and geometric stiffness for Saint-Venant torsion of the cross-section

A = 2atf0(xi) JS−V =
2
3
at3f0(xi) (2.11)

where
f0(xi) =

√
1− x21 + x1(π + β − α) cosα = x1

The product of inertia with respect to the auxiliary axes y1z1

Jy1z1 = 2a
3tf1(xi) (2.12)

where

f1(xi) =
{1
3
(1− x21)2 + x1

[
cos β + x1 +

1
4
x1(1 + cos 2β − 2x21)

]}
x1
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Moments of inertia of the plane area (Fig. 4) with respect to the y1 and z1
auxiliary axes are

Jy1 = 2a
3tf2(xi) Jz1 = 2a

3tf3(xi) (2.13)

where

f2(xi) =
{1
3

√
(1− x21)3 +

1
4
x1[2(π + β − α) + 2x1

√
1− x21 − sin 2β]

}
x21

f3(xi) =
1
3

√
(1− x21)5 +

+
1
2
x1{(π + β − α)(2 + x21) + x1[

√
1− x21(4− x21) + (4 + x1 cos β) sin β]}

The angle θp defining the principal axes is

tan 2θp = −
2Jy1z1
Jz1 − Jy1

(2.14)

and, principal moments of inertia

Jy =
1
2
(Jz1 + Jy1)−

√
1
4
(Jz1 + Jy1)2 + J2y1z1

(2.15)

Jz =
1
2
(Jz1 + Jy1) +

√
1
4
(Jz1 + Jy1)2 + J2y1z1

The warping function ω(ϕ) for the S-section (half section) is shown in Fig. 5.

Fig. 5. Geometric interpretation of the warping function ω(ϕ)

The warping function for the S-section is defined as follows

ω(ϕ) = [sinα− sin(α+ ϕ) + x1ϕ]x1a2 (2.16)



560 J. Lewiński, K. Magnucki

The warping moment of inertia

Jω = 2a5tf5(xi) (2.17)

where

f5(xi) = (f51 − f52 + f53 + f54)x31
f51 =

1
2

(
x1

√
1− x21 −

1
2
sin 2β

)

f52 = 2[(π + β − α)x1 +
√
1− x21] cos β

f53 = [2 sin β − (π + β − α)
√
1− x21]x1

f54 =
1
6
(π + β − α){9 + 2[(π + β − α)2 − 3]x21}

2.3. Anti-symmetrical Clothoid-section

A scheme of the cross-section with auxiliary axes y1z1 and principal
axes yz is shown in Fig. 6. The middle line of the Clothoid-section is a curve
situated symmetrically with respect to the origin O(0, 0).

Fig. 6. A scheme of the Clothoid-section

In Cartesian auxiliary coordinates, the curve is parametrized as follows

y1 = a
√
π

u1∫

0

sin
πu2

2
du z1 = a

√
π

u1∫

0

cos
πu2

2
du (2.18)
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where a is the scale parameter determining the outer size of the curve,
u – dimensionless parameter (0 ¬ u ¬ u1).
The principal curvature radius

R =
a2

s
(2.19)

where arc length s = a
√
π u1.

Geometric properties of the cross-section are defined by the following di-
mensionless parameters

x1 = u1 x3 =
t

a
(2.20)

Depth of the beam is
H = 2d+ t (2.21)

where: u1 is the upper integration limit, as in (2.18), deciding on the ”depth”
of convolutions of the curve, t – wall thickness.
The total area of the clothoid cross-section is

A = 2
∫

A

dA = 2t
∫

OP

ds = 2
√
π atu1 (2.22)

