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In this work, we apply the fractional order theory of thermoelasticity to a one-dimensional
problem of distribution of thermal stresses and temperature in a generalized thermoelastic
medium in the form of a spherical shell subjected to sudden change in the temperature of its
external boundary. Laplace transform techniques are used to solve the problem. Numerical
results are computed and represented graphically for the temperature, displacement and
stress distributions.
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1. Introduction

Biot (1956) formulated theory of coupled thermoelasticity to eliminate the paradox inherent in
the classical uncoupled theory that elastic changes have no effect on temperature. Lord and Shul-
man (1967) introduced theory of generalized thermoelasticity with one relaxation time by using
the Maxwell-Cattaneo law of heat conduction instead of the conventional Fourier law. The heat
equation associated with this theory is hyperbolic and hence eliminates the paradox of infinite
speeds of propagation inherent in both the uncoupled and coupled theories of thermoelasticity.
Sherief and El-Maghraby (2003, 2005) solved some crack problems for this theory. Sherief and
Hamza (1994, 1996) obtained a solution to axisymmetric problems in spherical and cylindrical
regions. Sherief and Ezzat (1994) obtained the solution in form of a series. Sherief et al. (2005)
extended this theory to deal with micropolar materials. That theory was extended to deal with
viscoelastic effects by Sherief et al. (2011). Lately, Sherief and Hussein (2012) developed theory
of generalized poro-thermoelasticity.

Fractional calculus has been successfully used to modify many existing models of physical
processes, see Hilfer (2000), Sherief et al. (2012), Tenreiro et al. (2013). One can state that
the whole theory of fractional derivatives and integrals was established in the 2nd half of the
19th century. A good review of the subject can be found in Podlubny (1998), Kaczorek (2011),
Kaczorek and Rogowski (2015). Caputo and Mainardi (1971a,b) and Caputo (1974) found a
good agreement with experimental results by making use of fractional derivatives for description
of viscoelastic materials and established the connection between the fractional derivatives and
the theory of linear viscoelasticity. Adolfsson et al. (2005) constructed a new fractional order
model of viscoelasticity.

Povstenko (2009) made a review of thermoelasticity that uses a fractional heat conduction
equation and proposed and investigated new models that incorporate fractional derivatives (Po-
vstenko, 2005, 2011). Recently, the fractional order theory of thermoelasticity was derived by
Sherief et al. (2010). It was a generalization of both coupled and generalized theories of thermo-
elasticity. Some contributions to that theory are the works by Raslan (2015), Sherief and Abd
El-Latief (2014a,b, 2015).
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The aim of the present work is to solve a 1D problem for a spherical shell of a homogeneous,
isotropic, thermoelastic medium occupying the region a ¬ r ¬ b subjected to thermal shock,
using the fractional theory of thermoelasticity. The main reason behind the introduction of
the fractional theory is that it predicts a retarded response to physical stimuli, as is found in
nature and as opposed to the instantaneous response predicted by the generalized theory of
thermoelasticity (Raslan, 2015).

2. Formulation of the problem

In this work, we consider a 1D problem for a spherical shell of a homogeneous, isotropic, thermo-
elastic medium occupying the region a ¬ r ¬ b, using the fractional theory of thermoelasticity.
The outer surface of the shell is taken to be traction free and is subjected to thermal shock that
is a function of time. The inner surface of the shell is thermally isolated by a rigid material.
From physics of the problem, all functions will depend on the radial distance r and time t

only. The displacement vector has only one non-zero component u(r, t) in the radial direction.
The governing equations, in the absence of body forces and heat sources, are given by (Sherief

et al., 2010)

(λ+ 2µ)
∂e

∂r
− γ ∂T
∂r
= ρ
∂2u

∂t2
k∇2T =

( ∂

∂t
+ τ0
∂α+1

∂tα+1

)

(ρcET + γT0e)

