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In the paper, the analytical solution of excited torsional vibrations of prismatic thin-walled
beams for different types of boundary conditions and different types of external excitation
of torsional moment are formulated. The presented solution can be applied, among others,
to preliminary analysis of the optimal position of the actuators and the value of the applied
voltage to the elements for minimization of the vibrations of the beams.
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1. Introduction

Knowledge of the analytical solution of externally excited vibrations for a considered model
of realistic structures is very useful for preliminary analysis in the design process or choosing
parameters and algorithms for vibration control of the systems. The model of an excited pri-
smatic beam response for torsional or coupled bending-torsional vibrations can be applied for
analysis of vibration of some machine elements, e.g. turbine-blades (Gryboś, 1996; Łączkowski,
1974; Pust and Pesek, 2014; Rao, 1991). Sometimes, the beam cross-section takes form of an
open thin-walled structure. In this paper, thin-walled beams of closed cross-sections as general
models of blades are analyzed (Librescu and Na, 1998; Song and Librescu, 1993; Song et al.,
2002).
Recently, application of piezoelectric elements for vibration reduction of thin structures are

commonly discussed in the literature (Elliott and Nelson, 1997; Hansen and Snyder, 1997; Mo-
heimani and Fleming, 2006; Preumont, 2006). See also the papers by Ferdek and Kozień (2013),
Kozień and Kołtowski (2011). These types of vibration cancellation were considered by the au-
thors in preliminary analysis of the possibility of reduction of torsional vibrations of prismatic
beams with solid cross-sections (Augustyn and Kozień, 2014).
There are well known analytical solutions for problems of the dynamics of thin walled beams

with open cross-section, starting with Gere (1954), Gere with Lin (1958), Aggrawal with Cranch
(1967), and Carr (1969) and later e.g. by Bishop et al. (1989), Dokumaci (1987), Kaliski and
Solarz (1992), Tao (1964), Timoshenko et al. (1974) and Yaman (1997). Different cases of vibra-
tions in such a type of structures are discussed in many of articles. A review of these different
approaches, theories and models for static and dynamic cases is given by Sapountzakis (2013).
The effect of variable cross-section on natural frequencies is discussed in (Eisenberger, 1997).
Non-linear models are discussed by Crespo Da Silva (1988a,b), Rozmarynowski with Szymczak
(1984) and Di Egidio et al. (2003a,b). The steady-state forced vibrations are discussed by Crespo
Da Silva (1988b) and Di Egidio et al. (2003b). The problem of optimal design of a thin-walled
beam for a given natural frequency is analyzed by Szymczak (1984). Torsional vibrations of
composite thin-walled beams are analyzed by Song and Librescu (1993). The models with the
effect of rotary inertia are analysed by Arpaci et al. (2003) and with adaptive capabilities by
Song et al. (2002). A detailed solution for the general case of excited vibrations, especially in the
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transient case, are not easily found in the literature. This formulation was given by one of the
authors of this paper for bending vibrations of a beam for different types of external excitations
(Kozień, 2013).
The main aim of this paper is to formulate the analytical solution for describing the excited

torsional-type vibrations of a thin-walled beam for different combinations of boundary conditions
(simply supported, free, fixed) and different types of external torsional moment type excitations
(harmonic concentrated, harmonic distributed, pulse concentrated, pulse distributed). The pre-
sented solution, among others, can be applied to preliminary analysis of the optimal position
of the actuators and to calculations of voltage applied to the elements for minimization of vi-
brations of beams when the application of piezoelectric elements are considered. In this model,
the influence of external piezoelectric elements can be modeled by the external concentrated
moment of a suitable value, as it was done by Elliott and Nelson (1997), Hansen and Snyder
(1997) for pairs of elements in simulations of bending vibrations of beams, as was proposed by
Augustyn and Kozień (2014) for double pairs of elements for torsional vibrations of beams.

