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A fracture mechanics problem for a coating linked to the basis made of another elastic
material is considered. It is assumed that in the vicinity of technological defect (crack) in
the process of loading in the coating, there will arise prefracture zones (damages) that are
modeled as the areas of weakened interparticle bonds of the material. In the prefracture
zones (interlayers of the overstressed material), the coating material is deformed beyond the
limit of elasticity. It is considered that during loading in the cross section of the coating
in the vicinity of the crack, there is an arbitrary number of rectilinear prefracture zones.
The condition determining the limiting value of the external load at which the crack growth
happens is obtained.
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1. Introduction

Analysis of the present state of coatings revealed that the coating materials have crack-visible
discontinuities. In the cross sections of the coating, there arise transition zones where physico-
-mechanical features of the material differ from the features of the basic coating. The indicated
damages in the coating cross section may have both natural origin (lamination, inclusions, po-
res) or be caused by technological processes. In spite of importance of the enumerated factors
on coating strength, up today, these issues have not found due consideration in calculation me-
thods. Development of calculation models of investigation of damage of a coating on an elastic
foundation is a very urgent problem. A problem on interactions of damages on crack growth
(Mirsalimov and Rustamov, 2012a,b) is an important problem of strength theory. Wide litera-
ture, e.g. Kulchytsky-Zhyhailo and Rogowski (2007), Haj-Ali (2009), Tukashev and Adilhanova
(2010), Ameri et al. (2011), Hasanov (2010, 2013), Hasanov and Mirsalimov (2014) and others
has been devoted to investigation of the stress strain state and fracture of the coating on an
elastic foundation.

2. Formulation of problem

Consider with respect to Cartesian coordinates x, y a double-layer body consisting of a coating
of thickness h with the elastic characteristics G1 (shear modulus) and µ1 (Poisson ratio) linked
with an elastic half-plane with characteristics G2 and µ2 (Fig. 1).
Consider a fracture mechanics problem for a double layer body when the normal load P is

applied to the external surface of the coating. The remaining part of the coating is not loaded. It is
accepted that the coating material has a crack with end plastic zones (Leonov-Panasyuk-Dugdale
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Fig. 1. A scheme of the problem of interaction of prefracture zones and cracks with end zones in the
coating

crack model), see Leonov and Panasyuk (1959), Dugdale (1960). It is assumed that in the coating
material in the vicinity of the crack, after repeated loading, there appear damages (prefracture
zones) that are modeled as areas of interparticle bonds of the material. At the loading with
external loading in the interlayer of the overstressed material a plastic flow is formed. Let,
for definiteness, the power loadings change so that plastic deformation is realized in the area
of weakened interparicle bonds of the material. Interaction of the faces of prefracture zones
is modeled by the lines of plastic flow between them (degenerated plastic deformation zones).
Under constant stress the sizes of plastic flow zones (prefracture zones) depend on the form of
the material. General tendency to formation of areas with a broken structure of the material
at early stages of fracture in the form of narrow layers occupying slight volume of the body
compared with its elastic zone (Panasyuk, 1991; Mirsalimov, 1987; Rusinko and Rusinko, 2011)
is known well from practice. The sizes of prefracture zones at the end plastic deformation zones
at the crack tips are unknown beforehand and should be defined. Interaction of the prefracture
zones in the vicinity of technological defect (crack) may reduce to the loss of crack stability,
appearance of new cracks. It is assumed that the prefracture zones are oriented in the direction
of action of maximal tensile stresses appearing in the coating.
Since the indicated zones are small compared with the remaining elastic part of the coating,

one can mentally remove them changing it by cuttings whose surfaces interact between them-
selves by some law corresponding to the action of the removed material. In the coating cross
section the crack with end zones is of length 2l1 along the axis x1. Let in the coating in the
vicinity of the crack there will be (N − 1) prefracture zones of length 2lk (k = 1, 2, . . . , N)
(Fig. 1). In the centers of prefracture zones and the crack with end zones, we locate the origin
of a local system of coordinates xkOkyk whose axes xk coincide with the prefracture zones and
the crack, and make the angles ak with the axis x (Fig. 1).
Under the action of the external power load P on the coating surface in bonds connecting

the prefracture zone faces and the cracks in end zones, there will arise normal qyk = σS and
tangential qxkyk = τS stresses (k = 1, 2, . . . , N), where σS is the yield point of the coating
material for tension; τS is the yield point of the material for shear.
The boundary conditions of the problem are written in the form (the upper index 1 corre-

sponds to the coating, the upper index 2 to the half-plane):
— for y = 0

σ(1)y = −Pδ(x) τ (1)xy = 0 (2.1)

