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The paper addresses a two-dimensional boundary identification (reconstruction) problem in
steady-state heat conduction. Having found the solution to the Laplace equation by super-
positioning T-complete functions, the unknown boundary of a plane region is approximated
by polynomials of an increasing degree. The provided examples indicate that sufficient ac-
curacy can be obtained with a use of polynomials of a relatively low degree, which allows
avoidance of large systems of nonlinear equations. Numerical simulations for assessing the
performance of the proposed algorithm show better than 1% accuracy after a few iterations
and very low sensitivity to small data errors.
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1. Introduction

Inverse problems appear in many areas of engineering research. They contain, among others,
problems of partly unknown geometry where we seek for the shape and location of the boundary
of a considered domain (or a part of the boundary) and try to determine it from the information
available at the known portion of the boundary. A number of these problems, referred to as
inverse geometry problems (IGPs), arise in engineering practice. The intensive study of IGPs
in the past decades has resulted in many propositions of efficient solution algorithms. Although
purely computational aspects are crucial to many publications in this area, researchers usually
indicate possible industrial applications of their theoretical results. Illustrative examples could be
non-destructive detection of defects like voids, cracks or inclusions (Cheng and Chang, 2003a,b;
Karageorghis et al., 2014), locating the 1150◦C isotherm in a blast furnace hearth (Gonzalez
and Goldschmit, 2006), or non-destructive evaluation of corrosion (Lesnic et al., 2002; Mera and
Lesnic, 2005; Liu, 2008) – to name but a few.

The problem of numerical identification (reconstruction) of geometrical characteristics of the
studied object can be solved by a variety of computational methods. For example, Hsieh and
Kassab (1986) presented a general solution method which led to a nonlinear algebraic equation,
or a nonlinear ordinary differential equation solved numerically by the Newton-Raphson method.
Cheng and Chang (2003a,b) used a computational technique based on the conjugate-gradient
method for the recovery of inner voids within a solid body, assuming different kinds of data
prescribed on the outer surface. Huang and Liu (2010) estimated interfacial configurations in a
3D composite domain by the conjugate gradient method and commercial package CFD-ACE+.
Lesnic et al. (2002) treated an inverse geometric problem for the Laplace equation by the bo-
undary element method in conjunction with the Tikhonov first-order regularization. Mera et al.
(2004) modelled the same problem as variational and minimized a defect functional by a real
coded genetic algorithm combined with the function specification method. Kazemzadeh-Parsi
and Daneshmand (2009) applied the smoothed fixed grid finite element method for the problem
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of cavity detection. Liu et al. (2008) proposed a new algorithm, named the regularized integral
equation method, which employed Lavrentiev regularization and a second kind Fredholm inte-
gral equation to ultimately attain the unknown boundary from a nonlinear algebraic equation
by the bisection method.

A good reason for the choice of a method is the claim to avoid mesh generation. One could
point to several numerical schemes which meet this requirement and perform well in inverse pro-
blems, among them the radial basis functions method and the method of fundamental solutions
(MFS), both enjoying growing interest recently, as well as the Trefftz method (TM) dating back
to the 1920s (Trefftz, 1926).

MFS has been extensively used in scientific computation and simulation over the last two de-
cades. A comprehensive survey of its application to inverse problems (including inverse geometric
problems) can be found in Karageorghis et al. (2011a,b).

TM and MFS, which are equivalent for Laplace and biharmonic equations (Chen et al.,
2007), share the same concept of expressing the solution to a differential equation by a linear
combination of basis functions satisfying the governing equation. The coefficients of the bases
(T-complete functions) have to be selected to make the solution satisfy, in some sense, all imposed
conditions. A broad discussion of the method together with a tutorial on the applications can
be found in Li et al. (2008). Clearly, TM suits for solving different kinds of inverse problems
(Ciałkowski and Grysa, 2010).

