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The results of numerical simulations presented in this paper are concerned with instability
of a three member slender system subjected to Euler load. The investigated column is built
up as a flat frame composed of three rods. In the internal one, the defect is present in form
of a crack. The boundary problem has been formulated on the basis of a static criterion of
instability. The boundary conditions associated with different types of supports are obtained
by proper selection of parameters of the generalized load. On the basis of these results, the
magnitude of bifurcation load can be determined.
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1. Introduction

Numerical investigations on slender complex systems composed of beam elements with different
rigidities have been presented in the papers (Godley and Chilver, 1970; Lueschen et al., 1996;
Tomski and Uzny, 2008, Tomski et al.; 2014; Uzny, 2011a,b). In those papers, different types
of conservative and non conservative loads have been considered. The most common type of a
conservative load is the Euler load. The loading force has a constant line of action regardless
of the deflection of the system. All known types of conservative loads can be expressed by
means of the generalized load (Bochenek and Życzkowski, 2004; Gajewski and Życzkowski,
1970). It is induced by simultaneous actions of longitudinal and transversal forces and bending
moments. The generalized load is a theoretical loading, because authors of the papers in which
it is used do not present the design of loading heads. When the system is composed of elements
with different bending and compression rigidities, the rectilinear and curvilinear forms of static
equilibrium are present (Tomski and Uzny, 2008). The compressed system keeps the rectilinear
form of static equilibrium up to the bifurcation load magnitude. An increase of the external
load causes a change of the equilibrium form from the rectilinear into a curvilinear one. The
maximum magnitude of the compressive force is called the critical one. If the constant total
bending stiffness of the investigated system is used the change in relation of the bending stiffness
between rods, it has no influence on critical load magnitude (Tomski et al., 2007). Only the
change of bifurcation load can be observed because of asymmetry of the bending stiffness of
the rods. The magnitude of the bifurcation load can be controlled by means of the following
parameters: prestressing, additional elements responsible for transversal displacements, loading
heads configuration – Tomski load (Tomski and Uzny, 2008; Uzny, 2011a). The change of the
bifurcation load magnitude in relation to the rigidity of the system elements has influence on the
occurrence of the local instability phenomenon (Tomski and Uzny, 2008; Uzny, 2011a,b). The rod
with the lower rigidity is responsible for local instability (it deflects from the rectilinear form of
static equilibrium and causes deflection of the whole system). In some cases, the rage of external
load which corresponds to the curvilinear form of static equilibrium (from the bifurcation load
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magnitude up to the critical one) can be greater than the range of external load in the rectilinear
form. The phenomenon of local instability of the discussed systems has a completely different
nature than in thin walled structures.

In this paper, the instability of a complex system with consideration of the crack presence
in the rod with the lowest rigidity is presented. Cracks in beam elements or columns have been
investigated by many scientists (Anifantis and Dimarogonas, 1983; Chati et al., 1997; Kim and
Kim, 2000; Krawczuk, 1992; Kukla, 2009; Masoud et al., 1999; Ostachowicz and Krawczuk, 1991;
Sokół, 2014). In the literature, different methods of crack modeling can be found. The crack can
be modeled as a rotational spring with properly chosen stiffness (Anifantis and Dimarogonas,
1983; Chati et al., 1997; Hjelmstad and Shin, 1996; Kim and Kim, 2000; Krawczuk, 1992; Ma-
soud et al., 1999; Narkis, 1994; Ostachowicz and Krawczuk, 1991; Rizos et al., 1990; Shen and
Taylor, 1991). In such a case, the system is composed of two beams or rods connected by a
rotational spring in the point of crack location. The stiffness of the spring depends on relation
of the crack depth to transverse dimensions and is being calculated with consideration of the
fracture mechanics principles (Ostachowicz and Krawczuk, 199). Identification of characteristic
parameters of cracks can be done on the basis of the vibration frequency, shape modes (Tomski
et al., 2014) and the amplitude of vibration (Rizos et al., 1990).

A different method of crack modeling is presented in Chandros et al. (1998) according to
which Crack Disturbance Functions are used. This method is more advanced because stress,
strain and displacement are modified in the whole area of the damaged element (not only locally
in the point of crack presence). The mentioned crack model is more accurate but at the same
time more complex and time consuming. However, when the crack is being modelled by means
of a rotational spring, good accuracy of the simulation and experimental results can be found
(Chandros et al., 1998). On the basis of the analysis of the natural vibration frequency curves
presented in (Chandros et al., 1998), it can be concluded that the difference between the two
models (continuous cracked beam model and lumped crack flexibility model) is getting greater
with an increase of the crack size. When small cracks are considered (crack smaller than half
of the cross section), those differences are insignificant. Taking into account a comparison of
experimental data with numerical simulations shown in (Chandros et al., 1998), there is a good
foundation to use rotational springs in the modelling process of a small crack.

