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Endwall flows are among the most important sources of loss in turbi-
nes. The process of formation of endwall flows and evolution of vorticity
from the endwall boundary layers is briefly described in the paper. The
resulting endwall losses are discussed. The endwall boundary layer los-
ses are evaluated theoretically by integrating the entropy increase in the
boundary layer and assuming a certain model of blade profile load. The
endwall losses are also calculated with the help of CFD in a 3D straight
turbine cascade of Durham and compared with the results of available
experimental data of ERCOFTAC.
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1. Introduction

Endwall flows in turbine blade-to-blade passages are flows in endwall boundary
layers and secondary flows. The secondary flows originate from specifically
developing endwall boundary layers and are associated with the presence of
longitudinal vortices with a dominant streamwise component of the vorticity.
They are driven by transverse static pressure gradients and mass forces acting
on fluid elements in curvilinear motion through the blade-to-blade passage.
The secondary flows also modify the shape of endwall boundary layers from
which they originate. Understanding the complex development of endwall flows
is a part of understanding turbomachinery flows.

The problem of endwall flows, especially secondary flows, is discussed in
the literature. There are a number of secondary flow models documenting the
progress in our understanding of the secondary flows over the years. Some
of these models will briefly be presented in Section 2. First, the secondary
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flows in cascades without a tip clearance and relative motion of the blade tips
and endwall will be considered. Also, the formation of secondary flows in tip
clearance cascades will be discussed.

Endwall flows are also an important source of losses in turbines, espe-
cially in cascades with short-height blading and high flow turning. Due to
the complex nature of endwall boundary layer flows and secondary flows, the
evaluation of endwall losses is not an easy task. New formulas and methods
are needed to calculate endwall losses. It is also expected that CFD methods
can provide a powerful tool for the evaluation of endwall flows and losses in
turbines.

2. Formation of endwall flows

The picture of endwall flows in turbine blade-to-blade passages is extremely
complex, dominated by the presence of secondary flows. A few landmark mo-
dels explaining the development of secondary flows are illustrated in Fig. 1.
The main type of secondary flow is the induced recirculating flow, which leads
to the formation of a passage vortex. The source of the induced recirculating
flow is the cross flow in the endwall boundary layer that forms as a result
of force equilibrium in curvilinear motion. The momentum equation in the
cross-stream direction can be written in the form

ρv2

R
=
∂p

∂n
(2.1)

where v denotes the velocity, p is the pressure, ρ – density, R – streamline
curvature radius, n – normal coordinate. With a decrease of the velocity in the
boundary layer, a reduction of the streamline curvature radius in the boun-
dary layer flow is required in order to balance the pitchwise pressure gradient
formed in the channel. As a consequence, the boundary layer flow is turned
more than the main flow in the blade-to-blade channel, leading to a crossflow
from the pressure to suction surface in the endwall boundary layer. A com-
pensating return flow must then occur at a certain distance from the endwall,
giving rise to the recirculating flow described by e.g. Hawthorne (1951), Pu-
zyrewski (1963), which can be seen in Fig. 1a. From this recirculating flow,
a passage vortex is formed. Downstream in the blade-to-blade passage, due
to the pressure-to-suction side pressure difference, the passage vortex locates
near the blade suction surface. As a result of the recirculating flow in the
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Fig. 1. Secondary flow models in turbine cascades: (a) – model of Hawthorne (1955),
(b) – model of Langston (1980), (c) – model of Sharma and Butler (1987),

(d) – model of Goldstein and Spores (1988), (e) – model of Doerffer and Amecke
(1994), (f) – model of Wang et al. (1997)
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neighbouring blade-to-blade passages, a vortex layer is formed at the trailing
edge, which is quickly rolled-up downstream into a shed trailing edge vortex.

Another element of secondary flows is a horse-shoe vortex. The process
of formation of the horse-shoe vortex upstream of the leading edge and its
downstream transport was explained by Langston et al. (1980), Marchal and
Sieverding (1977), Hodson and Dominy (1987), Eckerle and Langston (1987).
The models of this process presented in these papers differ from one another in
details only. The model illustrated in Fig. 2 comes from the paper by Marchal
and Sieverding (1977). The boundary layer fluid upstream of the leading edge is
decelerated by the adverse pressure gradient and separates at a saddle point s1.
The boundary layer fluid elements form a reverse recirculating flow just before
the leading edge. This reverse flow separates at another saddle point s2. The
upstream boundary layer rolled-up in the recirculating zone flows past the
leading edge and is transported downstream in two legs – pressure-side and
suction-side leg of the horse-shoe vortex. The suction-side leg of the horse-
shoe vortex moves near the suction surface of the blade. The pressure-side leg
subject to the pressure gradient towards the suction surface moves across the
blade-to-blade passage towards this surface. The legs of the horse-shoe vortex
move along the lift-off lines that are lines of the saddle points as illustrated in
Fig. 2. The location of the horse-shoe vortex lift-off lines, especially that of the