σrr = λe+ 2µ
∂u

∂r
− γ(T − T0) qr + τ0

∂αqr
∂tα
= −k∂T

∂r

(2.1)

where T is the absolute temperature, ρ is density, λ and µ are Lamé’s constants and
γ = αt(3λ + 2µ), where αt is the coefficient of linear thermal expansion. T0 is the reference
temperature assumed to be such that |(T − T0)/T0| ≪ 1 and α, τ0 are constants such that
τ0 > 0, 0 ¬ α ¬ 1, cE is the specific heat per unit mass in the absence of deformation and k is
the thermal conductivity, σrr is the normal stress component, qr is the component of the heat
flux vector in the radial direction, and e is the cubical dilatation given by

e =
1

r2
∂

∂r
(r2u) (2.2)

The operator ∇2 in the above equations is given by

∇2 = ∂
2

∂r2
+
2

r

∂

∂r
=
1

r2
∂

∂r

(

r2
∂
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)

We shall use the following non-dimensional variables

r∗ = cηr u∗ = cηu t∗ = c2ηt τ∗0 = c
2αηατ0

θ∗ =
γ(T − T0)
λ+ 2µ

σ∗rr =
σrr
µ

q∗ =
γ

k(λ+ 2µ)
q

where

c =

√

λ+ 2µ

ρ
η =
ρcE
k

The governing equations, in non-dimensional form, are given by (with the asterisk dropped for
convenience)

∂2u

∂t2
=
∂e
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− ∂θ
∂r
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∂t
+ τ0
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σrr = (β
2 − 2)e + 2∂u
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= −∂θ
∂r

(2.3)
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where

ε =
T0γ
2

λ+ 2µ
kη β2 =

λ+ 2µ

µ

In the above equation, the time fractional derivative of the order α used is taken to be in
the sense of the Caputo fractional derivative.

We assume that the boundary conditions have the form

u(a, t) = 0 qr(a, t) = 0

σrr(b, t) = 0 θ(b, t) = f(t)
(2.4)

The initial conditions are taken to be homogeneous, i.e. we take
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(2.5)

3. Solution in the Laplace transform domain

Applying the Laplace transform with the parameter s (denoted by the overbar) defined by the
relation

f(r, s) =

∞
∫

0

e−stf(r, t) dt (3.1)

to both sides of equations (2.3), we get the following equations

s2u =
∂e

∂r
− ∂θ
∂r

∇2θ = (s+ τ0sα+1)(θ + εe)

σrr =
β2 − 2
r
u+ β2

∂u

∂r
− β2θ qr =

−1
1 + τsα

∂θ

∂r

(3.2)

Applying the operator 1r2
∂
∂r (r

2 . . .) to equation (3.2)1, we obtain

(∇2 − s2)e = ∇2θ (3.3)

Eliminating θ between equations (3.2)2 and (3.3), we get

{

∇4 −∇2[s2 + (1 + ε)(s+ τ0sα+1)] + s3(1 + τ0sα)
}

e = 0

The above equation can be factorized as

(∇2 − k21)(∇2 − k22)e = 0 (3.4)

where k21 and k
2
2 are the roots with positive real parts of the characteristic equation

k4 − k2[s2 + (1 + ε)(s + τ0sα+1)] + s3(1 + τ0sα) = 0 (3.5)
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where k21 and k
2
2 are given by

k21 =
s

2

{

s+ (1 + ε)(1 + τ0s
α) +

√

[s+ (1 + ε)(1 + τ0sα)]2 − 4s(1 + τ0sα)
}

k22 =
s

2

{

s+ (1 + ε)(1 + τ0s
α)−

√

[s+ (1 + ε)(1 + τ0sα)]2 − 4s(1 + τ0sα)
}

(3.6)

Due to linearity, the solution to equation (3.4) has the form

e = e1 + e2

where ei is the solution to the following equation

(∇2 − k2i )ei = 0 i = 1, 2

The above equation can be written as

∂2ei
∂r2
+
2

r

∂ei
∂r
− k2i ei = 0 (3.7)

Taking the substitution

ei =
gi√
r

the above equation reduces to

r2
∂2gi
∂r2
+ r
∂gi
∂r
−
(

k2r2 +
1

4

)

gi = 0

This is the modified Bessel equation whose solution is

gi = Aik
2
i I1/2(kir) +Bik

2
iK1/2(kir)

Collecting the above results, the solution to (3.7) can be written as

ei =
1√
r
[Aik

2
i I1/2(kir) +Bik

2
iK1/2(kir)] (3.8)

where Ai and Bi, i = 1, 2 are parameters to be determined from the boundary conditions and
Iµ(z), Kµ(z) are the modified Bessel functions of the first and second kinds of the order µ,
respectively.