Zamorska et al. (2015) proposed analytical simulations done with the Green function of a
cracked beam with a variable cross-sectional area and numerical results in CATIA software.
Zhang et al. (2009) revealed a crack identification method by means of wavelet analysis with a
transform matrix. While Ghadami et al. (2013) detected cracks with the use of natural frequen-
cies.

The rotational spring has been used in (Sokół and Uzny, 2015) to simulate a crack in a
multi-member slender system composed of three rods (symmetrically placed in relation to the
axis of the system) in form of a flat frame. In the internal element, the crack was present. In
that study, the investigations of the influence of crack location and size on the natural vibration
frequency were done in systems with different boundary conditions subjected to the Euler load.
The results presented in (Sokół and Uzny, 2015) can be used in a diagnostic process of supporting
systems.

In this paper, a continuation of studies started in (Sokół and Uzny, 2015) is presented. On the
basis of those results, it has been stated that detailed studies on the bifurcation load should be
done because of presence of discontinuity of curves that describe the change of static equilibrium
form. The results shown here are focused on the bifurcation load magnitude at which the change
of form of static equilibrium from a rectilinear into curvilinear one takes place. The influence of
the crack size and relation of elasticity moduli is also taken into account.
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2. Boundary problem formulation

The considered slender system (Fig. 1a) is subjected to a compressive external load with a
constant line of action. The column is composed of elements (rods) with different rigidities
which are symmetrically placed relative to the axis of the system.
Two external rods have equal rigidities while the third one is characterized by a smaller rigi-

dity relative to the others. Additionally, in the internal element, a defect in form of a crack (slit)
is investigated. In this paper, results of numerical simulations for different boundary conditions
are presented (Fig. 1b – EUi where i stands for a different type of support 1-5).

Fig. 1. Investigated multi-member system: (a) physical model of a flat frame with a marked defect –
crack, (b) schematic diagrams of the system with different boundary conditions and the installed

rotational spring in the point of crack presence

In the problem formulation, a generalized load (see Bochenek and Życzkowski, 2004; Gajewski
and Życzkowski, 1970) on both ends of the column is used. The advantage of the theoretical
generalized load is that it can be implemented in order to show all known types of conservative
loads (therein the Euler load in the system with different boundary conditions). The applied
force is a longitudinal external force P . The Hk andMk components are generalized forces which
arise due to the action of P . The index k is introduced and it can take values: 0 for x21 = 0 and
1 for x21 = l21.
In the boundary problem formulation process, the four rods are taken into account (Fig. 2)

with rigidities E11, E12, E21, E22. Elements 21 and 22 have equal rigidities, while 11 and 22 stand
for the cracked element. The crack is simulated by means of a rotational spring of stiffness C and
linear characteristics in the point of connection of rods 11 and 12. The functionWij(xij) i, j = 1, 2
describes transversal displacements of the rods at a given coordinate xij . The components Hk
andMk of the generalized load depend on the compressive force P and can be expressed in form
(see Gajewski and Życzkowski, 1970)

Hk = P

[

− (−1)k(1− ϕk)
dW21(x21)
dx21

∣

∣

∣

x21=kl21
− γkW21(kl21)

]

Mk = P

[

− (−1)kρk
dW21(x21)
dx21

∣

∣

∣

x21=kl21
+ νkW21(kl21)

]

(2.1)

where φk, γk, ρk, νk are the coefficients which depend on the type of support or loading head.
The magnitudes of φk, γk, ρk, νk for different types of support with consideration of Euler load
are presented in Table 1.
The boundary problem formulation is done by means of the static criterion of instability

δV = 0 (2.2)
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Fig. 2. Calculation model of the considered system subjected to the generalized load on both ends

Table 1. Magnitudes of generalized load parameters

Type of suport
EU1 EU2 EU3 EU4 EU5

φ0 1 1 1 1 1
γ0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0 1/γ0 = 0
ρ0 0 1/ρ0 = 0 1/ρ0 = 0 1/ρ0 = 0 1/ρ0 = 0
ν0 0 1 1 1 1
φ1 1 1 1 1 0
γ1 1/γ1 = 0 0 1/γ1 = 0 1/γ1 = 0 0
ρ1 0 0 0 1/ρ1 = 0 1/ρ1 = 0
ν1 0 0 0 1 1

on the basis of which the estimation of the magnitude of the bifurcation load can be done. The
potential energy of the system shown in Fig. 2 is as follows

