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A modified analytical shear lag model is used for the evaluation of the interfacial shear and
peeling stresses in a cracked bi-material structure composed of two elastic plates bonded
together by an interface zero thickness material and subjected to monotonically increasing
thermal loading. The “peeling” stress can be determined by the aid of the interfacial shear
stress and is proportional to deflections of the thinner plate of the structure. The interface
is assumed to exhibit brittle failure when the shear stress reaches the critical value. The
analytical solution and the length of the debonding and intact zones as well as the interfacial
shear and peeling stresses for given material properties and thermal loading are discussed
and illustrated in figures.
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1. Introduction

Interfacial stresses are the main driving factors for the initiation of delamination. To minimize
such failure in multi-layered structures, it is important to develop a better understanding of the
stress distribution in the interface. The shear lag approach is one of the most used analytical
tools in mechanics of composite materials. The papers of Dowling and Burgan (1990), Nairn
(1988a,b) as well as the basic paper of Cox (1952) trace the interest in shear lag of aircraft
and ship design from the early days to the more recent attention devoted to it by structural
engineers. The shear lag model has been adopted and successfully used by different authors. In
the papers of Nikolova et al. (2006), Nikolova (2008), Nikolova and Ivanova (2013), the shear lag
approach is applied to a bi-material layered structure with the pre-cracked first layer. Different
loadings are considered: static, thermal and combined thermo-mechanical ones.
The shear lag approach is also intensively used in the interface fracture mechanics considering

the cracking, decohesion and delamination of the thin film on a substrate. A very important
basic case in the fracture mechanics of thin films is the problem of a crack in the film oriented
perpendicular to the film/substrate interface with the crack tip touching the interface and of
a crack of the same geometry, but with length less than the film thickness, so that the crack
tip is within the film. This problem was investigated by Beuth (1992) and Beuth and Klingbeil
(1996). The plastic yielding of the substrate and film is accompanied by vertical cracking in the
films and the interface fracture as well as delamination from the ends of the vertical crack in the
film and the crack extension in the substrate along the interface (Hutchinson and Suo, 1991).
Interfacial shear and peeling stresses of layered composite materials under thermal loading

were analysed in numerous papers. In most of them, the analysis is based on linear fracture
mechanics assumptions when both element cracking and interface debonding are treated as
mixed mode crack propagation with critical conditions expressed in terms of stress intensity
factors, cf. Zhang (2000), Bleeck et al. (1998), Sorensen et al. (1998).
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The approximate analytical model for the assessment of interfacial stresses in a bi-material
soldered assembly with a low-yield-stress of the bonding material was presented by Suhir (2006).
The aim of this paper is to investigate the interfacial shear and peeling stresses at the interface

of a cracked bi-material structure subjected to monotonically increasing thermal loading. An
approximate predictive model (Nikolova et al., 2006; Nikolova, 2008; Nikolova and Ivanova,
2013) is developed for the evaluation of interfacial thermal stresses in a bi-material structure.
This material is considered linearly elastic at the stress level below the critical point and ideally
plastic at higher stresses.
The delamination process is analysed for a cracked bi-material structure with stress free

boundary. The plates are assumed as linear elastic and isotropic with different stiffness and
thermal expansion moduli. The analytic solutions for the shear and peeling stresses are obtained.
The main objective of the paper is to discuss the effect of the interface parameters and interfacial
stresses on the delamination process.

2. Assumptions and problem formulation

2.1. Assumption

The following major assumptions are made in our analysis:

• The approximate analytical model can be used to present the influence of the temperature
on behavior of the peeling stress and length of the interface debonding zone in the pre-
-cracked two plates structure with an interface zero thickness adhesive layer and subjected
to thermal loading.

• At least one of the structure components (the “plate A”/”plate B”) is thick and stiff eno-
ugh, so that this structural component and the construction as a whole do not experience
bending deformations.

• The bonding material behaves linearly in the elastic stage. When the induced shearing
stress exceeds the critical value, the interface debonding occurs.

• The interfacial stresses can be evaluated based on the concept of the interfacial compliance
without considering the effect of “peeling”. The “peeling” stress can be then determined
from the evaluated interfacial shear stress. Due to this assumption, the “peeling” stress is
proportional to the deflections of the thinner plate of the assembly, i.e., to its displacements
with respect to the thicker plate.