Similarly, we can show that

θi =
1√
r
[A∗i k

2
i I1/2(kir) +B

∗

i k
2
iK1/2(kir)] (3.9)

Substituting (3.8) and (3.9) into equation (3.3), we get

A∗i = Ai(k
2
i − s2) B∗i = Bi(k

2
i − s2) (3.10)

Substituting (3.10) into equation (3.9), one obtains

θi =
1√
r
[Ai(k

2
i − s2)I1/2(kir) +Bi(k2i − s2)K1/2(kir)] (3.11)
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Thus we obtain

e =
1√
r

2
∑

i=1

[Aik
2
i I1/2(kir) +Bik

2
iK1/2(kir)]

θ =
1√
r

2
∑

i=1

[Ai(k
2
i − s2)I1/2(kir) +Bi(k2i − s2)K1/2(kir)]

(3.12)

Differentiating (3.12) with respect to r and substituting into (3.2)1, gives

u =
1√
r

2
∑

i=1

[AikiI3/2(kir)−BikiK3/2(kir)] (3.13)

Differentiating (3.12)2 and (3.13) with respect to r, gives

∂θ

∂r
=
1√
r

2
∑

i=1

[Aiki(k
2
i − s2)I3/2(kir)−Biki(k2i − s2)K3/2(kir)]

∂u

∂r
=
1√
r

2
∑

i=1

{
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[

kiI1/2(kir)−
2

r
I3/2(kir)

]

+Biki
[

kiK1/2(kir) +
2

r
K3/2(kir)

]}

(3.14)

Substituting (3.12) and (3.14)2 into equation (2.3)3, gives

σrr =
1√
r

2
∑

i=1

{

Ai
[

β2s2I1/2(kir)−
4

r
kiI3/2(kir)

]

+Bi
[

β2s2K1/2(kir)+
4

r
kiK3/2(kir)

]}

(3.15)

Using equation (3.2)4, boundary conditions (2.4) can be written in the Laplace transform as

u(a, s) = 0
∂θ(a, s)

∂r
= 0

σrr(b, s) = 0 θ(b, s) = f(s)
(3.16)

Applying boundary conditions (3.16) into equations (3.12)2, (3.13), (3.14)1 and (3.15), gives

2
∑

i=1

[AikiI3/2(kia)−BikiK3/2(kia)] = 0

2
∑

i=1

[Aiki(k
2
i − s2)I3/2(kia)−Biki(k2i − s2)K3/2(kia)] = 0

2
∑

i=1

{

Ai
[

β2s2I1/2(kib)−
4

b
kiI3/2(kib)

]

+Bi
[

β2s2K1/2(kib) +
4

b
kiK3/2(kib)

]}

= 0

2
∑

i=1

[Ai(k
2
i − s2)I1/2(kib) +Bi(k2i − s2)K1/2(kib)] =

√
bf(s)

The above equations can be put in the following form

a11A1 + a12B1 + a13A2 + a14B2 = 0

a21A1 + a22B1 + a23A2 + a24B2 = 0

a31A1 + a32B1 + a33A2 + a34B2 = 0

a41A1 + a42B1 + a43A2 + a44B2 =
√
bf(s)
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where

a11 = k1I3/2(k1a) a12 = −k1K3/2(k1a)
a13 = k2I3/2(k2a) a14 = −k2K3/2(k2a)
a21 = k1(k

2
1 − s2)I3/2(k1a) a12 = −k1(k21 − s2)K3/2(k1a)

a23 = k2(k
2
2 − s2)I3/2(k2a) a24 = −k2(k22 − s2)K3/2(k2a)

a31 = β
2s2I1/2(k1b)− 4bk1I3/2(k1b) a32 = β

2s2K1/2(k1b) +
4
bk1K3/2(k1b)

a33 = β
2s2I1/2(k2b)− 4bk2I3/2(k2b) a34 = β

2s2K1/2(k2b) +
4
bk2K3/2(k2b)

a41 = (k
2
1 − s2)I1/2(k1b) a42 = (k

2
1 − s2)K1/2(k1b)

a43 = (k
2
2 − s2)I1/2(k2b) a44 = (k

2
2 − s2)K1/2(k2b)