2. Formulation of the problem

2.1. Equation of motion

Let us consider a prismatic beam with a thin-walled cross section of an open type (Murray,
1986; Piechnik, 2007; Vlasov, 1959) in which it is also assumed that the material is isotropic.
The geometry of the cross-section is shown in Fig. 1, where G is the gravity center (centroid),
S – shear center. The origin of the co-ordinate system Sxyz lies in the shear center, and the
axes Sy and Sz are parallel to the principal axes of the cross-section (Gη,Gζ).

Fig. 1. Geometry of the cross-section

The equations of coupled vibrations of the beam take the following form

EJζ
∂4v(x, t)
∂x4

+ ρA
[∂2v(x, t)

∂t2
− zG

∂2ϕ(x, t)
∂t2

]
= qy(x, t)

EJη
∂4w(x, t)
∂x4

+ ρA
[∂2w(x, t)

∂t2
+ yG

∂2ϕ(x, t)
∂t2

]
= qz(x, t)

EJω
∂4ϕ(x, t)
∂x4

−GJs
∂2ϕ(x, t)
∂x2

+ ρJ0
∂2ϕ(x, t)
∂t2

+ ρA
[
−zG

∂2v(x, t)
∂t2

+ yG
∂2w(x, t)
∂t2

]
= ms(x, t)

(2.1)

where v(x, t) is the displacement of the beam in the y direction, w(x, t) is the displacement of the
beam in the z direction, ϕ(x, t) is the rotation of the axis of beam around the x direction, Jη is
the principal moment of inertia of the cross-section with respect to the η axis, Jζ is the principal
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moment of inertia of the cross-section with respect to the ζ axis, J0 is the polar moment of inertia
with respect to the shear center, Js is the equivalent moment of inertia of the cross-section due
to torsion, E is Young’s modulus, G is the shear modulus, ρ is the material density, yG, zG are
the positions of the gravity center G (co-ordinates), qy(x, t) is the distributed force acting in
the y direction (external excitation), qz(x, t) is the distributed force acting in the z direction
(external excitation), ms(x, t) is the distributed twisting moment (external excitation).
When the considered cross-section is such that the position of the shear center and gravity

center is the same (e.g. for the cross-section with two axes of symetry), the following relationship
is valid yG = zG = 0. It means, that the equation of motion for twisting existing in system (2.1)
is separated from the equations of bending vibrations, and takes simplified and independent
form from bending vibrations form

EJω
GJs

∂4ϕ(x, t)
∂x4

− ∂2ϕ(x, t)
∂x2

+
ρJ0
GJs

∂2ϕ(x, t)
∂t2

=
1
GJs

ms(x, t) (2.2)

Hence, for the considered cross-section, it is possible to analyze torsional vibrations separately
with the bending ones.
If the cross-section is a monolithic type, equation of motion (2.3) takes the following form

−GJs
∂2ϕ(x, t)
∂x2

+ ρJ0
∂2ϕ(x, t)
∂t2

= ms(x, t) (2.3)

In general, vibrations of the analyzed structure can be described in form of a three-
dimensional model of a solid structure. But for some structures, for which one characteristic
dimension (the so-called length) is high enough in comparison to the characteristic dimensions
of the cross-section, then so-called one-dimensional models of structures are built for simplici-
ty of the analysis. The results of their application must give good enough results of analysis
in comparison with three-dimensional models. The same case takes place during detailed con-
sideration of the cross-section shape. If one characteristic dimension of the cross-section (the
so-called thickness) is small enough in comparison with the second one (the so-called width),
the whole structure is called a thin-walled one. A detailed rule states that for a thin-walled
cross-section, the thickness is more than eight times smaller than the highest way measured
along the middle-line of the cross-section between its two end-points. Moreover, the length of
this way should be more than eight times smaller than the length of the beam (Piechnik, 2007).
For such a beam the assumptions of the Bernoulli-Euler beam theory or the de Saint-Venant
rule of loadings, for example, are invalid. Their motion must be analyzed as a three-dimensional
body or by the application of an especially formulated theory for thin-walled beams. Due to the
form of the middle line of the cross-section, three types of thin-walled beams are defined: with an
open cross-section, with a closed cross-section and with a mixed one (Piechnik, 2007). Depending
on the type of cross-section, the suitable theory of thin-walled beams should be applied. For a
thin-walled beam with an open cross-section, as considered in this article, the Vlasov theory can
be applied (Piechnik, 2007; Vlasov, 1959).