Fig. 2. Separation of the endwall boundary layer upstream of the blade leading edge
and formation of the horse-shoe vortex; s1, s2 – saddle points, Marchal and

Sieverding (1977)

pressure-side leg depends on the load of the front part of the blade. For the case
of front-loaded profiles with high flow turning in the front part of the blade-to-
blade passage, the lift-off line of the horse-shoe vortex pressure-side leg reaches
earlier the vicinity of the suction surface than for the case of the aft-loaded
profiles. All main forms of secondary flows meet at the suction surface of the
blade. The model that explains the transport of the horse-shoe vortex, where
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the pressure-side leg of the horse-shoe vortex together with the endwall cross
flow form the main recirculating flow and the resulting passage vortex, whereas
the suction-side leg of the horse-shoe vortex stays apart counter-rotating with
respect to the passage vortex, comes from the work of Langston (1980) shown
in Fig. 1b.

In the model of Sharma and Butler (1987) (Fig. 1c), the suction-side leg of
the horse-shoe vortex is wrapped around the passage vortex, whereas in the
model of Goldstein and Spores (1988) (Fig. 1d), the suction-side leg locates
above the passage vortex and moves together with it. The picture looks similar
in the model of Doerffer and Amecke (1994) (Fig. 1e), with a dividing stream
surface between the passage vortex and the suction-side leg of the horse-shoe
vortex. In point of the suction-side leg of the horse-shoe vortex, Wang et al.
(1997) (Fig. 1f) return to the concept of Sharma and Butler (1987) – this leg of
the horse-shoe vortex remains wrapped around the passage vortex. In addition
to that, both legs of the horse-shoe vortex are formed not from a single vortical
structure, but from a pair of alternatelly dissipating vortices.

At the trailing edge, the secondary kinetic energy of the suction-side leg
of the horse-shoe vortex can be entirely dissipated as a result of shear interac-
tion with the stronger passage vortex, Moore and Smith (1984), also Sieverding
(1985). Thus, subregions of the sense of rotation opposite to that of the passa-
ge vortex may not be observed at the trailing edge section. Most papers also
suggest that there will be no distinction within the passage vortex as to which
part of it is due to the main recirculating flow or due to the pressure-side leg
of the horse-shoe vortex. The investigations of Doerffer and Amecke (1994)
indicate that the pressure-side leg of the horse-shoe vortex can be located in
the core of the passage vortex. Results of the above investigations (all papers
cited so far in this paper are experimental works) are also confirmed by results
of visualisation of RANS-based numerical calculations of the subsonic linear
Durham cascade (Gregory-Smith, 1993-2002) made by Doerffer et al. (2001).
The visualisation was performed by means of streaklines originating from the
regions of formation of various types of secondary flows and passing through
the loss centres at the cascade exit section downstream of the trailing edge.
It follows from this visualisation that the pressure-side leg of the horse-shoe
vortex of the sense of rotation the same as that of the passage vortex con-
centrates inside the passage vortex region. The fluid elements coming from
the suction-side leg of the horse-shoe vortex are distributed at the borders
of the passage vortex, losing their rotation (originally opossite to that of the
passage vortex) as a result of interaction with it. The mutual location and
interaction of the passage vortex, pressure-side leg and suction-side leg of the
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horse-shoe vortex are main elements differentiating the presented secondary
flow models. On the one hand, the differences between the models reflect the
progress in understanding of the endwall flows in the course of time. On the
other hand, they suggest that depending on the cascade geometry and flow
thermodynamics, the picture of secondary flows may be not uniform but sub-
ject to change, especially in point of mutual relations between the intensities
of particular secondary flow structures.

The models of Goldstein and Spores (1988), Doerffer and Amecke (1994),
Wang et al. (1997) also illustrate the presence of a number of tertiary vortex
structures, including corner vortices. They are shear-driven secondary flows
or structures formed as a result of separation of the main secondary flows in
the corners between the endwall and pressure or suction side of the blade.
More corner vortices, called the leading edge corner vortices, appear in the
endwall/pressure or suction side corners at the leading edge. The model of
Wang et al. (1997) features also a wall vortex induced above the passage
vortex at the suction surface. This vortex appears at a location, which in the
earlier models was reserved for the suction-side leg of the horse-shoe vortex
(Goldstein and Spores, 1988; Doerffer and Amecke, 1994). It should be noted
that real vortex structures have the rotating intensity much lower than that
presented in Fig. 1, intentionally augmented for the sake of clarity.

