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The paper contains an experimental verification of a new nomogram for
determination of resonance vibration amplitudes in a vibratory machine
driven by means of an inertia vibrator in the run-down phase. Unlike the
Katz nomogram, it takes into consideration the interaction between the
vibrator and machine body. The verification was performed for a case
where the machine body was in curvilinear motion with its trajectory
close to circular.
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1. Introduction

The problem of determination of the values of resonance amplitudes during the
run-up and run-down phases in vibratory machines driven by inertia vibrators
was researched in many works in the scientific literature. First attempts were
related to analysis of the equation of motion in the form

Mẍ+ bẋ+ kx = f(t) (1.1)

describing motion of a vibrating mass M supported in flexible and viscous
suspension defined by parameters k and b, excited by a force of the given
form. In the simplest case, it was a sinusoidal force having a constant amplitude
and linearly increasing (or decreasing) frequency (Lewis, 1932), or having the
amplitude directly proportional to the square of vibrator velocity as in the
case described by Katz (1947). The results of the above mentioned approach
were also presented in form of nomograms (Goliński, 1979) based on the so-
called acceleration factor which combines angular acceleration of the vibrator
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with the square of natural frequency of the vibrating machine. In works by
Banaszewski and Turkiewicz (1980), Zeller (1949), Fernlund (1963), Fearn
and Millsaps (1967), Irretier and Leul (1993), Leul (1994) and others, one can
find formulas for resonance amplitudes obtained analogously; i.e. by empirical
approximations of numerically integrated equation (1.1). Based on these works,
one could confirm in general that the resonance amplitude at a constant value
of the vibrator angular acceleration is inversely proportional to the square
root of that acceleration and the resonance frequency values are varying for
the run-up and run-down phases and also depend on the value of vibrator
angular acceleration. The most accurate presentation for motion of a mass
suspended on a flexible-viscous system and excited by a given force is most
probably the work done by Markert and Seidler (2001), who solved equation
(1.1) in the case when the force was presented as a linear combination of an
arbitrarily selected function and its derivatives in time.
However, if the interaction between vibrator motion and the vibrating bo-

dy of the machine is not considered, it may lead to gross errors. Michalczyk
(1994) pointed out this problem, since it shows a significant effect of the vibra-
tion moment on behaviour of the resonance and explained the reasons of the
vibrator angular velocity breakdown during the run-down phase in relation to
the errors created during reading out the Katz nomogram. Michalczyk (1995)
derives formula (1.2) based on the energy balance between the vibrator and
the machine body allowing one to evaluate the resonance vibration amplitude
Amax from the top levels down for the run-down phase

Amax =

√

Jzr
Mc

(1.2)

where
Jzr – moments of inertia of the vibrator and drive shaft reduced to

the rotation axis of the vibrator,
Mc – mass of the vibrating part of the machine.

The verification of a new nomogram for determination of the amplitude of
resonance vibrations for the machine run-down phase presented in this paper
is related to motion during which the body moves along a circular trajectory.
Therefore, it is not possible to directly compare the obtained results with
the results of studies of other authors. However, according to Section 4, the
nomogram can be indirectly compared with the studies related to rectilinear
motion of the machine.
The results of comparisons obtained through the application of the no-

mogram for the body moving along rectilinear and circular trajectories with
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more accurate computer simulations (Cieplok, 2008) came out very well, the-
reby it can be also expected that the errors at the test stands are of similar
values.

2. Equations for a symmetrically supported vibratory machine in

relative units. Nomogram

Cieplok (2007) analysed a phenomenological model of a vibratory machine
illustrated schematically in Fig. 1. The machine body, having a mass M is
suspended in a flexible viscous system described by constants k and b. The
system is excited to vibration by an inertia vibrator characterised by the static
unbalance me. The vibrator inertia moment combined with that of the driving
system was reduced to the coordinate of vibrator rotation and is denoted
by Jzr. The vibrator is exposed to action of the driving moment directed
along the coordinate ϕ of vibrator angular motion. For this model, equations
(2.1) were derived

[

Mc 0
0 Mc

] [

ẍs
ÿs

]

+

[

b 0
0 b

] [

ẋs
ẏs

]

+

[

k 0
0 k

] [

xs
ys

]

=

[

Px
Py

]

[

Px
Py

]

=

[

me sinϕ
−me cosϕ

]

ϕ̈+

[

me cosϕ
me sinϕ

]

ϕ̇2 (2.1)