There have been quite a few Trefftz-type approaches to a boundary identification problem.
Karageorghis et al. (2014) proposed collocation TM for reconstruction of the void(s) whose
centre(s) is (are) unknown, solving the proceeding non-linear least squares problem with a use
of a suitable predefined routine in MATLAB. The collocation Trefftz method, modified by Liu
(2007) and further referred as to modified collocation Trefftz method (MCTM), was applied by
Fan et al. (2012) to a Laplacian problem to infer the spatial position of the unknown part of the
boundary from the Dirichlet condition. The authors adopted the exponentially convergent scalar
homotopy algorithm (ECSHA) to solve the resulting system of nonlinear equations. A similar
problem, but with the Neumann condition on the unknown part of the boundary, was solved by
Fan and Chan (2011) using the same technique. A combination of MCTM and ECSHA proved
successful also in boundary detection problems for a modified Helmholtz equation (Chan and
Fan, 2011); Fan et al., 2014) and biharmonic equation (Chan and Fan, 2013).

In this study, we propose a fast converging computational algorithm based on TM to solve a
two-dimensional boundary identification problem for the Laplace equation (excluding, however,
highly complicated domains). In the first stage of computationm we approximate the solution to
the Laplace equation with a linear combination of harmonic polynomials so that it satisfies the
prescribed conditions in the least-squares sense. The reconstruction of an unknown boundary
is through the adjustment of parameters of an approximating polynomial curve. It is demon-
strated by numerical examples that relatively low degree polynomials could provide, at a small
computational cost, sufficient accuracy of boundary identification. Moreover, computation with
simulated errors exhibited very low sensitivity to small disturbances of the data. The approach
allows immediate extension to problems governed by other linear differential equations.

2. Boundary reconstruction problem for the Laplace equation

Consider a two-dimensional inverse problem in a domain Ω whose boundary ∂Ω consists of two
segments: Γ , which is known, and γ whose shape and position is not known and, therefore, being
detected. The governing equation is

∆T = 0 in Ω (2.1)
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where ∆ is Laplace operator, and it satisfies corresponding conditions prescribed on the doma-
in boundary. The problem could be regarded as a steady-state heat conduction problem. To
compensate for the missing information about the geometry of the boundary, an overspecified
condition will be imposed on the known part of the boundary. Hence, we have

T = TΓ and
∂T

∂n
= qΓ on Γ (2.2)

where ∂/∂n denotes differentiation along the outward normal n. On the remaining part of the
boundary, we assume

αT + β
∂T

∂n
= gγ on γ (2.3)

where α and β denote arbitrary constants which are not zero simultaneously. In other words, a
condition of Dirichlet, Neumann or Robin type can be imposed at the boundary γ.

Rather than discuss the problem in full generality, let us look at a particular situation when
the problem domain Ω is an area under the curve γ. It can always be assumed that in appropriate
coordinates x varies from 0 to 1, so γ can be described by an explicit equation

y = f(x) x ∈ 〈0, 1〉 (2.4)

For this particular case, the problem specified by equations (2.1)-(2.3) is presented in Fig. 1.

Fig. 1. A diagram of the boundary identification problem

Both boundary curves Γ (known) and γ (unknown), meet at points (0, y0) and (1, y1), hence,
we can write

f(0) = y0 f(1) = y1 (2.5)

As stated before, the aim of the study is to determine the shape and location of the unknown
part of the boundary γ.

3. Solution methodology

In the first step, we approximate the solution to Laplace equation (2.1) with a combination of
the T-complete functions Vk(x, y)

T (x, y) ≈ Θ(x, y) =
K
∑

0

ckVk(x, y) (3.1)
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with coefficients ck to be found. In the case under consideration, the functions Vk(x, y) which
satisfy the Laplace equation will be taken from the set

{1,Rezk, Imzk, k = 1, 2, . . .} (3.2)

where z = x+ iy is a complex number. These basis functions are termed harmonic polynomials.
Coefficients ck in expansion (3.1) will be chosen to minimize, along the boundary Γ , squ-

ared differences between true values of the function T and of its normal derivative and the
corresponding values provided by the model. Hence, we minimize the following functional