The vorticity contours in the cascade exit section typically exhibit two
strong peaks of the opposite signs, that is two counter-rotating vortex struc-
tures located close to each other at a some distance from the endwall. These
vortex structures can be identified as the passage vortex and trailing shed vor-
tex, Hawthorne (1951), Gregory-Smith and Cleak (1992). The trailing shed
vortex originates from the vortex layer that is formed at the trailing edge due
to the suction-to-pressure side velocity difference. Especially important is he-
re the fact that the suction side velocity in the endwall region is affected by
formation of the passage vortex. The vortex layer shed into the flow domain
downstream of the trailing edge is quickly rolled up and assumes the sense of
rotation opposite to that of the passage vortex. There is strong shear between
the passage vortex and shed trailing edge vortex.

The centres of secondary vortices are regions of a high turbulence level.
The turbulence level at the exit section of the Durham cascade in the pas-
sage vortex and trailing shed vortex measured by Gregory-Smith and Cleak
(1992) was estimated at 35% with respect to the inlet velocity, yielding 16-
17% with respect to the local downstream velocity. The turbulence level in
the suction-side corner vortex is nearly as high as above. The increase of tur-
bulent fluctuations in the region of secondary vortices can be attributed to
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the process of deformation of the endwall boundary layer under conditions
of high streamline curvature and acceleration of the main flow in the casca-
de. On the other hand, these vortex flows wash away the endwall boundary
layer towards the suction surface and give rise to relaminarisation of the do-
wnstream endwall boundary layer. The newly formed endwall boundary layer
becomes thin. It is gradually increasing in thickness but is constantly washed
away. As a result, the endwall boundary layer has a highly three-dimensional
character. Measurements of pressure pulsations in the endwall boundary layer
made by Harrison (1989) and reproduced in this paper in Fig. 3 show that this
boundary layer is in the major part laminar (downstream of the horse shoe
vortex lift-off lines) or intermittent, and becomes turbulent only in the rear
part of the blade-to-blade passage at the suction surface. For a more detailed
description of formation of secondary vortices and flows in endwall regions the
reader is requested to refer to the work by Gregory-Smith (1997).

Fig. 3. Division of the endwall boundary layer into the regions of laminar,
intermittent and turbulent flow, Harrison (1989)

Let us also consider the case of a cascade with a clearance. A schematic
development of passage vortices and a tip leakage vortex in this case is de-
picted in Fig. 4 after Sjolander (1997). The presence of the tip gap over the
blade usually eliminates the stagnation at the endwall, which typically occurs
in the corner between the endwall and blade leading edge in the no-tip-gap
configuration. Therefore, a horse-shoe vortex does not feature at the tip en-
dwall unless the tip gap is very small. The flow at the tip endwall approaching
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Fig. 4. Tip leakage and passage vortices at the tip endwall with a clearance,
Sjolander (1997)

the tip region above the leading edge of the blade is divided into two streams
aiming towards low pressure regions at the suction surfaces of the neighbo-
uring blades – a main stream of the tip leakage flow going through the tip gap
over the blade and a stream of cross-flow going across the blade-to-blade pas-
sage. The tip leakage flow leaving the tip gap separates from the endwall under
conditions of adverse pressure gradient and forms a tip leakage vortex. The
cross-flow blocked by the development of the tip leakage vortex also separates
from the endwall and rolls up into a passage vortex. The stream dividing line
between the tip leakage and cross-flow lies at the pressure side of the blade tip.
The tip leakage and passage vortices are characterised by the opposite sense of
rotation. Usually, a dominant structure is the tip leakage vortex. The relations
between the circulation and size of the two structures depend on many factors
such as the tip gap size and flow turning angle.

3. Evolution of vorticity from the endwall boundary layer

The principal mathematical description of secondary flows draws on the spatial
evolution of the vorticity vector in the cascade. This description enables better
understanding of the phenomena associated with the secondary flows.

At the inlet to the cascade in a non-skewed endwall boundary layer, the
vorticity can be assumed to have a direction normal to the main stream ve-
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locity. During the flow through the cascade, the shear flow is turned, which
gives rise to the production of longitudinal (streamwise) vorticity, whereas the
normal component of the vorticity is also changed. The starting point to de-
scribe the evolution of the vorticity vector is the vorticity transport equation,
which can be obtained from the momentum equation subject to the curl ope-
rator, e.g. Sherman (1990). The vorticity transport equation for a steady flow
of a viscous compressible gas can be written as below (with the effect of mass
forces neglected)

(u · ∇)ω = (ω · ∇)u− ω(∇ · u)−∇×
(∇p

ρ

)

+∇×
(∇ · τ

ρ

)

(3.1)

where u is the velocity vector, ω – vorticity vector, p – pressure, ρ – density,
τ – viscous stress tensor. Besides the left-hand-side convective term, the first
right-hand-side term represents the vorticity production due to the velocity
gradient (stretching and curving of vortex lines), second term – describes the
vorticity production in a compressible flow (reduction in an expanding flow,
increase in a compression region), third term – accounts for the baroclinic
effect (in the field of spatial changes of pressure and density), fourth term –
due to interaction of viscous forces in a compressible flow.