2.2. Boundary conditions

The equation of motion of the thin-walled beam is the fourth order due to the spatial
variable x. Therefore, a set of the four boundary conditions must be formulated for each beam
element. Their formulation is connected with the Vlasov theory of thin-walled beams and must
take into account the warping effect.
The following types of boundary conditions can be formulated in a natural way (Gere, 1954;

Piechnik, 2007):
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• Simply supported:
— no rotation of the cross-section around the axis of the beam

ϕ = 0 (2.4)

— zero normal stress (free of warping of the cross-section)

∂2ϕ

∂x2
= 0 (2.5)

• Fixed:
— no rotation of the cross-section around the axis of the beam

ϕ = 0 (2.6)

— plain cross-section (blocked warping of the cross-section)

∂ϕ

∂x
= 0 (2.7)

• Free:
— zeroes for the total torsional moment (free for rotation)

GJs
∂ϕ

∂x
− EJω

∂ϕ3

∂x3
= 0 (2.8)

— zero normal stress (free for warping of the cross-section)

∂2ϕ

∂x2
= 0 (2.9)

3. Eigen-problem, natural vibrations

Now, the eigen-problem analysis of the thin-walled prismatic beam with length l is considered.
The equation of motion has the form

EJω
GJs

∂4ϕ(x, t)
∂x4

− ∂2ϕ(x, t)
∂x2

+
ρJ0
GJs

∂2ϕ(x, t)
∂t2

= 0 (3.1)

The solution to the problem is proposed in form (3.2)1 – the Fourier method of solution.
After suitable manipulations, it leads to a solution to the problem of separated variables (3.2)2.
It can be written as two independent ordinary differential equations (3.2)3,4. The first of the
fourth order for the independent spatial variable x, and the second of the second order for the
independent variable t (time). The form of unknown functions in the spatial domain can be
written in form (3.2)5). For the above given homogeneous boundary conditions, these series of
functions satisfy orthogonality conditions (3.4) – see Appendix A for detailed analysis. Finally,
the solution can be written in form (3.7), where the series of constants an and bn are determined
based on initial conditions (3.6)

ϕ(x, t) =
+∞∑

n=1

Xn(x)Tn(t)

EJω
GJs

d4Xn(x)
dx4

Xn(x)
−

d2Xn(x)
dx2

Xn(x)
= − ρJ0

GJs

d2Tn(t)
dt2

Tn(t)
= λ4n

EJω
GJs

d4Xn(x)
dx4

− d2Xn(x)
dx2

− λ4nXn(x) = 0
d2Tn(t)
dt2

+ λ4n
GJs
ρJ0︸ ︷︷ ︸
ω2n

Tn(t) = 0

Xn(x) = An sin(αnx) +Bn cos(αnx) +Cn sinh(βnx) +Dn cosh(βnx)

(3.2)
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where

αn =

√
−GJs +

√
(GJs)2 + 4EJωGJsλ4n
2EJω

βn =

√
GJs +

√
(GJs)2 + 4EJωGJsλ4n
2EJω

ωn = λ2n

√
GJs
ρJ0

(3.3)

and

l∫

0

Xn(x)Xm(x) dx =

{
γ2n n = m

0 n 6= m
(3.4)