V =
1
2
C

[

dW11(x11)
dx11

∣

∣

∣

x11=l11
−
dW12(x12)
dx12

∣

∣

∣

x12=0

]2

+
1
2

2
∑

i=1

2
∑

j=1

(EJ)ij

lij
∫

0

[

d2Wij(xij)
dx2ij

]2

dxij

+
1
2

2
∑

i=1

2
∑

j=1

(EA)ij

lij
∫

0

[

dUij(xij)
dxij

+
1
2

(dWij(xij)
dxij

)2
]2

dxij + PU21(l21)

+
1
∑

i=0

1
2

{

− (−1)iP

[

− (−1)iρi
dW21(x21)
dx21

∣

∣

∣

x21=il
+ νiW21(il)

]

dW21(x21)
dx21

∣

∣

∣

x21=il21

+ P

[

− (−1)i(1− ϕi)
dW21(x21)
dx21

∣

∣

∣

x21=il
− γiW21(il)

]

W21(il)

}

(2.3)
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Geometrical boundary conditions can be written in form

U11(0) = U21(0) = U22(0) = 0 U12(l12) = U21(l21) = U22(l22)

U11(l11) = U12(0) W11(0) =W21(0) =W22(0)

W12(l12) =W21(l21) =W22(l22) W11(l11) =W12(0)

dW11(x11)
dx11

∣

∣

∣

x11=0
=
dW21(x21)
dx21

∣

∣

∣

x21=0
=
dW22(x22)
dx22

∣

∣

∣

x22=0

dW12(x12)
dx12

∣

∣

∣

x11=l12
=
dW21(x21)
dx21

∣

∣

∣

x21=l21
=
dW22(x22)
dx22

∣

∣

∣

x22=l22

(2.4)

Introduction of potential energy (2.3) into (2.2) leads to equations of transversal and longitudinal
displacements and natural boundary conditions on each end of the system at x11 = x21 = x22 =
0; x12 = l12, x21 = l21, x22 = l22 and crack location x11 = l11, x12 = 0.
The differential equation of transversal displacements is as follows

(EJ)ij
d4Wij(xij)
dx4ij

+ Sij
d2Wij(xij)
dx2ij

= 0 (2.5)

While the longitudinal displacements can be presented in form

Uij(xij)− Uij(0) = −
Sij
(EA)ij

xij −

xij
∫

0

(dWij(xij)
dxij

)2
dxij

i = 1, 2

j = 1, 2
(2.6)

Natural boundary conditions are shown below

(EJ)11
d3W11(x11)
dx311

∣

∣

∣

x11=0
+
2
∑

i=1

(EJ)2i
d3W2i(x2i)
dx32i

∣

∣

∣

x2i=0
+ S11

dW11(x11)
dx11

∣

∣

∣

x11=0

+
2
∑

i=1

S2i
dW2i(x2i)
dx2i

∣

∣

∣

x2i=0
− P

[

γ0W21(0) + (1− ϕ0)
dW21(x21)
dx21

∣

∣

∣

x21=0

]

= 0

(EJ)11
d2W11(x11)
dx211

∣

∣

∣

x11=0
+
2
∑

i=1

(EJ)2i
d2W2i(x2i)
dx22i

∣

∣

∣

x2i=0

+ P

[

ν0W21(0) − ρ0
dW21(x21)
dx21

∣

∣

∣

x21=0

]

= 0

(EJ)12
d3W12(x12)
dx312

∣

∣

∣

x12=l12
+
2
∑

i=1

(EJ)2i
d3W2i(x2i)
dx32i

∣

∣

∣

x2i=l2i
+ S12

dW12(x12)
dx12

∣

∣

∣

x12=l12

+
2
∑

i=1

S2i
dW2i(x2i)
dx32i

∣

∣

∣

x2i=l2i
+ P

[

γ1W21(l21)− (1− ϕ1)
dW21(x21)
dx21

∣

∣

∣

x21=l21
]

= 0

(EJ)11
d2W11(x11)
dx211

∣

∣

∣

x12=l12
+
2
∑

i=1

(EJ)2i
d2W2i(x2i)
dx22i

∣

∣

∣

x2i=l2i

+ P

[

ν1W21(l21) + ρ1
dW21(x21)
dx21

∣

∣

∣

x21=l21
]

= 0

(2.7)