Lakshminarayana and Horlock (1973) presented a solution to this equation,
which is of interest in turbomachinery applications. They assumed a coordinate
system (s,n, b), where s is the unit vector tangent to the streamline u = sq
(q – velocity magnitude), n is the unit normal vector directed towards the
streamline curvature centre n/R = s · ∇s (R – streamline curvature radius),
whereas b is the unit binormal vector b = s × n so that (s,n, b) is a right-
handed set of vectors. The differential coefficients of the unit vectors of the
system fulfil the following relations

∂s

∂s
=
n

R

∂s

∂n
=
n

an

∂an
∂s

∂s

∂b
=
b

ab

∂ab
∂s

∂n

∂s
=
b

τ
−
s

R

∂b

∂s
= −
n

τ

(3.2)

where τ is the radius of torsion of the streamline, an – distance in the n
direction between neighbouring streamlines, ab – distance in the b direction
between neighbouring streamlines.

In the assumed coordinate system, changes of the pressure distribution in
an inviscid flow are

∂p

∂s
= −
1

2
ρ
∂q2

∂s

∂p

∂n
= −

ρq2

R

∂p

∂b
= 0 (3.3)
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Changes of the streamwise and normal component of the vorticity vector in
the cascade, ωs, ωn, where ω = sωs+nωn+bωb, derived in Lakshminarayana
and Horlock (1973) can be rewritten in the form

ρq
∂

∂s

(ωs
ρq

)

=
2ωn
R
−
1

qρ2

(∂p

∂n

∂ρ

∂b
−
∂ρ

∂n

∂p

∂b

)

+ [terms with viscosity]

(3.4)

1

q

∂

∂s
(ωnq) =

ωb
τ
−
ωn
ab

∂ab
∂s
+
1

qρ2

(∂p

∂s

∂ρ

∂b
−
∂ρ

∂s

∂p

∂b

)

+ [terms with viscosity]

In practical applications, Eq. (3.4)1 for the streamwise vorticity seems to be
of the main significance. Equation (3.4)2 for the normal vorticity is not that
widely used. Values of the normal vorticity can be found in an alternative way.
The above expressions do not expose terms connected with interaction of

viscous forces, which in general have a very complex form. Although fluid
elements that make up the passage vortex originate from endwall boundary
layers, the dynamics of secondary flows within the blade-to-blade passage is
often regarded in terms of interaction of the pressure and inertia forces, ne-
glecting the viscous forces. The interaction of viscous forces is then limited to
the formation of the inlet boundary layer and destruction of secondary vortex
structures in the process of their mixing with the main flow downstream of
the blade trailing edges. Lakshminarayana and Horlock (1973), also Horlock
and Lakshminarayana (1973) obtained detailed solutions to Eqs. (3.4) for a
number of model flow cases, including an inviscid constant-density flow, invi-
scid incompressible stratified flow (with constant density along streamlines),
inviscid compressible flow of a barotropic fluid or perfect gas, viscous incom-
pressible flow as well as inviscid incompressible flow in the rotating coordinate
system.
In the most simple case of an inviscid incompressible flow with ρ = const ,

Eq. (3.4)1 yields

ρq
∂

∂s

(ωs
ρq

)

=
2ωn
R

(3.5)

Equation (3.5) indicates the effect of normal vorticity and streamline curvature
on the process of generation of streamwise vorticity. Making use of an appro-
ximate assumption that the normal vorticity and velocity magnitude remain
unchanged along the streamlines and integrating by substitution dα = ds/R,
yields the following equation (Squire and Winter, 1951)

ωs − ωs0 = 2ωn0(α− α0) (3.6)

where ωs is the current streamwise vorticity, ωs0 and ωn0 are the streamwise
and normal vorticities at the inlet to the cascade (with ωs0 = 0 for non-
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skewed boundary layers), whereas the difference α − α0 denotes the current
flow turning in the cascade.
In a steady inviscid flow, streamlines and vorticity lines lie on surfaces

of constant total pressure (Bernoulli surfaces), and the normal vorticity can
be obtained from scalar multiplication of the Gromeko-Lamb equation by the
unit binormal vector

b · (u× ω) = b ·
1

ρ
∇
(

p+
q2

2

)

⇒ ωnq =
1

ρ

∂p∗

∂b
=
∣

∣

∣

∇p∗

ρ

∣

∣

∣ cosφ (3.7)

which turns Eq. (3.5) into the form (Hawthorne, 1955)