Finding the solution to the system of differential equation (3.2)2 or (3.2)3,4 for a given
boundary conditions is the well-known eigen-mode problem which gives a set of eigen-values
(powered natural frequencies of a system ω2n – solution of equation (3.2)4 and a set of eigen-
functions (eigen-modes, waveforms of eigen-functions Xn(x) – solution of equation (3.2)3). The
equations, which make possible the finding of natural frequencies ωn (3.3)1,2,3 or exact formula
for ωn for a different combination of typical types of boundary conditions (fixed, simply sup-
ported, free) are given in Table 1. Moreover, the analytical form of eigen-functions for the same
combination of boundary conditions (simply supported, free, fixed) are also given in Table 1.
The other name of the problem is the modal problem and the detailed solution of this problem
was done by Gere (1954).
If the solution to the equation of motion fulfills initial conditions (3.6), where ϕ0(x) is the

initial angle of torsion of the beam for t = 0, and Ω0(x) is the initial angular velocity of the
beam for t = 0, the problem of natural vibrations is completely defined. These initial conditions
should be applied for the detailed solution of the second equation of system (3.2)3,4

ϕ(x, 0) = ϕ0(x)
∂

∂t
ϕ(x, 0) = Ω0(x) (3.5)

Solution (3.6) represents the so-called natural vibrations, which are the response of the
system to initial conditions written in the time and spatial domains ϕ(x, t)

ϕ(x, t) =
+∞∑

n=1

Xn(x)[an sin(ωnt) + bn sin(ωnt)]

an =
1

ωnγ2n

l∫

0

Ω0(x)Xn(x) dx bn =
1
γ2n

l∫

0

ϕ0(x)Xn(x) dx

(3.6)

4. Excited vibrations

When analyzing the excited vibrations of a realistic beam (with internal damping), the general
solution of the homogeneous differential equation is a function relatively fast tending to zero
with respect to time due to the internal and external damping.
The complete solution to the problem of excited vibrations, understood as the particular

solution to the non-homogeneous equation (2.2), for the excitation function of harmonic type,
has the form of a sum of two components: connected with a set of natural frequencies ωn and
connected with the external loading frequency ν. Note, that the set of constants An, Bn, Cn
and Dn existing in particular solution (2.2)5, must be found taking into account the complete
solution.
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l2

√
n2π2EJω+l2GJs

ρJ0
sin
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l x
)
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√

ρJ0
EJω
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4
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ϕ(x, t) =
+∞∑

n=1

Xn(x)Hn(t) (4.1)

Putting proposed solution (4.1) into equation (2.2) and taking into account the first of
equation of system (3.2)3,4 one can obtain

+∞∑

n=1

[(EJω
GJs

d4Xn(x)
dx4

− d2Xn(x)
dx2︸ ︷︷ ︸

λ4nXn(x)

)
Hn(t) +

ρJ0
GJs

d2Hn(t)
dt2

Xn(x)
]
=
1
GJs

ms(x, t) (4.2)

and then after suitable manipulations

+∞∑

n=1

[d2Hn(t)
dt2

+
GJs
ρJ0

λ4n
︸ ︷︷ ︸

ω2n

Hn(t)
]
Xn(x) =

GJs
ρJ0

1
GJs

ms(x, t) =
1
ρJ0

ms(x, t) (4.3)

The external load function existing in equation (2.2) can be represented in a series form
(4.4), in terms of functions Xn(x) and a series of the known functions of time Qn(t)

1
ρJ0

ms(x, t) =
1
ρJ0

+∞∑

n=1

Xn(x)Qn(t)

Qn(t) =
1
γ2n

l∫

0

ms(x, t)Xn(x) dx Q∗n(t) =
1
ρJ0

Qn(t)

(4.4)

Substituting formulas (4.1) and (4.4) into equation (2.2), the differential equation for the
determination of the unknown functions Hn(t) takes the form

d2Hn(t)
dt2

+ ω2nHn(t) = Q∗n(t) (4.5)

The solution to this equation has the form

Hn(t) =
1
ωn

t∫

0

Q∗n(τ) sin[ωn(t− τ)] dτ (4.6)

known as the Duhamel integral.
The given formulas make possible the formulation of the analytical solution of excited vibra-

tions of a beam with defined boundary conditions.
Let us formulate the general form of the Duhamel integral for the following types of external

excitations and different boundary conditions given by the eigen-functions Xn(x):
— Harmonically distributed moment with a constant amplitude m0

ms(x, t) = m0 sin(νt) [m0] = N

Hn(t) = m0
1
ρJ0

1
γ2n

1
ω2n − ν2

[
sin(νt)− ν

ωn
sin(ωnt)