Jzrϕ̈−me(ẍ sinϕ− ÿ cosϕ) =Mel

Fig. 1. Model of a vibratory machine
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Upon transformation to the coordinate system 0ξη rotating with the
vibrator angular velocity ϕ̇ (Fig. 2), these equations assume the following
form















Mc 0 Mcη 0 0
0 Mc Mcξ +me 0 0
0 me meξ + Jzr 0 0
0 0 0 1 0
0 0 0 0 1















d

dt















vξ
vη
ω
ξ
η















=

(2.2)

=















2Mcωvη − bvξ − (k − ω
2Mc)ξ + bωη +meω

2

−2Mcωvξ − bvη − (k − ω
2Mc)η − bωξ

−2mevξω +meηω
2 +Mel

vξ
vη















where

Mc =M +m vξ =
dξ

dt

vη =
dη

dt
ω = ϕ̇

(2.3)

Fig. 2. Position of the machine body mass centre in the coordinate systems 0xy, 0ξη

The transformation also enabled one to create a definition of relative units
and parameters for the machine. Hence, by substituting the following
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ξr =
ξ

Au
ηr =

η

Au
ωr =

ω

ω0

σ =
m2e2

McJzr
q =
Mel
Jzr

1

ω20
γ =

b

2
√
Mck

τ =
ω0
2π
t Au =

me

Mc
ω0 =

√

k

Mc

vξr =
dξr
dτ

vηr =
dηr
dτ

(2.4)

set (2.2) may be expressed in the following form















1
4π2

0 − 1
2π
ηr 0 0

0 1
4π2

1
2π
(1 + ξr) 0 0

0 σ
4π2

1
2π
(σξr + 1) 0 0

0 0 0 1 0
0 0 0 0 1















d

dτ















vξr
vηr
ωr
ξr
ηr















=

(2.5)

=















ω2r − (1− ω
2
r)ξr −

γ
π
vξr +

1
π
ωrvηr + 2γωrηr

−(1− ω2r)ηr −
γ
π
vηr −

1
π
ωrvξr − 2γωrξr

−σ
π
vξrωr + σηrω

2
r + q

vξr
vηr















In this way, a set of six physical parameters Mc, me, Jzr, Mel, k, b required
for description of the machine dynamics has been reduced to three parameters
σ, γ and q.

Based on set above (2.5), Cieplok (2008) developed the following:

• layer graphs enabling determination of the amplitude multiplication fac-
tor for the run-up phase based on values of the parameters σ, γ and q,

• a nomogram (Fig. 3) enabling determination of the amplitude multipli-
cation factor for the run-down phase based on values of the nomogram
parameters σ and γ.

3. Verification of the nomogram

In order to verify practical applicability of a new nomogram, an experiment
was conducted at the AGH Vibromechanics Laboratory. A machine shown
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Fig. 3. Multiplication factor α of the machine body vibration amplitude for the
run-down phase; α = Amax/Au, where Amax – resonance amplitude

Fig. 4. Test Stand. 1 – machine body, 2 – inertia vibrator, 3 – spiral spring,
4 – electric motor, 5 – hole for an additional mass

in Fig. 4 was selected for testing. It consists of a body supported on four
symmetrically spaced spiral springs forced to vibrate by means of an inertia
vibrator shown in Fig. 5. The vibrator is driven by a 4-pole asynchronous
electric motor ensuring over-the-resonance work of the machine.

The mass of the machine vibrating part Mc was determined based on
the change of machine natural vibration frequencies as a result of adding the
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Fig. 5. Inertia vibrator used for the purpose of experiment

Fig. 6. Graph showing natural vibration acceleration of the machine body recorded
during the experiment

mass md. Based on Fig. 6 illustrating machine natural vibrations in the vertical
direction, its natural period of vibrations was determined

T01 = 0.248 s (3.1)

Upon placing additional masses of total 46.5 kg into the open holes shown
in Fig. 4, the machine new natural vibrations period was determined to be

T02 = 0.277 s (3.2)
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Based on the relationship between the vibrating mass natural frequency
and the support stiffness, the sought value of mass of the vibrating part was

Mc ∼= md
1

(

T02
T01

)2

− 1
= 187.8 kg (3.3)

as well as the equivalent spring coefficient

k ∼=
( 2π

T01

)2

Mc = 120545
N

m
(3.4)