(EJ)11
d2W11(x11)
dx211

∣

∣

∣

x11=l11
+ CR

[

dW11(x11)
dx11

∣

∣

∣

x11=l11
−
dW12(x12)
dx12

∣

∣

∣

x12=0

]

= 0
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(EJ)12
d2W12(x12)
dx212

∣

∣

∣

x12=0
+ CR

[

dW11(x11)
dx11

∣

∣

∣

x11=l11
−
dW12(x12)
dx12

∣

∣

∣

x12=0

]

= 0

2
∑

i=1

(EJ)1i(−1)i+1
d3W1i(x1i)
dx31i

∣

∣

∣

x1i=(l1i)(2−i)
+ S11

dW11(x11)
dx11

∣

∣

∣

x11=l11

− S12
dW12(x12)
dx12

∣

∣

∣

x12=0
= 0

and

S12 + S21 + S22 − P = 0 (2.8)

Complex slender systems are characterized by the presence of rectilinear and curvilinear form of
static equilibrium. In this paper, the rectilinear form is only considered. In this case, the internal
force Sij in the element is obtained on the basis of the following relations

S11 = S12 S21 = S22 S12 = P
(EA)12
(EA)12

+ 2(EA)21 S22 =
P − S12
2

(2.9)

The relations between internal forces have been calculated with consideration of boundary con-
ditions (2.4) and (2.8). The presented method of formulation of the boundary problem in which
the theoretical generalized load is used shows that numerical simulations can be performed for
different types of supports and loads (including Tomski load (see Tomski and Uzny, 2008; Tom-
ski et al., 2007, 2014)). In the boundary conditions, only the parameters ρk, νk, φk, γk, where
k = 0, 1, must be introduced.
The solution of the differential equations of transversal displacements has been performed

on the basis of the following expression, i = 1, 2 and j = 1, 2

Wij(xij) = Aij exp(i
√
Pxij) +Bij exp(−i

√
Pxij) + Cijxij +Dij (2.10)

After introduction of (2.10) into the boundary conditions, one obtains a system of equations for
which the matrix determinant equated to zero creates a transcendental equation used for the
estimation of the bifurcation load.

3. Results of numerical simulations

The results of numerical simulations performed on the basis of the proposed mathematical model
have been presented in the plane bifurcation load – flexural rigidity asymmetry factor µa. The
coefficient µa is defined as a relation of the flexural rigidity of the cracked rod to the sum of
rigidities of the external rods

µa =
(EJ)11

(EJ)21 + (EJ)22
(3.1)

The magnitude of bifurcation load is presented in the non-dimensional form

λb =
Pl221
(EJ)11

+
2
∑

i=1

(EJ)2i (3.2)

In simulations, a constant total flexural rigidity of the system is used

(EJ)11 + (EJ)21 + (EJ)22 = EJ
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Numerical simulations have been performed for three magnitudes of the parameter ζB
(ζB = 0.1, 0.5, 1.0). The ζB shows the relation between the Young modulus of the cracked
rod to the uncracked one

ζB =
E11
E21

(3.3)

The non-dimensional spring stiffness parameter c which reflects the crack size and the location ζA
are as follows

c =
Cl

EJ
ζA =

l11
l

(3.4)

The results presented in this paper are done only at ζA = 0.5 (central location).

Fig. 3. A change of the bifurcation load parameter λb of EU1 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

On the basis of the results of numerical simulations presented in Figs. 3-7 it have been shown
that the crack size has a small influence on the bifurcation load magnitude at a lower level
of the bending rigidity asymmetry factor. This influence depends on the boundary conditions
and Young modulus of the materials used in the supporting structure. When the materials are
comparable (which corresponds to ζB ≈ 1) the differences in bifurcation loads are the smallest at
low µa. An increase in the bending rigidity asymmetry factor µa causes an increase in bifurcation
load to the maximum level above which a further increase of µa results in reduction of the loading
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Fig. 4. A change of the bifurcation load parameter λb of EU2 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

capacity. In EU4 and EU5 configurations at higher µa, the bifurcation load is constant and
independent of the crack size. Furthermore, in EU5 the area of independency of the bifurcation
load to µa can be found (the smaller crack, the greater the independency area). On the basis
of the numerical simulations, it can be concluded that columns EU4 and EU5 at higher µa are
insensitive to the crack size, which appears in the central element (the one with lower bending
rigidity). In all investigated cases such ranges of the crack size can be estimated at which a small
change of the bifurcation load regardless of µa can be found.
Additionally, it has been shown that in configurations EU4 and EU5, the discontinuity