— for y = −h
u(1) + iv(1) = u(2) + iv(2) σ(1)y + iτ

(1)
xy = σ

(2)
y + iτ

(2)
xy (2.2)

— for y1 = 0

λ11 < x < λ21 σ(1)y = 0 τ (1)xy = 0 (2.3)
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— for y1 = 0, −ℓ1 ¬ x1 ¬ λ11 and λ21 ¬ x1 ¬ ℓ1

σ(1)y1 = σs τ (1)x1y1 = τs (2.4)

and

σ(1)yk = σs τ (1)xkyk = τs on Lk (k = 1, 2, . . . , N) (2.5)

where Lk are the faces of the k-th prefracture zone; δ(x) is Dirac’s impulse function, σx, σy, τxy
are stress tensor components; u, v are displacement vector components: as y → −∞ the displa-
cements and stresses disappear.

3. The method of the boundary-value problem solution

For the solution of the problem under consideration we use the superposition principle. Then we
can represent the state of a double-layer body in the form of the sum of two stress-strain states:

1) adhesive connection of materials without a crack and prefracture zones under the action
of the external normal load P on the external surface of the coating;

2) stress-strain state of a coating with a crack and prefracture zones on the faces of which
the stresses equal in value and opposite in sign, defined by the first stress-strain state for
y1 = 0 and on Lk are additionally applied.

The boundary conditions for the first stress state are of the form (2.1)-(2.2).
For the solution of boundary value problem (2.1), (2.2), we use Papkovich-Neiber’s four

functions Fmn (x, y) (n,m = 1, 2). Two of them are for the coating (upper index 1) and two for
the half-plane (upper index 2).
The stresses and strains are expressed by the Parkovich-Neiber function by the known for-

mulae (Uflyand, 1967)

σ
(m)
y

2Gm
= 2(1− µm)

∂Fm2
∂y
− ∂2Fm1

∂y2
− y∂

2Fm2
∂y2

τ
(m)
xy

2Gm
=

∂

∂x

[
(1− 2µm)Fm2 −

∂Fm1
∂y
− y∂F

m
2

∂y

]

u(m) = −∂F
m
1

∂x
− y∂F

m
2

∂x
v(m) = (3− 4µm)Fm2 −

∂Fm1
∂y
− y∂F

m
2

∂y

(3.1)

Taking into account the symmetry of the problem in x, we use the Fourier cos-transformation.
Accept that

F 11 =
∞∫

0

(A sinhαy +B coshαy) cosαx dα

F 12 =
∞∫

0

(C sinhαy +D coshαy)α cosαx dα

F 21 =
∞∫

0

Eeαy cosαx dα F 22 =
∞∫

0

F eαyα cosαx dα

(3.2)
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Satisfying by functions (3.1), (3.2) boundary conditions (2.1), (2.2), we get a system of six
linear algebraic equations with respect to six unknown functions A(α), B(α), C(α), D(α), E(α),
F (α)

2(1− µ1)(C coshαh+D sinhαh) −A sinhαh−B coshαh

− αh(C sinhαh+D coshαh) = − P

2πG1α2

(1− 2µ1)(C sinhαh+D coshαh) −A coshαh−B sinhαh
− αh(C coshαh+D sinhαh) = 0

B = E (3− 4µ1)D −A = (3− 4µ2)F − E
G1[2(1− µ1)C −B] = G2[2(1 − µ2)F − E]
G1[(1− 2µ1)D −A] = G2[(1 − 2µ2)F − E]