2.2. Two-plate structure model and basic equations

Let us consider two elastic plates A and B (the plate A has a normal [transverse] crack to
the interface). The plates have different material properties and thermal expansion coefficients
αA, αB and they are bonded along the interface I and loaded by a monotonically increasing
thermal loading ∆T (see Fig. 1).
The modified shear lag model is applied and the plate bending is neglected, according to the

second assumption (see Section 2.1). The interface is supposed to be with negligible thickness
and works only on shear (Nikolova et al., 2006; Nikolova, 2008; Nikolova and Ivanova, 2013).
In view of symmetry, only the solution for the half plate is derived taking the origin of

Cartesian coordinate at the centre of interface I. The plates length is denoted by 2L and thickness
of plates A and B by 2hA, 2hB , and the Young moduli by EA and EB , respectively. The thickness
of structures is denoted by 2h = 2hA+2hB and is equal to the sum of the thickness of the plate
A and B. The uniform temperature of the plates is denoted by ∆T .
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Fig. 1. Model of a Cracked two-plate structure

According to the shear lag hypothesis, the following ordinary differential equations of 1D
plate equilibrium can be stated

dσA
dx
=

τ I

2hA

dσB
dx
= − τ I

2hB
(2.1)

where τ I = τ I(x) is the interface shear stress.
The following constitutive equations for the plates and interface hold

σA = EA(εA − αA∆T ) σB = EB(εB − αB∆T ) τ I = GIwI (2.2)

where

wI =
uA − uB
hA + hB

=
uI

hA + hB
εA =

duA
dx

εB =
duB
dx

(2.3)

and uA = uA(x), uB = uB(x) and uI = uI(x) = uA(x) − uB(x) are the displacement fields in
the plate A, plate B and the interface. GI is the representative shear modulus of the interface
(adhesive).
Introduce now non-dimensional variables defined as follows

x =
x

h
ui =

ui
h

σi =
σi
EB

τ I =
τ I

EB
G
I =

GI

EB

hA =
hA
hA
+ hB ξ =

hA
hB

η =
EA
EB

i = A,B, I h = hA + hB

(2.4)

Then equilibrium equations (2.1) and constitutive equation (2.2) become

dσA
dx
=
τ I(1 + ξ)
2ξ

dσB
dx
= −τ

I(1 + ξ)
2

(2.5)

where

σA = η(εA − αA∆T ) σB = (εB − αB∆T )

In subsequent derivation, the formulas will be expressed in terms of non-dimensional varia-
bles, but the dashes over the parameters will be deleted, but remembered.

2.3. Debonding zone solution

Let us denote uI(x) as uI(x) = uA(x) − uB(x). Putting the constitutive equations (2.2) in
(2.1), we obtain

d2uI
dx2
= λ2uI −

d

dx
[(αA − αB)∆T ] λ2 =

GI(1 + ξ)(1 + ξη)
2ξη

(2.6)
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Assuming uniform temperature fields in the plates and constant thermal expansion coeffi-
cients, equation (2.6) becomes

d2uI
dx2
= λ2uI (2.7)

Then equilibrium equations (2.5) can be expressed as follows

d2uA
dx2
=

λ2

1 + ξη
uI

d2uB
dx2
= − λ2

1 + ξη
ξηuI (2.8)

Obviously, the substitution uI(x) = uA(x)− uB(x) has to be satisfied.
The general solution of equation (2.7) has the form

uI = A1 cosh(λx) +A2 sinh(λx) (2.9)

where are the integration constants which have to be determined.
Considering the two plate structure with a transverse crack in the first plate A, the following

boundary and contact conditions are proposed

uB(0) = 0 ⇒ uI(0) = uA(0)

σA(0) = 0 σA(L) = σB(L) = 0
(2.10)

The strain-stress behavior and respective displacements can be obtained from equations (2.7)
and (2.8), satisfying the above-mentioned contact and boundary conditions (2.10). The stress-
-strain and displacements field is presented in detail by Nikolova et al. (2006), Nikolova (2008),
Nikolova and Ivanova (2013).
Now the equation for the interfacial shear stress has the following form

τ I(x) = GIuI(x) =
GI(1 + ξη)(αA − αB)∆T

λ

cosh[λ(L− x)]
sinh(λL)