The moments of inertia of the plane area with respect to the z1 and y1 axes
are

Iz1 =
∫

A

y21 dA = 2at
√
π

u1∫

0

a2π
( u∫

0

sin
πv2

2
dv
)
du = 2a3t

√
π3
u1∫

0

[s(u)]2 du

(2.23)
where

s(u) =
u∫

0

sin
πu2

2
du (2.24)

and

Iy1 =
∫

A

z21 dA = 2a
3t
√
π3
u1∫

0

[c(u)]2 du (2.25)

where

c(u) =
u∫

0

cos
πu2

2
du (2.26)
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The principal axes and principal moments of inertia are defined by the same
expressions as for the S-section, i.e. (2.14) and (2.15).
The warping function of the clothoid section (Fig. 7) takes the following

form

ω = 2
(1
2
zpyp −

zp∫

0

y1 dz1
)

(2.27)

where

zp = a
√
π

up∫

0

cos
πu2

2
du yp = a

√
π

up∫

0

sin
πu2

2
du

Fig. 7. Geometric interpretation of the clothoid warping function ω(u)

According to earlier definitions (2.23) and (2.25)

zpyp = πa2c(up)s(up) dz1 = a
√
π cos

πu2

2
du (2.28)

Hence, the warping function, being a function of the parameter up, may be
formulated as follows

ω(up) = πa2
[
c(up)s(up)− 2

up∫

0

cos
πu2

2
s(u) du

]
(2.29)
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Finally, the warping moment of inertia of the clothoid section is calculated as
follows

Iω =
∫

A

ω2 dA = 2t

up∫

0

ω2(u) ds (2.30)

3. Formulation of the optimization problem

3.1. Optimization criterion

The minimal mass and maximal safe load are usually a basic objective
in structure designing. The optimization criterion according to the papers of
Magnucka-Blandzi and Magnucki (2004a,b), Magnucki et al. (2006a,b), has
been formulated in the following form

max
xi
{Φ1(xi), Φ2(xi), Φ3(xi), Φ4(xi)} = Φmax (3.1)

and the objective function

Φj(xi) =
Mj

E
√
A3

(3.2)

where Mj are the allowable moments defined from the strength condition
(j = 1), lateral buckling condition (j = 2), local buckling condition of the
flange (j = 3), and local buckling condition of the web.

3.2. Constraints

Strength and buckling are main problems in thin-walled structures desi-
gning. Lateral buckling strengths of a cold-formed Z-section beam was pre-
sented by Pi et al. (1999). Li (2004) described lateral-torsion buckling of the
cold-formed Z-beam. The effects of warping stress on the lateral torsional
buckling, and local and distortional buckling of cold-formed Z-beams were de-
scribed by Chu et al. (2004, 2006). Stasiewicz et al. (2004) described local
buckling of a bent flange of a thin-walled beam. Analytical and numerical
analysis of the stress state and global elastic buckling of a thin-walled beam
with a mono-symmetrical open cross-section was presented by Magnucki et al.
(2004). Critical stresses for open cylindrical shells with free edges were calcu-
lated by Magnucka-Blandzi and Magnucki (2004b), Magnucki and Mackiewicz
(2006) and Joniak et al. (2008). Ventsel and Krauthammer (2001) collected
and described strength and buckling problems of thin plates and shells.
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The space of feasible solutions for optimal shapes of cross-sections of thin-
walled beams is restrained. The strength condition has the following form

M0 ¬M1 M1 = 2
Jz
H
σall (3.3)

where σall is the allowable stress.
The global stability condition (lateral buckling condition) for a simply

supported beam in pure bending state has the following form

M0 ¬M2 M2 =
M
(Globl)
CR

cs1
(3.4)

where cs1 is the safety coefficient, and the lateral buckling moment for a simply
supported thin-walled beam in pure bending state is (Magnucki and Ostwald,
2005a,b)

M
(Globl)
CR =

πE

L

√
JyJS−V
2(1 + ν)

[
1 + 2(1 + ν)

π2

L2
Jω
JS−V

]
(3.5)

The local stability conditions for the Z-beam are as follows:

• for the bent flange, according to Magnucki and Ostwald (2005a,b) and
Stasiewicz et al. (2004)

σ(Z−flange)max ¬ σ
(Z−flange)
CR

cs2
σ
(Z−flange)
CR =

1 + x2
1 + 3x2

x23G (3.6)

where σ(Z−flange)CR is the critical stress, G = E/[2(1+ν)] – shear modulus
of elasticity, E – Young’s modulus, ν – Poisson’s ratio, cs2 – safety
coefficient.