(3.3)

Solving algebraic system of equations (3.3) by the method of successive exclusion of unknowns,
we find the coefficients A(α), B(α), C(α), D(α), E(α), F (α)

D =
∆1
∆

F =
∆2
∆

E = B

A =
1
a11
(B1 − a12B − a13C − a14D − a15F )

B =
1
c11

(
B2 −

a21
a11

B1 − c12C − c13D − c14F
)

C =
1
A∗11

(
b∗2 −

c21
c11

b∗1 −A∗12D −A∗13F
)

Here

a11 = − sinhαh a12 = − coshαh a13 = 2(1− µ1) coshαh − αh sinhαh
a14 = 2(1− µ1) sinhαh− αh cosh αh a15 = 0 a21 = − coshαh
a22 = − sinhαh a23 = (1− 2µ1) sinhαh− αh cosh αh
a24 = (1− 2µ1) coshαh− αh sinhαh a25 = 0 a31 = −1 a32 = 1

a33 = 0 a34 = 3− 4µ1 a35 = −(3− 4µ1) a41 = −G1 a42 = 1

a43 = 0 a44 = G1(1− 2µ1) a45 = −G2(1− 2µ2) a51 = 0

a52 = 1− 2G1(1− µ1) a53 = 2G1(1− µ1) a54 = 0

a55 = −2G2(1− 2µ2) B1 = −
P

2πG1α2
B2 = 0

B3 = 0 B4 = 0 B5 = 0

c11 = a22 − a12
a21
a11

c12 = a23 − a13
a21
a11

c13 = a24 − a14
a21
a11

c14 = a25 − a15
a21
a11

c21 = a32 − a12
a31
a11

c22 = a33 − a13
a31
a11

c23 = a34 − a14
a31
a11

c24 = a35 − a15
a31
a11

c31 = a42 − a12
a41
a11

c32 = a43 − a13
a41
a11

c33 = a44 − a14
a41
a11

c34 = a45 − a15
a41
a11

c41 = a52 − a12
a51
a11

c42 = a53 − a13
a51
a11

c43 = a54 − a14
a51
a11

c44 = a55 − a15
a51
a11

A∗11 = c22 − c12
c21
c11

A∗12 = c23 − c13
c21
c11
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A∗13 = c24 − c14
c21
c11

A∗21 = c32 − c12
c31
c11

A∗22 = c33 − c13
c31
c11

A∗23 = c34 − c14
c31
c11

A∗31 = c42 − c12
c41
c11

A∗32 = c43 − c13
c41
c11

A∗33 = c44 − c14
c41
c11

b∗1 = −
a21
a11

B1 b∗2 = −
a31
a11

B1 b∗3 = −
a41
a11

B1 b∗4 = −
a51
a11

B1

∆ =
(
A∗22 −A∗12

A∗21
A∗11

)(
A∗33 −A∗13

A∗31
A∗11

)
−
(
A∗23 −A∗13

A∗21
A∗11

)(
A∗32 −A∗12

A∗31
A∗11

)

∆1 =M1
(
A∗33 −A∗13

A∗31
A∗11

)
−M2

(
A∗23 −A∗13

A∗21
A∗11

)

∆2 =M2
(
A∗22 −A∗12

A∗21
A∗11

)
−M1

(
A∗32 −A∗12

A∗31
A∗11

)

M1 = b∗3 −
c31
c11

b∗1 −
(
b∗2 −

c21
c11

b∗1
)A∗21
A∗11

M2 = b∗4 −
c41
c11

b∗1 −
(
b∗2 −

c21
c11

b∗1
)A∗31
A∗11

By means of formulae (3.1), (3.2), we find the stress components |x1| ¬ ℓ1, y1 = 0 and Lk
(|xk| ¬ ℓk, yk = 0, k = 1, 2, . . . , N).
The boundary conditions of the problem for the second stress-strain state take the form:

— for y = 0

σ(1)y = 0 τ (1)xy = 0 (3.4)

— for y = −h

σ(1)y = 0 τ (1)xy = 0 (3.5)