Next, based on the logarithmic decrement δ of vibration damping (Osiń-
ski, 1980), the equivalent viscous damping coefficient of the suspension was
determined

b =
2Mcδ

T01
= 136.82

Ns

m
(3.5)

and then the damping factor was obtained

γ =
b

2
√
Mck

= 0.0144 (3.6)

As now it is possible to notice, the omitting of dissipation in formulas (3.3)
and (3.4) does not cause significant errors. The percentage difference between
the period of natural undamped and damped oscillations does not exceed

(1−
√

1− γ2) · 100% ≈ 0.01%

Upon identification of geometry of masses creating the active part of the
vibrator, its own mass could be determined

m = 4.7 kg (3.7)

the radius of unbalance

e = 0.0156m (3.8)

its static unbalance

me = 0.073 kgm (3.9)

and the mass moment of inertia with respect to the mass centre

Jsw = 0.00112 kgm
2 (3.10)
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Subsequently, based on the determined vibrator value parameters as well
as the catalogue value of the drive motor moment of inertia Jr increased by
the drive shaft components inertia Jd, one finally finds

Jzr = Jsw +me
2 + Jr + Jd = 0.00112 + 0.00115 + 0.009 + 0.0025 =

(3.11)
= 0.0138 kgm2

Now, from the coefficient σ = m2e2/(McJzr) = 2.1 ·10
−3 one can calculate

the amplitude multiplication ratio α = 10.6 from Fig. 3 for γ = 0.0144. It
corresponds to the absolute value of resonance amplitude

Amax = α
me

Mc
= 4.12mm (3.12)

Then, from Fig. 7 showing a recording of the machine body mass centre
displacement during the run-down phase, we can read out the resonance am-
plitude

Amax = 3.72mm (3.13)

The percentage difference between the theoretically determined and measured
values was 10.8%.

Fig. 7. Graph of the machine body mass centre displacement ys during the
run-down phase. Experiment

4. Conclusions

If we take a practical application into consideration, the obtained result is
sufficiently accurate for evaluation of the resonance amplitude for the run-
down phase of a machine with the body moving along a circular trajectory.
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A better approximation of the resonant vibration amplitude could also be
expected for the machine performing a rectilinear trajectory. Although direct
comparison of the nomogram with results of other authors is not possible due
to a variety of different models assumed for analysis, however, an indirect
comparison may still be possible. The possibility of nomogram adaptation to
a machine featuring straight linear motion of the body by applying a twice less
value of the parameter σ during readout was indicated in Cieplok (2008). In
this way, one could read out a value of the vibration amplitude multiplication
factor to be α ≈ 13 for a machine having physical parameters corresponding
to the machine used in the experiment and having a rectilinear trajectory of
body motion. Its value obtained based on below mentioned methods was:

• formula (1.2)
√

Jzr
Mc

Mc
me
= 21.6

• Katz nomogram – between 7 and 12,

• Fernlund formula – 17.2,

• Markert and Seidler formula – 13.8.

It should be mentioned that for the last three items on the above list, the
vibrator angular acceleration was determined based on computer simulation,
see Fig. 8, by capturing the breakdown shift of the vibrator angular velocity
during its passage through the resonance zone. This simulation was conducted
with taking into account idealised friction levels caused by the presence of the
machine suspension, which was reflected by a viscous damping effect.

Fig. 8. Graph for vibrator angular velocity during run-down phase in the area of
resonant frequency. Computer simulation
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However, we cannot generally have the accurate value of the vibrator an-
gular acceleration for the phase of velocity breakdown during resonance and,
therefore, the determination of a useful value of the vibration amplitude mul-
tiplication factor is not possible.

The nomogram presented in this paper only relates to generally accessible
machine physical parameters, thus it is a much more convenient and more
accurate alternative than those discussed in previous publications.
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Weryfikacja nomogramu do wyznaczenia amplitudy drgań rezonansowych

dla fazy wybiegu maszyny wibracyjnej

Streszczenie

W pracy poddano weryfikacji doświadczalnej nowy nomogram do wyznaczenia
amplitudy drgań rezonansowych maszyny wibracyjnej o napędzie za pomocą wi-
bratora bezwładnościowego dla fazy wybiegu. W odróżnieniu od nomogramu Kaca
uwzględnia on sprzężenie pomiędzy wibratorem a korpusem maszyny. Weryfikację
przeprowadzono dla przypadku, w którym korpus maszyny wykonuje ruch postępowy
o trajektorii zbliżonej do kołowej.
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