J(c0, c1, . . . , cK) =

∫

Γ

( K
∑

0

ckVk
∣

∣

∣

Γ
− TΓ

)2

dΓ +

∫

Γ

( K
∑

0

ck
∂Vk
∂n

∣

∣

∣

∣

∣

Γ

− qΓ

)2

dΓ (3.3)

The necessary condition for the minimum of J(c0, c1, . . . , cK) is

∂J

∂ck
= 0 k = 0, 1, . . . ,K (3.4)

which gives a system of K +1 linear equations with K +1 variables. In order to avoid problems
with numerical stability, the coordinates x and y of the points of Ω should range from 0 to 1. To
meet this requirement, one can use a proper change of variables when building a mathematical
model of the problem. Alternatively, basis functions (3.2) could be modified by taking z/L
instead of z, where L denotes the characteristic length. The latter reminds modification of the
corresponding T-complete functions in polar coordinates proposed by Liu (2007).
Having found the coefficients ck, we can now focus our attention directly on identification of

the unknown boundary γ assumed to be a graph of the function f(x). The function f(x) can
be approximated with a polynomial of degree N , denoted by P (N)(x) or shortly P (x), if there
is no danger of misunderstanding. Since P (x) has the form

P (x) = a0 + a1x+ a2x
2 + . . . + aNx

N (3.5)

we only need to determine the coefficients an to know the approximate values of f(x) in the
whole interval 〈0, 1〉. Conditions (2.6) applied to P (x) give

P (0) = y0 and P (1) = y1 (3.6)

In consequence, any two an can be expressed as functions of the remaining coefficients.
Further proceeding must include a prescribed boundary condition (2.3) on the sought cu-

rve γ. Since Θ(x, y) ≈ T (x, y) and P (x) ≈ f(x), we can rewrite equation (2.3) in terms of the
approximated functions as

αΘ(x, P (x)) + β
∂Θ

∂n
(x, P (x)) = gγ(x) (3.7)

where

∂Θ

∂n
=

1
√

1 + [P ′(x)]2

(

−P ′(x)
∂Θ

∂x
(x, P (x)) +

∂Θ

∂y
(x, P (x))

)

(3.8)

Equation (3.7) formally holds for all x ∈ (0, 1) but depending on the amount of information
available on γ could be given only for x ∈ {x1, x2, . . . , xM}. The polynomial P (x) will be
selected so as to minimize the functional

J(a0, a1, . . . , aN ) =

1
∫

0

(

αΘ(x, P (x)) + β
∂Θ

∂n
(x, P (x)) − gγ(x)

)2
dx (3.9)
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In the case of discrete data, integration contained in functional (3.9) has to be changed into
summation spanning over all xm.
Minimization of J(a0, a1, . . . , aN ) results in solving simultaneous equations

∂J

∂an
= 0 n = 0, 1, . . . , N (3.10)

which are nonlinear. We propose an iterative algorithm for finding the coefficients of the polyno-
mial P (N)(x). The computation always starts with N = 1 (i.e. a polynomial of degree 1). Note
that conditions (3.6) automatically determine the first approximation P (1)(x). We now check
whether boundary condition (3.7) is satisfied. More precisely, we want to estimate the goodness
of fit for (3.7). For this purpose, we introduce a measure of inaccuracy defined by

Er(1) =
1

‖gγ‖

∥

∥

∥

∥

αΘ
∣

∣

y=P (1)(x)
+ β
∂Θ

∂n

∣

∣

∣

y=P (1)(x)
− gγ

∥

∥

∥

∥

‖ · ‖ − L2 norm (3.11)

assuming either continuous or discrete range of variation of x. In the latter case, both the
numerator and the denominator of (3.11) contain the norm of the M -dimensional vector.
If the value of Er(1) is sufficiently close to zero, the computational procedure ends and