— for y1 = 0

σy1 − iτx1y1 =
{
−(σ1y1 − iτ1x1y1) on the crack faces

σs − iτs − (σ1y1 − iτ1x1y1) on the end zone faces of the crack
(3.6)

— for yk = 0, |xk| ¬ ℓk

σyk − iτxkyk = σs − iτs − (σ1yk − iτ
1
xkyk
) (k = 1, 2, . . . , N) (3.7)

By means of the Kolosov-Muskhelishvili formulae (Muskhelishvili, 1977), we represent bo-
undary conditions (3.5)-(3.7) in the form of the boundary value problem for finding the two
analytic functions Φ(z) and Ψ(z)

y = 0 Φ(z) + Φ(z) + zΦ′(z) + Ψ(z) = 0

y = −h Φ(z) + Φ(z) + zΦ′(z) + Ψ(z) = 0

yk = 0 Φ(xk) + Φ(xk) + xkΦ′(xk) + Ψ(xk) = Fk

(3.8)

where

F1 =

{
−(σ1y1 − iτ1x1y1) on the crack faces

σS − iτS − (σ1y1 − iτ1x1y1) on the end zone faces of the crack

Fk = σS − iτS − (σ1yk − iτ
1
xkyk
) (k = 1, 2, . . . , N)
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We look for the complex potentials Φ(z) and Ψ(z) (Panasyuk et al., 1977) in the form

Φ(z) =
1
2π

N+1∑

k=0

ℓk∫

−ℓk

gk(t)
t− zk

dt

Ψ(z) =
1
2π

N+1∑

k=0

e−2iαk
ℓk∫

−ℓk

[ gk(t)
t− zk

− Tkeiαk

(t− zk)2
gk(t)

]
dt

(3.9)

where

Tk = teiαk + z0k zk = e−iαk(z − z0k)

Using transformation formulae (Muskhelishvili, 1977) in transfoming into the new system of
coordinates

Φk(zk) = Φ
(
zkeiαk + z0k

)

Ψk(zk) = e
2iαk

[
Ψ
(
zke
iαk + z0k

)
+ z0kΦ

′
(
zke
iαk + z0k

)] (3.10)

we write complex potentials Φn(zn) and Ψn(zn) for the considered problem in the system of
coordinates xnOnyn

Φn(zn) =
1
2π

N+1∑

k=0

ℓk∫

−ℓk

gk(t)
t− zk

dt

Ψn(zn) =
1
2π

N+1∑

k=0

e2iαnk
ℓk∫

−ℓk

[ gk(t)
t− zk

− (Tk − zn)e
iαk

(t− zk)2
g0k(t)

]
dt

(3.11)

where

zk = e
−iαk

(
zneiαn + z0n − z0k

)
αnk = αn − αk

Having defined by the Kolosov-Muskhelishvili formula (Muskhelishvili, 1977) the stresses on
the axis xn and substituting into boundary condition (3.8), after some transformations, we get
a system of N + 2 integral equations:
— for |x| <∞

∞∫

−∞

[ g00(t)
t− x + g

0
N+1(t)K0,N+1(t− x) + g0N+1(t)L0,N+1(t− x)

]
dt

= −
N∑

k=1

ℓk∫

−ℓk

[g0k(t)K0,k(t, x) + g
0
k(t)L0,k(t, x)] dt

∞∫

−∞

[g0N+1(t)
t− x + g

0
0(t)KN+1,0(t− x) + g00(t)LN+1,0(t− x)

]
dt

= −
N∑

k=1

ℓk∫

−ℓk

[g0k(t)KN+1,k(t, x) + g0k(t)LN+1,k(t, x)] dt

(3.12)
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— for |x| < ℓn (n = 1, 2 . . . , N)

ℓk∫

−ℓk

g0n(t)
t− x +

∑

k 6=n

[ ℓk∫

−ℓk

g0k(t)Knk(t, x) + g0k(t)Lnk(t, x)