(2.11)

2.4. Length of the debonding zone

The debond length ld, which gives the magnitude of brittle cracking along the interface layer
can be calculated from (2.11) assuming that at τ I(x) = τ cr, uI(ld) = ucr = τ cr/GI . Then

τ I(x) = GIuI(x) =
GI(1 + ξη)(αA − αB)∆T

λ

cosh[λ(L− x)]
sinh(λL)

= τ cr (2.12)

Using the substitution exp[λ(L− ld)] = y, we receive from (2.12) the following equation for

y2 − 2Ay + 1 = 0 A =
λτ cr sinh(λL)

GI(1 + ξη)(αA − αB)∆T
(2.13)

Then two roots of (2.13) are available

y1,2 = A±
√
A2 − 1 (2.14)

Now using the substitution exp(λld) = y, we obtain

ld1,2 = L−
1
λ
ln(A±

√
A2 − 1) (2.15)

Obviously, A2 − 1 > 0.
Then we have to choose the length of the debonding zone from the condition that this length

has a maximum value, i.e.

ld = L−
1
λ
ln(A+

√
A2 − 1) (2.16)
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3. Determination of the peeling stress

3.1. Basic equation of the dimensional peeling stress

The basic equation for the dimensional peeling stress p(x), can be obtained using the following
equation of equilibrium for the thinner plate A of the structure treated as an elongated thin
plate (Suhir, 2006; Nikolova and Ivanova, 2013)

x∫

−x∗

x∫

−x∗

p(ς) dς dς +D1w′′(x) =
hA
2
T (x) =

hA
2

[ x∫

−x∗

τ I(ς) dς − EBτ cr(L− ld)
]

(3.1)

where

DA =
EAh

3
A

12(1 − ν2A)
τ I(x) =

EBG
I(1 + ξη)(αA − αB)∆T

λ

cosh[λ(L− x)]
sinh(λL)

(3.2)

w(x) is the deflection function of the plate A (with respect to the thicker plate that does not
experience bending deformations), DA is the flexural rigidity of this plate and τ I(x) is the
dimensional interfacial shear stress, see equations (2.4) and (2.11)

T (x) =
x∫

−x∗

τ(ς) dς −EBτ cr(L− ld) (3.3)

are the thermally induced forces acting in the cross-sections of the two-plate structure, τ cr is the
dimensional critical stress of the interface and (L − ld) is length of the intact zone, where L is
half the structure length. The length ld can be defined as ld = x∗ = L− (1/λ) ln[A+

√
A2 − 1].

The origin 0 of the coordinate x is in the mid-cross-section of the structure.
The peeling stress p(x) can be evaluated as

p(x) = Kw(x) = EIw(x) (3.4)

where K is the spring constant of the elastic foundation, w(x) is the deflection function and
EI is Young’s modulus of the bonding material.
We obtain the following integral equation for the peeling stress function p(x)

x∫

−x∗

x∫

−x∗

p(ς) dς dς +
DA

K
p′′(x) =

hA
2
T (x) (3.5)

After differentiating this equation twice with respect to the coordinate x and considering rela-
tionship (3.3), we obtain the following basic equation for the peeling stress function

pIV (x) + 4β4p(x) = 2β4hAEBτ ′(x) (3.6)

where β = 4
√
K/4DA is the parameter of the peeling stress.

In the case, when plastic strains occur in the bonding material, the following conditions must
be fulfilled at the boundary, x = x∗ = ld, between the intact and the debonding zones

τ I(x∗) = EBτ cr T (x∗) = −EBτ cr(L− ld) (3.7)

From (3.5) we find, by differentiation (for more details see Nikolova and Ivanova (2013))
x∫

−x∗

p(ς) dς +
DA

K
p′′′(x) =

hA
2
EBτ

I(x)

x∗∫

−x∗

x∫

−x∗

p(ς) dς dς = 0

x∗∫

−x∗

p(ς) dς = 0

(3.8)
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With consideration of conditions (3.8)2, relationships (3.5) and (3.8)1 result in the following
boundary conditions for the peeling stress function p(x)

p′′(x∗) = −
hAKleτ

cr

4DA
= −2β4hA(L− ld)EBτ cr

p′′′(x∗) =
hAKτ

cr

2DA
= 2β4hAEBτ cr

(3.9)

The peeling stress in the debonding zone should be zero as it follows from equation (3.6).
The dimensional shear stress is equal to the dimensional critical stress between the intact and
the debonding zones.