P (1)(x) is the solution. Otherwise, we increase the polynomial degree by 1 and numerically
solve (3.10) for a2 (since a0 and a1 can be expressed as functions of a2). Numerical root-finding
methods require a first guess which we suggest by plotting J versus a2. Once the coefficients of
P (2)(x) are determined, we compute the error Er(2) defined similarly to Er(1). In general, when
solving for the coefficients of a polynomial P (N+1)(x), our initial guess are an from the previous
step and aN+1 = 0. Having determined P

(N+1)(x), we compute Er(N+1). The procedure is
continued to achieve the desired accuracy of fulfilment of (3.7), i.e. until Er(N+1) becomes less
than the desired level. In geometrical terms, the algorithm allows one to approach the unknown
boundary γ with successive polynomial curves. An alternative to the stopping criterion based
on Er(N), may well be the rule saying that the iteration stops when the distance between the
successive approximations P (N−1)(x) and P (N)(x) is sufficiently small, which gives that either
‖P (N)(x)−P (N−1)(x)‖ or relative measure ‖P (N)(x)−P (N−1)(x)‖ · ‖P (N−1)(x)‖−1 must be less
than the user-specified tolerance.
We must emphasise that the proposed method, when compared to the existing approaches

using MCTM (Chan and Fan, 2011, 2013; Fan and Chan, 2011; Fan et al., 2012, 2014), differs
not only in the representation of the sought boundary (a continuous curve rather than a set
of discrete points) but it also uses a different computation scheme. We employ two systems of
equations: a linear system to determine the coefficients of T-complete functions and a nonlinear
system to adjust the coefficients of a polynomial approximation, the latter having relatively
few unknowns. In the cited papers, both coefficients of T-complete functions and the unknown
boundary points are obtained from one nonlinear system of equations. In practice, such a system
must be large, especially when we use a high-order Trefftz solution for better accuracy and a large
number of boundary points for more precise boundary reconstruction. Consequently, the more
boundary points we wish to determine, the larger system we obtain, unlike using the present
method which allows one to recover infinitely many boundary points at the cost of solving only
a small system of equations.

4. Numerical examples

In this Section, some examples will be shown to test the developed theoretical method. Altho-
ugh the boundary detection problem originates from realistic applications, a number of studies
proposing efficient solution algorithms, among them those based on MCTM which are cited in
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the previous paragraph, validate the proposed computational methods on numerical simulations
(synthetic data). Likewise, the present method will be tested on data coming from numerical si-
mulations. The results will be shown for the function T (x, y) = e2x cos(2y), which is an analytical
solution to the Laplace equation in the domain Ω defined by inequalities

0 ¬ x ¬ 1 and 0 ¬ y ¬ f(x) (4.1)

where the graph of y = f(x) represents the unknown boundary γ.

In expansion (3.1), we took K = 14, and the values of Tγ , qγ and gγ are specified at M = 49
distinct points. The resulting simultaneous nonlinear equations are solved using the Levenberg-
Marquardt method.

For quantitative evaluation of the final results, we introduce ε, a non-negative number defined
by

ε =
‖P (x)− f(x)‖

‖f(x)‖
(4.2)

which can be interpreted as a mean error which is made when replacing the original boundary γ
with its polynomial approximation P (x).

Example 1

The unknown boundary is inferred from the Dirichlet condition on γ. We take f(x) =
(1+x−sin 4x)e−x. In Fig. 2, the true boundary is compared with its polynomial approximation.

Fig. 2. Boundary shape identification by polynomials of degree N = 2, 3, 4, 5

Table 1 gives information about the accuracy of the presented approximations.
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Table 1. Mean error of boundary shape identification for f(x) = (1 + x− sin 4x)e−x

Polynomial degree N = 2 N = 3 N = 4 N = 5

Error ε 32% 2.6% 1.9% 0.1%

Example 2

The computations have been performed for the case of the Neumann condition on γ. Figure 3
shows the results of boundary reconstruction when f(x) = (1 + x2)(2 + x5)−1.

Fig. 3. Boundary shape identification by polynomials of degree N = 3 and N = 5

The approximation errors ε, concerning the case of the Neumann condition, are listed in
Table 2.