]
dt

+
∞∫

−∞
[g00(t)Kn,0(t, x) + g00(t)Ln,0(t, x)] dt

+
∞∫

−∞
[g0N+1(t)Kn,N+1(t, x) + g0N+1(t)Ln,N+1(t, x)] dt = πFn(x)

(3.13)

Here

K0,N+1(x) = KN+1,0(x) =
x

x2 + h2
L0,N+1(x) = LN+1,0(x) =

ih
(x+ ih)2

K0,k(t, x) =
eiαk

2

( 1
Tk − x− ih/2

+
1

T k − x+ ih/2
)

L0,k(t, x) =
e−iαk

2
T k − Tk + ih
(T k − x+ ih/2)2

Kn,0(t, x) =
1
2

( 1
t+ ih/2 −Xn

+
e−2iαn

t− ih/2 −Xn

)

Ln,0(t, x) =
1
2

( 1
t− ih/2 −Xn

− t+ ih/2−Xn

(t− ih/2 −Xn)2
e−2iαn

)

KN+1,k(t, x) =
eiαk

2

( 1
Tk − x+ ih/2

+
1

T k − x− ih/2
)

LN+1,k(t, x) =
e−iαk

2
T k − Tk − ih

(T k − x− ih/2
)2

Kn,N+1(t, x) =
1
2

( 1
t− ih/2 −Xn

+
e−2iαn

t+ ih/2 −Xn

)

Ln,N+1(t, x) =
1
2

( 1
t+ ih/2 −Xn

− t− ih/2 −Xn

(t+ ih/2 −Xn

)2 e
−2iαn

)

Knk(t, x) =
eiαk

2

( 1
Tk −Xn

+
e−2iαn

(T k −Xn)2

)

Lnk(t, x) =
e−iαk

2

( 1
T k −Xn

− Tk −Xn

(T k −Xn)2
e−2iαn

)

Xn = xeiαn + z0n

(3.14)

For convenience, in (3.12) and (3.13) and further, we omit the index in xn. From the system
of N + 2 singular integral equations (3.12) and (3.13) we exclude two unknown functions g00(t)
and g0N+1(t).
We can write the solutions to equations (3.12) in the following way

g00(t) =
∞∫

−∞
[D0(t)W1(x− t) +D0(t)W2(x− t) +DN+1(t)W3(x− t)

+DN+1(t)W4(x− t)] dt (3.15)
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g0N+1(t) =
∞∫

−∞
[D0(t)W3(x− t) +D0(t)W4(x− t) +DN+1(t)W1(x− t)

+DN+1(t)W2(x− t)] dt
Here

D0(x) = −
1
π

N∑

k=1

ℓk∫

−ℓk

[g0k(t)K0,k(t, x) + g
0
k(t)L0,k(t, x)] dt

DN+1(x) = −
1
π

N∑

k=1

ℓk∫

−ℓk

[g0k(t)KN+1,k(t, x) + g0k(t)LN+1,k(t, x)] dt

W1(x) =
1
2
[M1(x) +N1(x)] W2(x) =

1
2
[M2(x) +N2(x)]

W3(x) =
1
2
[M2(x)−N2(x)] W4(x) =

1
2
[M1(x)−N1(x)]

M1(x) = −
i
4π

∞∫

−∞

sgn s[eh|s| + h(|s|+ s)]
sinh |s|h+ |s|h eisx ds

M2(x) =
i
4π

∞∫

−∞

sgn s
sinh |s|h+ |s|he

isx ds

N1(x) = −
i
4π

∞∫

−∞

sgns{[eh|s| − h(|s|+ s)]eisx − (1 + isx) + hs}
sinh |s|h− |s|h ds

N2(x) = −
i
4π

∞∫

−∞

sgns(eisx − 1− isx)
sinh |s|h− |s|h ds

(3.16)

Now substituting into (3.15) the expressions for D0(x) and DN+1(x) from (3.16), we find

g00(x) = −
N∑

k=1

ℓk∫

−ℓk

[g0k(u)M0,k(u, x) + g
0
k(u)N0,k(u, x)] du

g0N+1(x) = −
N∑

k=1

ℓk∫

−ℓk

[g0k(u)MN+1,k(u, x) + g0k(u)NN+1,k(u, x)] du

(3.17)