] l∫

0

Xn(x) dx

ϕ(x, t) =M0
1
ρJ0

∞∑

n=1

1
γ2n

1
ω2n − ν2

[
sin(νt)− ν

ωn
sin(ωnt)

] l∫

0

Xn(x)Xn(x) dx

(4.7)
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— Pulsed distributed moment with a constant amplitude Qm acting at the time t = t0

ms(x, t) = Qmδ(t− t0) [Qm] = Ns

Hn(t) =






0 t < t0

QM
1
ρJ0

1
γ2n

1
ωn
sin[ωn(t− t0)]

l∫
0
Xn(x) dx t  t0

ϕ(x, t) =





0 t < t0

QM
1
ρJ0

∞∑
n=1

1
γ2n

1
ωn
sin[ωn(t− t0)]

l∫
0
Xn(x)Xn(x) dx t  t0

(4.8)

— Harmonic concentrated moment with a constant amplitude M0 applied to the point x = x0

ms(x, t) =M0δ(x− c) sin(νt) [M0] = Nm

Hn(t) =M0
1
ρJ0

1
γ2n

1
ω2n − ν2

[
sin(νt)− ν

ωn
sin(ωnt)

]
Xn(x0)

ϕ(x, t) =M0
1
ρJ0

∞∑

n=1

1
γ2n

1
ω2n − ν2

[
sin(νt)− ν

ωn
sin(ωnt)

]
Xn(x0)Xn(x)

(4.9)

— Pulsed concentrated moment with a constant amplitude Qm acting at the time t = t0 at the
point x = x0

ms(x, t) = QMδ(x − x0)δ(t − t0) [QM ] = Nms

Hn(t) =





0 t < t0

QM
1
ρJ0

1
γ2n

1
ωn
sin[ωn(t− t0)]Xn(x0) t  t0

ϕ(x, t) =






0 t < t0

QM
1
ρJ0

∞∑
n=1

1
γ2n

1
ωn
sin[ωn(t− t0)]Xn(x0)Xn(x) t  t0

(4.10)

5. Example – excited torsional vibrations of a simply supported thin-walled beam

5.1. Formulation of the problem

As an example, let us consider excited vibrations of a thin-walled beam simply supported on
both ends. The beam is made of steel (E = 2.1 · 1011 Pa, G = 8.1 · 1010 Pa, ρ = 7800 kg/m3) and
has length l = 6m. The shape of cross-section with its detailed dimensions is shown in Fig. 2.

Fig. 2. Cross-section of the analyzed beam (dimensions given in mm)
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The boundary conditions take form

ϕ(0, t) = 0
∂2

∂x2
ϕ(0, t) = 0

ϕ(l, t) = 0
∂2

∂x2
ϕ(l, t) = 0

(5.1)

5.2. Natural vibrations – a comparison of the results for different models

The following models of beam are applied for comparison of the lowest natural frequencies
for torsional vibrations:

• three-dimensional solid model solved by application of the finite element method,
• thin-walled Vlasov analytical model,
• model with a monolithic cross-section.

The finite element solution has been obtained by application of the Ansys finite element
package. The model is built of 76800 three dimensional 8-nodes solid elements of the type
solid45. The generated mesh is shown in Fig. 3. Due to the degrees of freedom of the applied
elements, the boundary conditions on the two ends of the beam are modeled as free sliding
along the axis of the beam and as blocked displacements for all nodes in the plane of its ends.
Therefore, deplanation of the ends is possible.