ρq
∂

∂s

(ωs
ρq

)

=
2

Rρq

∂p∗

∂b
or

(ωs
ρq

)

2
−
(ωs
ρq

)

1
=

2
∫

1

2

Rρq2

∣

∣

∣

∇p∗

ρ

∣

∣

∣ cosφ ds

(3.8)
where p∗ is the total pressure, φ denotes the angle between the binormal versor
and the normal to the Bernoulli surface (or direction of ∇p∗). Equation (3.7)
exhibits a relationship between the streamwise vorticity and total pressure
loss in the binormal direction. Equations (3.5) and (3.8) also remain valid for
the case of an inviscid compressible flow of a barotropic fluid (ρ = f(p) –
which follows from the fact that in the assumed coordinate system ∂p/∂b = 0,
from which ∂ρ/∂b = 0) and for the case of homoentropic flow of a perfect
gas (p/ρκ = const ). As shown in Shermann (1990), for the case of flow of a
perfect gas with entropy gradients Eq. (3.8) reads as

ρq
∂

∂s

(ωs
ρq

)

=
2

Rρ∗q

∂p∗

∂b
(3.9)

where ρ∗ denotes the density calculated from the state equation using stagna-
tion parameters.
Lakshminarayana and Horlock (1973) also explain the effect of rotation

on the development of secondary flows. The equation for the evolution of the
vorticity along streamlines can be presented in the form (with viscous terms
neglected)

ρq
∂

∂s

(ωs
ρq

)

=
2ωn
R
+
2s · (Ω × ω)

q
−
1

qρ2

(∂p

∂n

∂ρ

∂b
−
∂ρ

∂n

∂p

∂b

)

(3.10)

In the above equation, the vorticity is written in the absolute reference fra-
me, whereas the streamlines are assumed in the rotating frame, thus s is the
streamwise unit vector in the relative frame, q – relative velocity magnitu-
de; Ω – vector of the angular velocity of the rotating reference system. The
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rotating term disappears as long as the Bernoulli surfaces remain cylindrical,
which can be assumed approxiomate for the case of axial turbines. Therefore,
rotation of the blade-to-blade channels does not influence secondary flows in
axial turbines. The situation looks different in radial (radial/axial) turboma-
chines. More information on the physical nature of evolution of the streamwise
vorticity in the secondary flow region can be found in Gregory-Smith (1997).

Based on the known distribution of the streamwise vorticity in the exit
section, the exit velocity of the induced flow and the secondary kinetic energy
can be evaluated. Assuming that this energy is lost in the process of mixing
with the main flow, one can estimate the level of mixing losses. The velocity
induced at the trailing edge section can be numerically calculated from the
Poisson equation for the stream function ψ

∆ψ = −ωs1 (3.11)

The components of the induced secondary velocity vr1, vn1 are then found as

vr1 = −
∂ψ

∂n
vn1 =

∂ψ

∂r
(3.12)

The mass-averaged mixing loss coefficient due to secondary flows can be writ-
ten as

ξsec =

hp
1
∫

0

1
∫

0

ρ1v1(v
2
r1 + v

2
n1) cosα1 dxdy

hp
1
∫

0

1
∫

0

ρ1v31 cosα1 dxdy

(3.13)

4. Endwall loss sources

Production of endwall losses is a complex problem. Among basic loss me-
chanisms in the endwall and secondary flow regions are (Sieverding, (1985);
Gregory-Smith, 1997):

• formation of the inlet boundary layer upstream of the blade leading edge,

• formation of the boundary layer downstream of the horse-shoe vortex
lift-off lines,

• shear effects along the horse-shoe vortex lift-off lines, separation lines
and along dividing surfaces between the passage vortex, other vortices,
main flow and blade surfaces, especially at the suction surface,
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• dissipation of the passage vortex, trailing shed vortex, corner vortices
and other vortex flows in the process of their mixing with the main flow
(it can be assumed that the secondary kinetic energy of the relative
motion in the exit section is lost during mixing).

The processes of mixing due to secondary flows are usually not accompli-
shed in the blade row where they originate and are continued in the downstre-
am blade-to-blade passages. Considerable non-uniformities in the distribution
of magnitude and direction of the velocity at the inlet to the subsequent blade
row may lead to local separations and upstream relocation of the laminar-
turbulent transition at the blade in the secondary flow dominated region.
The most decisive for the level of endwall losses are the blade span-to-chord

ratio, flow turning in the cascade and inlet boundary layer thickness, which
is accounted for in all experiment-based loss correlations for turbine cascades,
e.g. Craig and Cox (1971), Traupel (1977). In the correlation of Traupel, the
endwall losses are reversely proportional to the span-to-chord ratio in the blade
span range in which there is no interference between secondary flow vortices
from the opposite endwalls. For short blades this corelation is more complex.
The endwall losses increase with the increased flow turning and increased inlet
boundary layer thickness.