Here

M0,k(u, x) =
1
π

∞∫

−∞
[W1(x− t)K0,k(u, t) +W2(x− t)L0,k(u, t)

+W3(x− t)KN+1,k(u, t) +W4(x− t)LN+1,k(u, t)] dt

N0,k(u, x) =
1
π

∞∫

−∞
[W1(x− t)L0,k(u, t) +W2(x− t)K0,k(u, t)

+W3(x− t)LN+1,k(u, t) +W4(x− t)KN+1,k(u, t)] dt (3.18)

MN+1,k(u, x) =
1
π

∞∫

−∞
[W3(x− t)K0,k(u, t) +W4(x− t)L0,k(u, t)

+W1(x− t)KN+1,k(u, t) +W2(x− t)LN+1,k(u, t)] dt
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NN+1,k(u, x) =
1
π

∞∫

−∞
[W3(x− t)L0,k(u, t) +W4(x− t)K0,k(u, t)

+W1(x− t)LN+1,k(u, t) +W2(x− t)KN+1,k(u, t)] dt

Now substituting these formulas into (3.13), after some transformations, we get a system of
N singular integral equations of the considered problem for |x| ¬ ℓn (n = 1, 2, . . . , N)

ℓk∫

−ℓk

g0k(t)
t− x dt +

N∑

k=1

ℓk∫

−ℓk

[g0k(t)Rnk(t, x) + g
0
k(t)Snk(t, x)] dt = πFn(xn) (3.19)

where

Rnk(t, x) = (1−δnk)Knk(t, x)+rnk(t, x) Snk(t, x) = (1−δnk)Lnk(t, x)+snk(t, x) (3.20)

and

rnk(t, x) =
∞∫

−∞
[Kn,0(τ, x)M0,k(t, τ) + Ln,0(τ, x)N0,k(t, τ)

+Kn,N+1(τ, x)MN+1,k(t, τ) + Ln,N+1(τ, x)NN+1,k(t, τ)] dτ

snk(t, x) =
∞∫

−∞
[Kn,0(τ, x)N0,k(t, τ) + Ln,0(τ, x)M0,k(t, τ)

+Kn,N+1(τ, x)NN+1,k(t, τ) + Ln,N+1(τ, x)MN+1,k(t, τ)] dτ

(3.21)

After substituting into (3.21) integrals (3.18), the kernels rnk(t, x) and snk(t, x) will be repre-
sented by three-fold iterated integrals. After integration, these expressions may be represented
by single integrals.
Omitting very bulky calculations, for the kernels rnk(t, x) and snk(t, x) we finally find

rnk(t, x) =
∞∫

0

[( 1
sinhhs+ hs

+
1

sinhhs − hs
)
Hnk(Xn, Tk, s, αn, αk)

+
( 1
sinhhs+ hs

− 1
sinhhs− hs

)
Gnk(Xn, Tk, s, αn, αk)

]
ds

snk(t, x) =
∞∫

0

[( 1
sinhhs+ hs

− 1
sinhhs− hs

)
Hnk(Xn, T k, s, αn,−αk)

+
( 1
sinhhs+ hs

+
1

sinhhs− hs
)
Gnk(Xn, T k, s, αn,−αk)

]
ds

(3.22)

where

Hnk(Xn, T k, s, αn,−αk) =
eiαk

4
{sin(Xn − T k)s

− sin(Tk −Xn)s〈hs + e−2iαn [1− hs+ s2(Tk − T k)(Xn −Xn) + h2s2]〉
+ 〈s(Tk − T k)− e−2iαn [(Tk − T k) + hs2(Xn −Xn − Tk + T k)]〉 cos(Tk −Xn)s