Fig. 3. Part of the FEM mesh of the beam

The second group of values of the natural frequencies is obtained based on the thin-walled
model described in the text, especially based on the formula given in the first row in Table 1.
The values of Js, Jω and J0 are calculated based on the formulas given by Gere (1954).
The third group of results is obtained for the beam modeled with the assumption of

a monolithic type cross-section (shaft) with free-free (ϕ(0, t) = ϕ(l, t) = 0) or fixed-fixed
(∂ϕ(0, t)/∂x = ∂ϕ(l, t)/∂x = 0) boundary conditions. The values of natural frequencies are
the same for these cases of boundary conditions (Woroszył, 1984).
In Table 2, a comparison of the lowest natural frequencies for the analyzed beam for the three

considered models and the relative percentage error is given to one model obtained from three
dimensional solid models, as the reference model. It should be noted that for the considered
beam, the values of natural frequencies are correctly estimated theoretically with a monolithic
cross-section only for the first few torsional modes. For higher modes, only the theory for thin-
walled beam gives good enough results.
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Table 2. Comparison of the lowest natural frequencies for the analyzed beam [Hz]

Mode 3-D Solid Thin-walled Monolytic
No. value [Hz] value [Hz] error [%] value [Hz] error [%]

1 25.15 25.54 1.6 25.40 1.0
2 50.97 51.89 1.8 50.81 -0.3
3 78.11 79.84 2.2 76.21 -2.4
4 107.16 110.05 2.7 101.62 -5.2
5 138.64 143.16 3.3 127.02 -8.4
6 172.98 179.66 3.9 152.42 -11.9
7 210.56 219.94 4.5 177.83 -15.5
8 251.65 264.36 5.1 203.23 -19.2
9 296.50 313.14 5.6 228.64 -22.9
10 345.26 366.49 6.1 254.04 -26.4

A comparison of the natural frequencies for the two beam models – the thin-walled one and
the monolithic one are shown in Fig. 4 in form of the relative percentage error in comparison
to the values obtained for the thin-walled model as the reference model. On the horizontal axis,
there are identification numbers of the first hundred torsional modes (n = 1, 2, . . . , 100). It can
be shown that for the considered beam, the error of the estimated values of natural frequencies
found by application of the theory with monolithic cross-section grow rapidly with an increase
in the number of torsional modes.

Fig. 4. Relative error of the natural frequencies for torsional modes for the beam models

5.3. Excited vibrations

The vibrations are excited by a concentrated moment with an amplitude M0 = 5Nm acting
at the point distanced 0.4l (2.4m) from the end of beam.
The initial conditions are zeroes (i.e ϕ0(x) = 0 and Ω0 = 0 in formulas (3.6))

ms(x, t) =M0δ(x− 0.4l) sin(νt) (5.2)

The angular frequency of the excitation is ν = 200 rad/s. Material damping is neglected. The
analytical solution has the form

ϕ(x, t) =
2
l

1
ρJ0

M0

∞∑

n=1

1
ω2n − ν2

[
sin(νt)− ν

ωn
sin(ωnt)

]
sin(λn0.4l) sin(λnx) (5.3)

In the analysis, the first five modes are considered.



Analytical solution of excited torsional vibrations... 1001

The displacement of the middle of the beam just after the beginning of vibrations and for
the steady-state are shown in Fig. 5. The control point is the place of action of the concentrated
excitation moment. It is distanced by 0.4l (2.4m) from the end of the beam.

Fig. 5. Displacement at the control point – complete analytical solution, transient and steady-state

The plots show the necessity of taking into account the full solution instead of the steady-
state case if the results are important just after the start of action of external loadings. Due
to internal material damping (not taken into account in the considered model), the transient
component existing in solution is a function that relatively fastly tends to zero. Therefore, enough
time after the start of action of the harmonic excitation, the solution takes the steady-state form.

6. Conclusions

• The solution of the problem for a monolithic cross-section is not an asymptotic case of the
solution of the thin-walled case if the value of Jω tends to zero.

• The given formulas can be applied to the analysis of reduction of torsional vibrations by
coupled sets of piezoelectric elements. The action of piezoelectric elements can be appro-
ximately modeled by a concentrated moment put in the suitable cross-section, see Elliott
and Nelson (1997), Hansen and Snyder (1997) for beams.