5. Endwall loss diagram

Denton (1999) evaluated the loss coefficient in the profile boundary layer by
integrating the entropy production along the boundary layer. For an isolated
turbine cascade, the profile loss coefficient can be expressed in the form

ζ =
T∆s
1
2
V 2δ,te
=

T Ṡ
1
2
V 2δ,tem

=
∑ C

p

2

cosα1

1
∫

0

CD
( Vδ
Vδ,te

)3

d
( x

C

)

(5.1)

where the integration extends on both sides of the profile, T denotes tem-
perature, ∆s – entropy rise, Ṡ – entropy production in the boundary layer,
Vδ is the velocity at the edge of the boundary layer, Vδ,te – this velocity at
the trailing edge, CD – dissipation coefficient for a turbulent boundary lay-
er (CD = 0.002 – Schlichting (1968)), p – cascade pitch, C – profile chord,
α1 – exit angle (measured from the normal to the cascade front). The above
formula exhibits the importance of the cube from the surface velocity V 3δ (re-
ferred to the exit isentropic velocity), state of the boundary layer, pitch/chord
ratio and exit angle in generation of profile boundary layer losses.
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The methods of evaluation of boundary layer losses in the profile boundary
layers may not in general apply to endwall boundary layers. However, Harrison
(1989) and Denton (1999) indicate that the losses in a specifically evolving
endwall boundary layer can roughly be evaluated in a similar way assuming the
dissipation coefficient as for turbulent flow. Thus, the entropy production in
the endwall boundary layer upstream of the leading edge Ṡ− and downstream
of the trailing edge Ṡ+ can be found as

Ṡ− = 2CDp∆x−ρ
V 3δ,le
Tδ,le

Ṡ+ = 2CDp∆x+ρ
V 3δ,te
Tδ,te

(5.2)

where Vδ,le, Tδ,le, Vδ,te, Tδ,te denote velocities and temperatures at the edge of
the boundary layer; ∆x−, ∆x+ are lengths of the endwall boundary layers,
that is the distances along the endwalls from a referential inlet section to the
leading edge and from the trailing edge to the exit section. The factor 2 in Eq.
(5.2) indicates that both endwalls are considered. Any change of radius for an-
nular cascades is neglected assuming the same value of pitch for both endwalls.
Assuming that the mass flow rate is equal to m = Vxρph, where h denotes
the channel height, Vx is the axial velocity Vx = Vδ,le cosα0 = Vδ,teα1 (α0, α1
– inlet and exit angles), and making use of the entropy definition of the loss
coefficient ξ = T Ṡ/[0.5V 2δ,tem], the following relations for the loss coefficient
upstream of the leading edge ξ− and downstream of the trailing edge ξ+ can
be derived

ξ− = 4CD
∆x−
h

cos2 α1
cos3 α0

ξ+ = 4CD
∆x+
h

1

cosα1
(5.3)

The contribution of the first term is negligible for a low inlet-to-outlet velocity
ratio in an expanding cascade, whereas the second term can be important for
an extended boundary layer region downstream of the trailing edge ∆x+. The
loss coefficient remains inversely proportional to the channel height and also
to the flow turning in the second term.
The loss coefficient in the blade-to-blade region, that is between the leading

and trailing edge will now be evaluated. The entropy production in the endwall
boundary layer within the blade-to-blade passage ṠM can be found as a surface
integral

ṠM = 2CDCap

1
∫

0

1
∫

0

ρV 3δ
Tδ

d
( x

Ca

)

d
(y

p

)

(5.4)

where Ca is the axial chord (Ca = C cos γ, where γ denotes the stagger angle
of the profile). The integral appearing above can be evaluated assuming a
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linear velocity profile across the pitch (that is between the suction and pressure
surface Vδ = Vp + (Vs − Vp)y, y ∈ 〈0, 1〉, where Vs, Vp are not functions of
the coordinate y), and also assuming a model of a thin profile evenly loaded
along the chord with a constant suction-to-pressure surface velocity difference
(that is Vs−Vp = 2∆V = const , Vs+Vp = 2V , V cosα = Vx, where α is the
current flow angle in the cascade changing between the inlet and outlet angles
α0, α1). The whole calculation procedure was described by Lampart (2006)
and will not be repeated here. The following formula for the loss coefficient ζM
accounting for the endwall boundary layer within the blade-to-blade passage
was derived there

ζM =
T ṠM
1
2
V 2δ,tem

=
4C2Dα1 cos γ

α1 − tanα0

C

h

4

3
c1 (5.5)