Solving the above equations, we obtain

A1 = −
1

Γ
[a12(a23a34 − a24a33) + a13(a24a32 − a22a34) + a14(a22a33 − a23a32)]

√
bf(s)

B1 =
1

Γ
[a11(a23a34 − a24a33) + a13(a24a31 − a21a34) + a14(a21a33 − a23a31)]

√
bf(s)

A2 = −
1

Γ
[a11(a22a34 − a24a32) + a12(a24a31 − a21a34) + a14(a21a32 − a22a31)]

√
bf(s)

B2 =
1

Γ
[a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31)]

√
bf(s)

where

Γ = a11[a22(a33a44 − a34a43) + a23(a34a42 − a32a44) + a24(a32a43 − a33a42)]
− a12[a21(a33a44 − a34a43) + a23(a34a41 − a31a44) + a24(a31a43 − a33a41)]
+ a13[a21(a32a44 − a34a42) + a22(a34a41 − a31a44) + a24(a31a42 − a32a41)]
− a14[a21(a32a43 − a33a42) + a22(a33a41 − a31a43) + a23(a31a42 − a32a41)]

4. Inversion of the Laplace transform

Let f(s) be the Laplace transform of f(t). The inversion formula for the Laplace transform has
the form (Honig and Hirdes, 1984)

f(t) =
edt

2π

∞
∫

−∞

eityf(d+ iy) dy

where d is a number greater than all the real parts of the singularities of f(s).
Using Fourier series over the interval [0, 2L], we get (Honig and Hirdes, 1984)

f(t) ≈ fN (t) =
1

2
c0 +

N
∑

k=1

ck for 0 ¬ t ¬ 2L (4.1)

where

ck =
edt

L
Re
[

e
ikπt

L f
(

d+
ikπ

L

)]

(4.2)

The ‘Korrecktur’ method has been used to reduce the discretization error while the
ε-algorithm has been used to reduce the truncation error (Honig and Hirdes, 1984).
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5. Numerical results

Copper has been chosen for purposes of numerical evaluations. The constants of the considered
problem are shown in Table 1.

Table 1

k = 386W/(mK) αt = 1.78 · 10−5K−1 cE = 381 J/(kgK) η = 8886.73

µ = 3.86 · 1010 kg/(m s2) λ = 7.76 · 1010 kg/(m s2) ρ = 8954 kg/m3 T0 = 293K

ε = 0.0168 τ0 = 0.025 s

The computations have been carried out for a function f(t) given by

f(t) = H(t) for which f(s) =
1

s

The computations have been carried out for one value of time, namely t = 0.05, and two
values of α, namely α = 0.5 and α = 1. The temperature, displacement and stress distributions
have been obtained and plotted as shown in Figs. 1, 2 and 3, respectively.

Fig. 1. Temperature distribution for t = 0.05

Fig. 2. Displacement distribution for t = 0.05

Fig. 3. Stress distribution for t = 0.05
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Next, the computations have been carried out for one value of α, namely α = 0.99, and two
values of time, t = 0.05 and t = 0.1. The temperature, displacement and stress distributions
have been obtained and plotted as shown in Figs. 4, 5 and 6, respectively.

Fig. 4. Temperature distribution for α = 0.99

Fig. 5. Displacement distribution for α = 0.99

Fig. 6. Stress distribution for α = 0.99

For the pervious steps, FORTRAN programming language has been used on a personal
computer. The maintained accuracy has been 5 digits for the numerical program.

6. Conclusions

The computations show that:
• For α = 0.5, the solution behaves like in the coupled theory of thermoelasticity where the
velocity of the wave is infinite, but for α = 1 the solution becomes that of the generalized
theory of thermoelasticity.

• For α ≈ 1, the solution seems to behave like in the generalized theory of thermoelasticity.
This result is very important since the new theory may preserve the advantage of the
generalized theory that the velocity of waves is finite. It is difficult to say whether the
solution for α approaching 1 has a jump at the wave front or it is continuous with very
fast changes (Povstenko, 2011). This aspect invites further investigation.
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