+ e−hs[sin(Tk −Xn)s+ e−2iαn sin(T k −Xn)s]}

Gnk(Xn, Tk, s, αn, αk) =
eiαk

4
{−[1 + e−2iαn(−1 + hs)] sin(T k −Xn)s − hs sin(Tk −Xn)s

− s(Tk − T k) cos(Tk −Xn)s− e−2iαn(Xn −Xn)s cos(T k −Xn)s+ e−hs[sin(Tk −Xn)s

− e−2iαn sin(Tk −Xn)s+ e−2iαn sin(Xn −Xn − Tk + T k)s cos(Tk −Xn)s]}

(3.23)
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Note that the functions rnk(t, x) and snk(t, x) are regular. They define the effect of faces of
the band on the stress state near the crack tips. To the system of singular equations (3.19) for
internal cracks, we should add the additional conditions

ℓk∫

−ℓk

g0k(t) dt = 0 (k = 1, 2, . . . , N) (3.24)

Using the procedure for converting (Panasyuk et al., 1977; Mirsalimov, 1987) at conditions
(3.24), the system of complex singular integral equations (3.19) is reduced to a system of
N × M algebraic equations for determining the N × M unknowns g0k(tm) (k = 1, 2, . . . , N ;
m = 1, 2, . . . ,M)

1
M

M∑

m=1

N∑

k=1

ℓk[g
0
k(tm)Rnk(ℓktm, ℓnxr) + g

0
k(tm)Snk(ℓktm, ℓnxr)] = F

0
n(x
0
r)

M∑

m=1

g0n(tm) = 0 (n = 1, 2, . . . , N)

(3.25)

If in (3.25) we pass to complex conjugate values, we get one more N ×M algebraic equations.
For completeness of algebraic equations, we need 2×N complex equations determining the

sizes of prefracture zones.
The solution of the system of integral equations is sought in the class of everywhere bounded

functions (stresses). Consequently, it is necessary to add to system (3.25) the conditions of stress
boundedness at the ends of the crack and prefracture zones xk = ±lk (k = 1, 2, . . . , N). These
conditions are of the form

M∑

m=1

(−1)mg0n(tm) cot
2m− 1
4M

π = 0 (n = 1, 2, . . . , N)

M∑

m=1

(−1)M+mg0n(tm) tan
2m− 1
4M

π = 0

(3.26)

The obtained resolving systems of equations can be determines under the given external
load the stress-strain state of the coating linked with elastic foundation in the availability of a
crack and arbitrary number of prefracture zones in the coating. The united resolving system of
equations becomes nonlinear because of the unknown values lk (k = 1, 2, . . . , N). For its solution,
we use the method of successive approximations the essence of which is the following. We solve
system (3.25) at some definite values l∗k (k = 1, 2, . . . , N) of the sizes of prefracture zones and
the crack end zones with respect to the remaining unknowns. The remaining unknowns enter
into the system linearly. The values of l∗k and the found quantities gk(tm) are substituted into
(3.26), i.e. into the unused equations of the system. The taken values of the parameters l∗k and
the appropriate values gk(tm) will not, generally speaking, satisfy equations (3.26). Therefore,
by selecting the values of the parameters l∗k, we will repeat the calculations until equations (3.26)
of system (3.25) and (3.26) are satisfied with the given accuracy. At each approximation, the
algebraic system is solved by the Gauss method with choosing the principal element.
Using the solution of the problem, calculate the opening on the faces of the crack and

prefracture zones

−1 + κ
2G1

πℓk
M

M1∑

m=1

gk(tm) = vk(x0k, 0)− iuk(xok, 0) (k = 1, 2, . . . , N)

Here, M1k is the number of nodal points contained in the interval (−lk, x0k).
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For the displacement vector modulus on the faces of the crack and prefracture zone for
x = x0k, we have

V0k =
√
u2k + v

2
k =
1 + κ
2G1

πℓk
M

√
A2k +B

2
k (3.27)

where

Ak =
M1k∑

m=1

vk(tm) Bk =
M1k∑

m=1

uk(tm) (k = 1, 2, . . . , N)

To determine the external load at which the crack propagation occurs, we use the criterium
of critical opening of crack faces at the foundation of the plastic deformations zone. Then the
condition determining the limiting value of the external load will be the equality