This formula was obtained for the velocity ratio ∆V/Vx =
√

c1/3c2 corre-
sponding to the minimum value of loss coefficient in the profile boundary
layer, which is equivalent to the optimum pitch/chord ratio, and also assu-
ming that the function tanα changes linearly with the chord between tanα0
and tanα1. The functions c1 and c2 are

c1 =
1

4

( tanα1
cos3 α1

−
tanα0
cos3 α0

+ 3c2
)

(5.6)

c2 =
1

2

(

tanα1
cosα1

−
tanα0
cosα0

+ ln
tanα1 +

1
cosα1

tanα0 +
1
cosα0

)

With the surface velocity cubed in the loss formula as well as with the
linear surface velocity profile across the pitch postulated, and additionally
assuming that Vp = 0, it can be shown that the mean endwall boundary layer
losses per unit area form only 1/4 of the mean profile boundary layer losses. In
fact, the surface pressure velocity can not be neglected and the endwall losses
are larger than that.

The sum of the endwall loss coefficients expressed by Eqs. (5.3) and (5.5),
that is ξ−+ ξM + ξ+ is plotted in Fig. 5 as a function of cascade inlet and exit
angles for the chord/span ratio C/h = 1, stagger angle γ = 30◦ (which gives
the axial chord/span ratio Ca/h = 0.866) and for a typical axial extention
of the inlet and exit region ∆x± = C/4. The boundary layer losses clearly
increase with the increased exit angle. For a combination of inlet and exit
angles typical for subsonic stator cascades of impulse turbines (e.g. with PŁK
profiles – see part II of the paper) α0 = (−10

◦,+10◦), α1 = (75
◦, 80◦), the
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endwall boundary layer loss coefficient calculated from Eqs. (5.3) and (5.5)
changes between 1.8-2.5%. As indicated by Denton (1993), 2/3 of the overall
endwall loss falls on endwall boundary layers. The other part comes from
mixing of the inlet boundary layer in the region of secondary flow formation,
and from dissipation of the kinetic energy of secondary vortices, typically 1/4 of
the overall endwall loss.

For a combination of the inlet and exit angles typical for rotor cascades of
impulse turbines (e.g. with R2 profiles – also see part II) α0 = (−70

◦,−60◦),
α1 = (70

◦, 75◦), the endwall boundary layer loss coefficient calculated from
Eqs. (5.3) and (5.5) changes between 1.5-2.0%, which is less than for the
considered stator cascade. This can be explained by the lower cascade exit
angle and, consequently, lower velocities in impulse stage rotor throats. But
the overall endwall losses are by no means lower. In this case, the losses due
dissipation of secondary vortices considerably increase.

Fig. 5. Endwall boundary layer loss coefficient ξ
−
+ ξ+ + ξM for a given set of

cascade inlet and exit angles calculated from Eqs. (5.3) and (5.5); C/h = 1,
Ca/h = 0.866

The evaluation of losses due to mixing of secondary flows with the main
stream using elementary methods is especially difficult since the secondary flow
patterns have a very individual character depending on the cascade geometry
and flow thermodynamics. These mixing losses were evaluated theoretically for
an inviscid flow in the paper by Puzyrewski (1963). Based on the convection
of vortex lines in a flow turning channel, the streamwise vorticity in the exit
section was calculated there, from which the secondary kinetic energy was
found. With the assumption that all this kinetic energy is dissipated, the



Investigation of endwall flows... 337

mixing loss coefficient was derived there as (after adaptation of the original
formula to the denotations used in this paper)

ξsec =
c2

(

α1 +
h
C
C
p

)2

sin2(α1 − α0)

(cosα1 + cosα0)2
cos4 α1
cos4 α0

(5.7)

The above formula contains a constant c2 whose value was obtained from
correlation with experimental data for a few types of cascades, c2 = 0.159. This
formula explains large contribution of mixing losses due to secondary flows in
cascades with front-loaded profiles having high negative inlet angles and high
flow turning (typical in impulse stage rotor cascades, where α0 < −60

◦),
whereas the mixing losses are relatively small for cascades with the zero inlet
angle (as in stator cascades).
The increased possibilities of determination of mixing losses are connected

with the development of 3D flow solvers.