Table 2. Mean error of boundary shape identification for f(x) = (1 + x2)(2 + x5)−1

Polynomial degree N = 2 N = 3 N = 4 N = 5

Error ε 11.9% 1.2% 1.0% 0.4%

Example 3

Finally, we present the results referring to the case of the Robin condition on γ with α = 1
and β = −3 in (2.3). The true boundary γ is a curve f(x) = (2 + cos 4x)(x3 + 2)−1 and its
approximation is presented in Fig. 4.

The approximation errors ε, concerning the case of the Robin boundary condition, are listed
in Table 3.

All examples included in this Section prove the effectiveness of the proposed computational
procedure for boundary identification. It has been enough to use a 5th degree polynomial to
approach the true boundary with an error less than 1%.

5. Stability analysis

The computation results shown in the previous Section have been performed on the exact func-
tions Tγ , qγ and gγ . In order to examine the sensitivity of the method to changes in the inputs,
one has to introduce random noise to the given functions and then evaluate the impact of such
changes on the final boundary detection.
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Fig. 4. Boundary shape identification by polynomials of degree N = 3 and N = 5

Table 3. Mean error of boundary shape identification for f(x) = (2 + cos 4x)(x3 + 2)−1

Polynomial degree N = 2 N = 3 N = 4 N = 5

Error ε 18.0% 8.6% 1.8% 0.4%

The values of Tγ , qγ and gγ are assumed to be given only at M discrete locations. In order
to simulate measurement errors, we generate M random numbers having a normal distribution
with a mean of 0 and a standard deviation of σ = 0.025. With such σ, approximately 95% of
the simulated errors lie between −5% and 5%.

One can evaluate the influence of the introduced errors on the final results of boundary
detection in a variety of ways. For the purpose of stability analysis, we use a measure ∆, defined
as

∆ =
‖Pnoisy(x)− P (x)‖

‖P (x)‖
(5.1)

where Pnoisy(x) denotes a polynomial approximation of the unknown boundary γ, derived from
the noisy data. Since we perform a sequence of computations, each giving a successive appro-
ximation to γ, the input data errors might accumulate from step to step. Therefore, it seems
reasonable to pay special attention to those solution inaccuracies which occur in the last itera-
tion. Consequently, our discussion of numerical stability is based on the value of ∆ calculated
for N = 5.

For a better insight into the problem, we have recorded ∆ in 10 runs of the computatio-
nal procedure, each with different random noise. The values of ∆ in the respective numerical
examples are presented in Table 4.

Table 4. Relative changes (∆) between the solutions derived from exact and disturbed data

Example 1 Example 2 Example 3

∆ 0.13%-0.84% 0.24%-0.88% 0.06%-0.29%

It turns out that changes in the final results are even smaller than changes in the inputs, as
far as percent errors are concerned. A possible explanation is that a polynomial curve, which
we fit to a large number of discrete points by least squares, is forced to follow the changes
introduced by random errors. Therefore, it should be shifted up at some locations but, on the
other hand, shifted down at others. A low-degree polynomial is not very ‘flexible’, so it remains
almost unchanged.
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6. Conclusions and final remarks

We proposed a method for the solution of a two-dimensional boundary identification problem
governed by the Laplace equation. In contrast to approaches which derive coordinates of unk-
nown boundary points from a large system of nonlinear equations, the proposed algorithm does
not require solving large systems and yet it delivers a very accurate reconstruction of the unk-
nown boundary. Its basic advantage is the reduction of the amount of computational work. The
provided numerical results exhibit not only high accuracy, but fast convergence of the method.
Testing the sensitivity of the algorithm to input data errors showed very low risk of large im-
pact of possible errors in the input data on predicted model outputs. The presented solution
procedure can be applied without changes to problems governed by other linear differential equ-
ations, provided the appropriate Trefftz functions are known. The only limitation concerns the
geometry of a domain, because global Trefftz solutions could provide poor results when used on
very complicated domains.
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