V01(λ11) = δc V01(λ21) = δc (3.28)

where δc is a characteristic of the fracture toughness of the coating material defined experimen-
tally.
The obtained solution of the problems allows one to predict the appearance of new cracks

in the coating material. Tp achieve that, the problem statement should be complemented with
the condition (criterion) of the crack appearance (discontinuity of interparticle bonds of the
material). In place of such a condition, we accept the criterium of critical opening of prefracture
zone faces

|(v+k − v−k )− i(u+k − u−k )| = δcr (k = 2, . . . , N) (3.29)

where δcr is the characteristics of resistance of the material to cracking.
Using the obtained solution, we can write the limit condition in the form

V0k(x
∗
k) = δcr (k = 2, . . . , N) (3.30)

where x∗k is the coordinate of the point of the prefracture zone at which discontinuity of the
material interparticle bonds occurs.
These additional conditions enables finding the coating parameters at which new cracks

appear in the coating cross section. Dependences of the length of the crack-tip zone
d1 = (l1 − λ11)/l1 on the value of the load p∗ = P/hσs for different values of the crack length
l∗ = (λ21−λ11)/l1 for α1 = 45◦ and z0 = (0.05h−i0.25h) are depicted in Fig. 2. The dependences
of the prefracture zone length l2/h on the dimensionless value of the external load P/hσs under
different orientation angles of the prefracture zone location in the case l∗ = 0.75 are depicted
in Fig. 3. The dependences of the opening of prefracture zone faces δ/δ0 along the prefracture
zone x2/l2 at different orientation angles of the prefracture zone location in the case l∗ = 0.75
are depicted in Fig. 4. Here δ0 = πE1δc/8σs. Figure 5 represents the dependence of the critical
load pc = P/hσs on the dimensionless length of the crack λ = l∗/h for α1 = 45◦.

4. Conclusions

Experimental data from operational practice of the pair “coating-elastic foundation” convin-
cingly show that at the design stage it is necessary to take into attention the cases when the
coating may have damages and cracks. The existing methods of strength analysis of the pair
“coating-elastic foundation” ignore this case. Such a situation makes it impossible to design a pa-
ir “coating-foundation” with minimal specific consumption of materials at guaranteed reliability
and durability.
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Fig. 2. Dependence of the length of the left end zone d1 = (ℓ1 − λ11)/R1 on the dimensionless external
load p∗ = P/hσs for different values of the crack length ℓ∗ = (λ21 − λ11)/ℓ1 for α1 = 45◦ and

z0 = 0.05h− i0.25h

Fig. 3. Dependence of the prefracture zone length ℓ2/h on the dimensionless length of the external load
P/hσs at different orientation angles of the prefracture zone location for the case ℓ∗ = 0.75

Fig. 4. Dependence of the prefracture zone faces opening δ/δ0 along the prefracture zone at different
orientation angles of the prefracture zone location for the case x2/ℓ2. Here δ0 = πE1δc/8σs

In this connection, it is necessary to realize the limit analysis of the pair “coating-foundation”
in order to establish ultimate loads at which cracking and crack growth in the coating occurs.
The size of the limiting minimal prefracture zone at which a crack appears should be considered
as a design characteristic of the coating material.
Based on the suggested designed model that takes into account the availability of damages

(zones of weakened interparticle bonds of the material) and cracks with end zones in the coating,
we developed a method of calculation of coating parameters at which cracking and crack growth
occurs. Knowing the basic values of critical parameters of cracking and the effect of materials
properties on them, cracking and crack growth phenomenon may be controlled by means of
design-technological decisions at the design stage.
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Fig. 5. Dependence of the critical load pc = P/hσs on the dimensionless length of the crack λ = ℓ1/h for
α1 = 45◦

Numerical realization of the obtained equations enables solution of the following practically
important design problems:
1) to estimate the guaranteed resource of the pair “coating-elastic foundation” with regard
to expected defects and loading conditions;

2) to establish the admissible deficiency level and maximum values of workload ensuring
sufficient reliability reserve;

3) to choose materials with necessary complex of static and cyclic fracture toughness charac-
teristics.
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