of the curves can be observed in the plane loading parameter – flexural rigidity asymmetry
factor λb(µa). In columns EU4 and EU5, at a sufficiently high flexural rigidity asymmetry
factor, a change in buckling mode shapes takes place. The magnitude of this factor at which
the change can be observed highly depends on the crack size (rotational spring stiffness c). The
smaller crack, the higher µa is needed to obtain a change in the buckling mode shape. The
buckling mode shapes of the considered systems are presented in Fig. 8. A high difference in
the parameter µa has been chosen in order to achieve the best presentation of the change of
buckling shapes, especially for EU4 and EU5.
In configurations EU1-EU3, an increase of µa reveals the presence of the crack. That is why

in those three cases an observation of buckling shape modes can easily lead to determination
of failure of the structure at high µa because the function used to describe the transversal
displacements of the cracked element is not a smooth one. The buckling shape modes of EU4
and EU5 systems at a lower magnitude of the µa coefficient are characterized by no transversal
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Fig. 5. A change of the bifurcation load parameter λb of EU3 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

displacement of the uncracked rods (see Fig. 8 – shapes at µa = 0.01 – EU4 and µa = 0.001
– EU5 configurations). At µa = 0.9, the buckling shape modes of EU4 and EU5 are changing
regarding to lower µa. The change is related to independency of the bifurcation load of the
considered systems from the crack size at higher µa magnitudes. Additionally, when columns
EU4 and EU5 are taken into account, the buckling shape modes are described by a smooth
function. In EU4 and EU5 configurations, the crack presence is hard to identify on the basis
of analysis of buckling shape modes. That is why, the further investigations on the natural
vibration frequency must be done (relations: external load-vibration frequency and amplitude-
-vibration frequency). The solution presented in this paper allows one to choose proper physical
and geometrical parameters and reveals the area of drop in the loading capacity in the case of
crack presence.

4. Conclusions

In this paper, a slender system with a crack subjected to compressive external load with a
constant line of action is considered. The effect of size of the crack, which is present in the
internal element, on the bifurcation load magnitude is investigated. Numerical simulations of
the bifurcation load have been done at different magnitudes of parameters such as: rotational
spring stiffness (size of the crack), flexural rigidity asymmetry factor and longitudinal elasticity
modulus. The numerical calculations are also concerned with different types of supports (five
configurations have been chosen for presentation).
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Fig. 6. A change of the bifurcation load parameter λb of EU4 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

On the basis of the results of simulations, the following conclusions can be drawn:
• influence of the crack size on the bifurcation load magnitude highly depends on a combi-
nation of the supporting elements (boundary conditions),

• in the systems with the zero deflection angle at both ends, the crack which is present in the
element with the lower bending rigidity has no affect on the bifurcation load at high µa,

• for each of the considered systems, the magnitude of the bending rigidity asymmetry factor
as a function of the crack size at which the bifurcation load is the highest can be found,

• the magnitude of µa which corresponds to the highest bifurcation load strongly depends
on the Young modulus parameter ζB ,

• when the systems with the zero deflection angle at both ends are considered, such µa can
be found at which the change of buckling shape modes can be observed; additionally, after
this change, the buckling load does not depend on the crack size.

On the basis of the simulations presented in this paper the type of supports have significant
influence on the sensitivity of the structure to the crack presence (taking into account the
bifurcation load considered in this publication). Additionally, in the future investigations of the
influence of the crack on instability of a discussed structure, different types of external load
should be introduced. Structures subjected to non-conservative loads may be less vulnerable to
the crack presence. A good example of such a type of load is the specific load. An introduction of
the specific load modifies investigations on instability and natural vibrations (change of vibration
frequencies and shape modes) regarding the classic Euler load. For the specific load (which is a
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Fig. 7. A change of the bifurcation load parameter λb of EU5 column in relation to the flexural rigidity
asymmetry factor µa at ζA = 0.5 and different crack sizes: (a) ζB = 0.1, (b) ζB = 0.5, (c) ζB = 1

Fig. 8. Buckling mode shapes of the considered systems (EU1-EU5) for ζB = 0.1, c = 0.5
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practical load, see Tomski and Uzny (2008), Tomski et al. (2007, 2014)) the parameters allowing
the control of the bifurcation load or the critical one as well as the natural vibration frequency
can be found. It can be assumed that the parameters of the loading heads of the specific load
will also affect the vulnerability of the structure to the crack presence. A continuation of this
study in the mentioned way is justified and should be done in the future.
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