3.2. Solution to the peeling stress equation

Equation (3.6) has form of an equation of a beam lying on a continuous elastic foundation.
We seek a solution to this equation in form

p(x) = C0V0(βx) + C1V1(βx) + C2V2(βx) + C3V3(βx) +B
sinh[λ(L− x∗)]
sinh(λx)

(3.10)

These functions p(x) are odd functions, i.e. p(−x) = −p(x). They have their maximum value
(zero derivative) at the origin, and are symmetric with respect to the mid-cross-section of the
assembly.
The final form of the solution to equation (3.6) is the following

p(x) = C0V0(βx) + C2V2(βx) +B
sinh[λ(L− x∗)]
sinh(λx)

(3.11)

where the functions Vi(βx), i = 0, 2 are expressed as follows

V0(βx) = cosh(βx) cos(βx) V2(βx) = sinh(βx) sin(βx) (3.12)

The first two terms in (3.11) provide the general solution to the homogeneous equation, which
corresponds to non-homogeneous equation (3.6), and the third term is the particular solution
to this equation. Introducing this term into equation (3.6), we obtain

(3.13)B =
2GIEBhAβ4(αA − αB)∆T (1 + ξη)

4β4 + λ4
(3.13)

Using boundary conditions (3.9), we obtain the following algebraic equations for the constants
C0 and C2 of integration

− 2β3[sin(βx∗) cosh(βx∗) + sinh(βx∗) cos(βx∗)]C0
− 2β3[sin(βx∗) cosh(βx∗) + sinh(βx∗) cos(βx∗)]C2 = 2β4hAEBτ cr

− β[sin(βx∗) cosh(βx∗)− sinh(βx∗) cos(βx∗)]C0
+ β[sin(βx∗) cosh(βx∗) + sinh(βx∗) cos(βx∗)]C2 = −2β4hA(L− ld)EBτ cr

(3.14)

Algebraic equations (3.14) have the following solutions

C0=
βhAEB [sin(βx∗) cosh(βx∗)(1−2β2L+2β2ld)+sinh(βx∗) cos(βx∗)(1+2β2L−2β2ld)]τ cr

cos(2βx∗)− cosh(2βx∗) (3.15)

C2=
βhAEB [sin(βx∗) cos(βx∗)(1+2β2L−2β2ld)−sinh(βx∗) cos(βx∗)(1−2β2L+2β2ld)]τ cr

cos(2βx∗)− cosh(2βx∗)
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Note that for long enough elastic zones, solution (3.11) can be simplified as follows

p(x) =
βhAEB [sin(βx∗) cosh(βx∗)(1− 2β2L+ 2β2ld)]τ cr

cos(2βx∗)− cosh(2βx∗)
cosh(βx) cos(βx)

+
βhAEB[sinh(βx∗) cos(βx∗)(1 + 2β2L− 2β2ld)]τ cr

cos(2βx∗)− cosh(2βx∗)
cosh(βx) cos(βx)

+
βhAEB[sin(βx∗) cos(βx∗)(1 + 2β2L− 2β2ld)]τ cr

cos(2βx∗)− cosh(2βx∗)
sinh(βx) sin(βx)

− βhAEB[sinh(βx∗) cos(βx∗)(1− 2β2L+ 2β2ld)]τ cr
cos(2βx∗)− cosh(2βx∗)

sinh(βx) sin(βx)

+
2GIEBhAβ4(αA − αB)∆T (1 + ξη)

4β4 + λ4
sinh[λ(L− x∗)]
sinh(λx)

(3.16)

4. Numerical example

Let us consider two elastic plates A (made from ZrO2) and B (made from Ti6Al4V) bonded
by the interface with finite lengths 2L = 120mm and variable thickness of the first plate hA
2hA = [1.6mm, 2mm], 2hB = 2mm, h = hA+hB = [1.8mm, 2mm], ξ = hA/hB = [0.8, 1] under
monotonic temperature loading ∆T . The following material characteristics are taken:
• ZrO2 – Young’s modulus EA = 132.2GPa, coefficient of thermal expansion αA =
= 13.3 · 10−6K−1,
• Ti6Al4V – Young’s modulus EB = 122.7GPa, coefficient of thermal expansion αB =
= 10.291 · 10−6K−1,
• interface layer – Young’s modulus EI = 2.1GPa, shear modulus GI = 800MPa and the
critical shear stress τ I = τ cr = 18MPa.