Taking into account the classical theory of plates, the local stability
condition for the bent flange may be written down as

M0 ¬M3 M3 =
σ
(Z−flange)
CR

cs2

Jz
a− ef

=
2a2t
cs2
G
1 + x2
1 + 3x2

x23
f3(xi)
1− ẽf
(3.7)

where ẽf is the dimensionless parameter of the centroid location of the
flange

ẽf =
x2

2(1 + x2)
f1(xi)
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• for the flat web according to Ventsel and Krauthammer (2001)

σ(Z−web)max ¬ σ
(Z−web)
CR

cs2
σ
(Z−web)
CR =

2π2

1− ν2E
(x1x3)2

x21 + 4(1 − x4)2
(3.8)

where σ(Z−web)CR is the critical stress.

Taking into account the classical theory of beams, the local stability
condition for the flat web may be put down as

M0 ¬M4
(3.9)

M4 =
σ
(Z−web)
CR

cs2

Jz
a− d =

4π2a2t
cs2(1− ν2)

E
(x1x3)2

x21 + 4(1 − x4)2
f3(xi)
1− x4

The local stability conditions for the S-beam take the following forms:

• for the open circular cylindrical shell, regarding the results of Magnucka
Blandzi and Magnucki (2004a), Magnucki and Mackiewicz (2006), Joniak
et al. (2008)

σ(S−shell)max ¬ σ
(S−shell)
CR

Cs2
σ
(S−shell)
CR = αC

E

12.7
√
3(1 − ν2)

x3 (3.10)

where σ(S−shell)CR is the critical stress and αC – coefficient

αC = 1 + 0.8
(
β − π
2

)4

Taking into account the classical theory of beams, the local stability
condition for the circular cylindrical flange may be written down as

M0 ¬M3 M3 =
σ
(S−shell)
CR

cs2

Jz
a
=

2at2

12.7cs2
√
3(1 − ν2)

EαC
f3(xi)
x1
(3.11)

• for the flat web Ventsel and Krauthammer (2001)

σ(S−web)max ¬ σ
(S−web)
CR

cs2
σ
(S−web)
CR =

π2

2(1 − ν2)E
(x1x3)2

1− x1
(3.12)

where σ(S−web)CR is the critical stress.
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Taking into account the classical theory of beams, the local stability
condition for the flat web is

M0 ¬M4
(3.13)

M4 =
σ
(S−web)
CR

cs2

Jz
a− d =

4π2a2t
cs2(1− ν2)

E
(x1x3)2

x21 + 4(1 − x4)2
f3(xi)
1− x4

The local stability conditions for the Clothoid-beam are as follows:

• for the open cylindrical shell, according to Magnucka Blandzi and Ma-
gnucki (2004b), Magnucki and Mackiewicz (2006), Joniak et al. (2008)

σ
(Cl−shell)
edge ¬

σ
(Cl−shell)
CR,edge

cs2
σ
(Cl−shell)
CR,edge =

E

12.7
√
3(1 − ν2)

t

Redge
(3.14)

where σ(Cl−shell)CR,edge is the critical stress.

Taking into account the classical theory of beams, the local stability
condition for the circular cylindrical flange assumes the form

M0 ¬M3
(3.15)

M3 =
σ
(Cl−shell)
CR,edge

cs2

Jz
d
=

2at2

12.7cs2
√
3(1− ν2)EαC

f3(xi)
x1

• for the cylindrical shell

σ
(Cl−shell)
local ¬

σ
(Cl−shell)
CR,local

cs2
σ
(Cl−shell)
CR,local =

E√
3(1− ν2)

t

R(y)
(3.16)

where σ(Cl−shell)CR,local is the critical stress.