6. Comparison of numerical results with ERCOFTAC data

A series of CFD computations of a 3D turbine cascade of Durham (Gregory-
Smith, 1993-2002) were made with the help of 3D RANS solvers FlowER (fi-
nite volume method, upwind differencing, thrid-order ENO scheme, Baldwin-
Lomax or Menter k − ω SST turbulence model, see Yershov and Rusanov
(1997), Yershov et al. (1998)) and Fluent (finite volume method, second-order
upwind, Reynolds Stress Model – having basic features of the Launder-Reece-
Rodi model, see Fluent Inc. (2000)). The calculations converging to a steady-
state were made in a one blade-to-blade passage of the rotor cascade on H
or O-H type grids refined near the blade walls and endwalls (y+ = 1-2), le-
ading and trailing edges of the blades. Typically, there were 12-16 grid cells
in each boundary layer. The number of cells in one blade row reached 500 000
for H-type grids (92 axially, 76 radially, 72 pitchwise) and 1 000 000 for O-H
grids.
Regions of accumulation of secondary flow losses are located at a some

distance from the endwalls, Hodson and Dominy (1987), Gregory-Smith and
Cleak (1992). The area distribution of total pressure downstream of the tra-
iling edge in a Durham linear cascade (pitch/chord – 0.85, span/chord – 1.79,
inlet angle 43◦, exit angle −69◦) shown in Fig. 6 exhibits a strong loss cen-
tre containing two peaks due to the passage vortex and trailing shed vortex.
Another loss centre is placed near the endwall in the region of the suction
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side corner vortex. The total pressure peaks coincide with places characterised
by the highest viscous stresses and are located near the places of maximum
vorticity. The picture of secondary flows evolves downstream as a result of
dissipative processes. In other cascades, depending on the distance from the
trailing edge, the area distribution of total pressure in the exit section features
only one peak in the secondary flow loss centre due to the passage vortex, see
Langston et al. (1977), Yamamoto (1987).

Fig. 6. Durham cascade – total pressure contours at the slot 10 (28% axial chord
downstream of the trailing edge); (a) experimental (Gregory-Smith, 1993-2002),
(b) computed by FlowER with k − ω SST, (c) computed by Fluent with RSM-LRR

The pitch-averaged spanwise distribution of the total pressure coefficient
(referred to the inlet dynamic head) in the exit section of the Durham cascade
illustrated in Fig. 6 shows a maximum at 20% of the blade span from the
endwall. The secondary flows give rise to non-uniformities in the velocity field.
In the secondary flow dominated region, the flow turning angle is decreased on
the mid-span side of the secondary flow vortices, whereas on the endwall side
it is increased. This flow underturning and overturning can also be observed
in Fig. 7.
The comparison of experimental and computational results for the Dur-

ham cascade presented in Figs. 6 and 7 can be considered a validation of the
computational methods used in this paper. The turbulent viscosity models
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Fig. 7. Durham cascade – spanwise distribution of the loss coefficient (a) and exit
swirl angle (b) at the slot 10 (28% axial chord downstream of the trailing edge);

experimental (Gregory-Smith, 1993-2002), computed by FlowER with
Baldwin-Lomax or Menter k − ω SST and computed by Fluent with RSM-LRR

seem to be able to qualitatively predict basic features of the secondary flows.
However, they overpredict the level of losses in the wake and in the secondary
flow region. Quantitative predictions are improved with the Reynolds stress
model, but they are connected with a significant increase of computational
costs.

7. Conclusions

The formation of endwall flows and evolution of vorticity from the endwall
boundary layers was explained in the paper. Several models of secondary flows
in turbine cascades were presented. An analytical expression was derived to
approximately describe the level of losses in the endwall boundary layers by
integrating the entropy increase in the endwall boundary layer and assuming a
model of a thin profile evenly loaded allong the chord. The endwall losses were
also calculated with the help of CFD in a 3D planar cascade of Durham and
compared with the results of available experimental data of ERCOFTAC. The
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calculations based on turbulent viscosity models are capable of capturing basic
3D flow effects in cascade flows. However, they overpredict the level of losses
in the wake and in the secondary flow region. The quantitative predictions
are improved with the Reynolds stress model, but they are connected with a
significant increase of computational costs.
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Badanie przepływów i strat brzegowych w turbinach osiowych.
Część I. Formowanie się przepływów w strefie brzegowej i strat

brzegowych

Streszczenie

Przepływy brzegowe stanowią jedno z głównych źródeł strat w turbinach. W pra-
cy w skrócie wyjaśniono proces formowania się przepływów brzegowych i ewolucję
wirowości pochodzącej z brzegowych warstw przyściennych. Przedyskutowano wyni-
kające stąd straty przepływu. Wyznaczono teoretycznie straty przepływu w brzegowej
warstwie przyściennej poprzez całkowanie przyrostu entropii wzdłuż warstwy brzego-
wej i zakładając pewien model obciążenia profilu łopatkowego. Z pomocą programów
komputerowych numerycznej mechaniki płynów wyznaczono także przepływ i straty
brzegowe w prostej palisadzie turbinowej Durham i porównano otrzymane rezultaty
z danymi eksperymentalnymi ERCOFTAC.
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