In Table 1, the variable parameters of the problem considered are presented.

Table 1. Variable parameter

Name Variable

Thickness of the first plate A hA
Geometric parameter of the structure ξ = hA/hB
Non-dimensional parameter λ =

√
GI(1 + ξ)(1 + ξη)/2ξη

Flexural rigidity of the plate A DA = EAh3A/[12(1 − ν2A)]
Parameter of the peeling stress β = 4

√
K/4DA

Temperature monotonic loading ∆T

The behavior of the dimensional interfacial shear and the peeling stresses on x/h, the di-
mensional peeling stress p(x) for three different temperature of the monotonic loading ∆T and
as well as the behavior of the respective peeling stresses p(x) for three different values of the
parameter ξ = hA/hB are illustrated at the given bellow figures (Figs. 2, 3, and 4).
The analytically calculated shear and peeling stresses are plotted in Fig. 2 for a temperature

∆T = 350K. As shown in this figure, the interfacial shear stress is equal to the critical shear
stress at the point between the intact and debonding zones. Thereafter, the shear stress decreases
sharply from its maximum value at the interface end (the dependence of the interfacial shear
stress for different temperatures is presented in detail in Nikolova et al. (2006), Nikolova (2008)).
Contrary to the shear stress, the interfacial peeling stress attains a maximum value at the

end of the interface. From the beginning of the intact zone, the peeling stress has a negative
value and then increases to its maximum value (less than the critical shear stress value).
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Fig. 2. Calculated interfacial stresses

Figure 3 shows the behavior of the peeling stresses p(x) for ξ = hA/hB = 1 and three
different values of temperature loading ∆T . The peeling stress again attains a maximum value
at the end of the interface layer and is negative in the middle of the intact zone.

Fig. 3. Dependence of p(x) on x/h for different temperature loadings ∆T

The maximum peeling stress decreases with a rise of the temperature loading ∆T .
For a given value hB = 0.001m, three different thicknesses hA and ∆T = 350K, the interfa-

cial peeling stresses are plotted as a function of the axial distance in Fig. 4.

Fig. 4. Dependence of the peeling stresses p(x) on x/h for three different values of the parameter ξ

The thickness of material A is varied in a range hA = 0.0008m-0.001m. The peeling
stress p(x) decreases with a increase in the parameter ξ and attains its maximum value at
the interface end, strongly depending on the thickness of plate (material) A. The maximum pe-
eling stress increases with a decrease in the plate A thickness hA, while the area for the peeling
stress region decreases with the increasing of the thickness hA.



Cracked bi-material structure subjected to monotanically increasing... 1027

The dependence of the interfacial peeling stress is sensitive to material properties and geo-
metry of the bi-material structure.
When the thickness of the first plate is very small, the peeling stress increases extremely

rapidly and exceeds the critical shear stress value, then in the structure the full debonding of
the interface can be observed.

5. Conclusions

The shear lag method, classical plate theory formulation and elastic foundation theory have
been used to investigate the interfacial shear and peeling stresses in a pre-cracked bi-material
structure subjected to monotonic thermal loading.
The following results can be summarized:

(1) The lengths of the debonding and intact zones are calculated by means of the shear lag
analysis associated with constitutive equations.

(2) The peeling stress is sensitive to material properties, geometry of the pre-cracked bi-
-material structure and the applied thermal loading. Therefore, the thermally induced
interfacial peeling stresses in different ceramic-metal composites are preferable to be with
low maximum values.

(3) Interfacial shear and peeling stresses due to thermal and elastic mismatch in layered struc-
tures are one of the major reasons of mechanical and thermal failure and delamination in
multilayered structures.

(4) The obtained from the present analysis results can be used for the assessment of thermal-
ly induced stresses in different pre-cracked ceramic-metal composites during production
of new ideally designed ceramic-metal composites with optimal properties of combining
high temperature resistance and hardness (ceramic), and the ability to undergo plastic
deformation (metal).
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