Taking into account the classical theory of beams, the local stability
condition for the flat web is

M0 ¬M4 M4 =
σ
(Cl−web)
CR,local

cs2

Jz
y(u)

(3.17)
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4. Numerical solution of the optimization problem

Optimization of three anti-symmetrical open cross-sections has been per-
formed for a family of cold-formed thin-walled beams: σall/E = 0.0015,
ν = 0.3, cs1 = 1.5, cs2 = 2.1, with relative lengths λ = L/H = 7.5, 10.0,
12.5, 15.0, 17.5, 20.0. The results of numerical calculations for the Z-beam are
specified in Table 1, for the S-beam in Table 2, and for the Clothoid-beam in
Table 3.

Table 1. Optimal parameters for the Z-beam

λ 7.5 10.0 12.5 15.0 17.5 20.0
x1,opt 0.3897 0.5262 0.6607 0.7908 0.9161 1.0359
x2,opt 0.7259 0.4581 0.3051 0.2077 0.1400 0.0903
x3,opt 0.1175 0.1131 0.1098 0.1072 0.1052 0.1036
x4,opt 0.0458 0.0595 0.0725 0.0850 0.0964 0.1072
Φmax 0.0020725 0.001825 0.001645 0.001507 0.0013940 0.001301

Table 2. Optimal parameters for the S-beam

λ 7.5 10.0 11.15 12.5 15.0 17.5 20.0
x1,opt 0.3696 0.3696 0.3696 0.4145 0.4971 0.5789 0.6598
βopt π π π π π π π

x3,opt 0.047951 0.047951 0.047951 0.04641 0.04383 0.04155 0.0395
Φmax 0.003049 0.003049 0.003049 0.002857 0.002573 0.002356 0.002187

Table 3. Optimal parameters for the Clothoid-beam

λ 7.5 10.0 12.5 15.0 17.5 20.0
x1,opt 2.6 2.6 2.6 2.6 2.6 2.6
x3,opt 0.014353 0.014353 0.014353 0.014353 0.014353 0.014353
Φmax 0.003553 0.003553 0.003553 0.003553 0.003553 0.003553

5. Conclusions

The criterion of effective shaping (optimal design) with dimensionless objecti-
ve functions (26) enables sorting and comparing beams with arbitrary cross-
sections. This criterion is a quality measure of the cross-sections of beams.



568 J. Lewiński, K. Magnucki

Fig. 8. Dimensionless objective function Φmax for three considered types of beams

According to the plots in Fig. 8, the following conclusions may be drawn:

• In the case of the Z-Section, the lateral buckling is decisive for the beam
of relative length 7.5 ¬ λ.
• For the S-Section of the relative length λ ¬ 11.15, the lateral buckling
imposes no constraint – the condition remains inactive. It is active only
for λ > 11.15.

• In the case of the Clothoid-Section, the lateral buckling remains inactive
within the whole considered range of the relative length λ.

The beams with the Clothoid-section are definitely better than those with Z-
or S-sections.
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Optymalizacja otwartych antysymetrycznych przekrojów belek

cienkościennych walcowanych na zimno

Streszczenie

W artykule rozważane są belki o przekrojach poprzecznych w kształcie Z-, S- oraz
w kształcie klotoidy. Zamieszczono krótki przegląd zagadnień optymalnego projek-
towania belek cienkościennych o przekrojach otwartych. Opisano właściwości geome-
tryczne trzech rozważanych przekrojów. Zapisano warunki wytrzymałości oraz lokal-
nej i ogólnej stateczności belek cienkościennych. Sformułowano kryterium optymaliza-
cyjne z wykorzystaniem bezwymiarowej funkcji celu będącej miarą jakości przekroju.
Wyniki numerycznych obliczeń optymalnych zarysów przekrojów poprzecznych przed-
stawiono w tablicach i na rysunkach.
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