• The given formulas make it possible to find an analytical solution for the transient case of
the response (just after the excitation is applied) and for the steady-state case.

• The solution can be generalized by assuming the Voigt-Kelvin model of the viscous type
of damping for description of the internal material damping.

Appendix A. Orthogonality of the eigen-functions

Formula (3.2)2 can be written in the following form

GJsλ
4
nXn(x) = EJω

d4Xn(x)
dx4

−GJs
d2Xn(x)
dx2

GJsλ
4
mXm(x) = EJω

d4Xm(x)
dx4

−GJs
d2Xm(x)
dx2

(A.1)

Let us multiply the first equation of system (A.1) by the eigen-function Xm(x) and the
second equation suitably by Xn(x), and then subtract the equations by sides and integrate.
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Finally, formula (A.1) is

GJs(λ4n − λ4m)
l∫

0

Xn(x)Xm(x) dx = EJω

l∫

0

d4Xn(x)
dx4

Xm(x) dx− EJω
l∫

0

d4Xm(x)
dx4

Xn(x) dx

−GJs
l∫

0

d2Xn(x)
dx2

Xm(x) dx+GJs

l∫

0

d2Xm(x)
dx2

Xn(x) dx

(A.2)

By integrating the right side of equation (4.2) by parts, one obtains the following formulas
for each component

EJω

l∫

0

d4Xn(x)
dx4

Xm(x) dx

= EJω

[
d3Xn(x)
dx3

Xm(x)
∣∣∣
l

0
− d2Xn(x)

dx2
dXm(x)
dx

∣∣∣
l

0
+

l∫

0

d2Xn(x)
dx2

d2Xm(x)
dx2

dx

]

EJω

l∫

0

d4Xm(x)
dx4

Xn(x) dx

= EJω

[
d3Xm(x)
dx3

Xn(x)
∣∣∣
l

0
− d2Xm(x)

dx2
dXn(x)
dx

∣∣∣
l

0
+

l∫

0

d2Xm(x)
dx2

d2Xn(x)
dx2

dx

]

GJs

l∫

0

d2Xn(x)
dx2

Xm(x) dx = GJs
dXn(x)
dx

Xm(x)
∣∣∣
l

0
−

l∫

0

dXn(x)
dx

dXm(x)
dx

dx

GJs

l∫

0

d2Xm(x)
dx2

Xn(x) dx = GJs
dXm(x)
dx

Xn(x)
∣∣∣
l

0
−

l∫

0

dXm(x)
dx

dXn(x)
dx

dx

(A.3)

Finally, the relationship (A.2) can be written in the form

GJs(λ4n − λ4m)
l∫

0

Xn(x)Xm(x) dx =
(
EJω

d3Xn(l)
dx3

−GJs
d2Xn(l)
dx2

)Xm(l)

−
(
EJω

d3Xn(0)
dx3

−GJs
d2Xn(0)
dx2

)
Xm(0)−

(
EJω

d3Xm(l)
dx3

−GJs
d2Xm(l)
dx2

)
Xn(l)

+
(
EJω

d3Xm(0)
dx3

−GJs
d2Xm(0)
dx2

)
Xn(0) − EJω

d2Xn(l)
dx2

dXm(l)
dx

+EJω
d2Xn(0)
dx2

dXm(0)
dx

EJω
d2Xm(l)
dx2

dXn(l)
dx

− EJω
d2Xm(0)
dx2

dXn(0)
dx

(A.4)

For any physically possible combination of the discussed boundary conditions, all components
existing on the right-hand side are equal to zero. It means that for n 6= m

l∫

0

Xn(x)Xm(x) dx = 0 (A.5)

For n = m
l∫

0

Xn(x)Xn(x) dx = γ2n (A.6)
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The value of γ2n depends on the form of the eigen-functions (see Table 1).
These relationships are known as the orthogonality conditions of the eigen-function Xn(x).
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