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In the paper, a simple model of the fascia-mesh system is considered to
assess the junction force after a laparoscopic hernia repair. The aim of
this study is to develop a cable model of the system in order to find
the junction force and to distinguish the most important parameters
affecting the system junction force. The cable is subjected to a pressure
in the abdominal cavity and displacements of the cable edges caused
by bends of the patient body. The attention is paid to the junction
force sensitivity analysis with respect to initial tension of the mesh, its
length and elasticity as well as fascia flexibility. All these parameters are
crucial for ventral hernia repair safety. Finally, some concluding remarks
important for practicing surgeons and for further more advanced study
using two dimensional fascia-mesh models are presented.
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Notations

H – horizontal reaction in the cable model (junction force in the fascia-mesh
system)

E – Young’s modulus of the mesh
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A – cross-section of the cable modeling the implanted mesh

H0 – initial junction force in the cable model

L0 – initial length of the cable

g – distributed load in the cable model (referring to the abdominal pressure
in practice)

∆ – relative planar displacement of the cable edges

∆m – displacement of the cable edges, resulting from elasticity of the mesh
(the mesh stretch in the zone supported by the fascia)

∆p – displacement of the cable edges, resulting from the fascia elasticity (her-
nia boundary displacement)

l – length of the modeled cable span

ls – width of the fascia and the mesh overlap

P – pressure in the abdominal cavity

Fp – resultant load of the mesh

Fn – force acting on the couple of tacks on the two opposite sides of the hernia
orifice

N – number of tacks in the mesh-fascia junction

s – parameter in the sensitivity analysis, s = L0, H0, ∆p, E

WL0,WH0,W∆p,WE – sensitivity coefficients related to variations of L0, H0,
∆p, E, respectively

δH, δL0, δH0, δ∆p, δE – relative variations of H, L0, H0, ∆p, E, respectively

1. Introduction

Ventral hernias are leaks in the front wall of the abdominal cavity. They are
caused by the fascia defect at some points of natural orifices (umbilicus) or
scar tissue in cicatrix after previous laparotomy. Due to pressure in the abdo-
minal cavity, intestines covered by peritoneum (creating hernia sac) are moved
from the inside of the abdominal cavity to the subcutaneous space (Fig. 1).
The phenomenon remains one of the most important problems in general sur-
gical practice. Ventral hernias have been reported as a result of 0.2%-36%
laparotomies, depending on type of operation, general condition of patients
and comorbities (Thomas and Philips, 2002). Two different types of ventral
hernia repair are performed nowadays, suture and mesh technique. The suture
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repair could be performed only in cases of small hernias (radius of the orifice
smaller than 5 cm, e.g. umbilical hernia). There are two different approaches
for the mesh technique, open and laparoscopic. The laparoscopic ventral her-
nia repair (LVHR) technique has revolutionized the repair of incisional hernias
and appears progressively attractive contrary to open surgery. According to
medical statistics, the number of recurrences is significantly smaller after the
laparoscopic operation than after the open one, there are less postoperative
complications and the time of postoperative recovery is shorter (Park et al.,
1998; Aura et al., 2002; Goodney et al., 2002; Eid et al., 2003). During an
open operation, a large incision and widespread dissection of abdominal wall
components are required to prepare the space for the implant placement. In
LVHR, the mesh implant is placed under the peritoneum without extended
preparation and is fixed to the fascia by special tacks.

Fig. 1. Ventral hernia – external view

Despite the above mentioned advantages. the LVHR is not free of problems.
Recurrences still occur (about 10%), which suggests that either the method
or the materials used are not perfect (Sanchez et al., 2004). During LVHR,
surgeons perform their best, but use only intuition and experiences previously
gained in open surgeries to place and fix the mesh correctly. In order to hold the
mesh in the right position, the tacks and transabdominal sutures are used. The
sutures ensure the strongest fixation, however some authors have described
persistent pain of patients at the suture site, (Franklin et al., 2004). On the
other hand, neither the number of the tacks required for holding the mesh
correctly is known, nor their optimal position on the mesh surface. It is obvious
that the tacks can potentially damage human nerves and blood vessels, so their
number should be reduced to a minimum. Medical knowledge itself is not
suitable to solve this complex problem, therefore it becomes interdisciplinary,
bringing together surgeons and engineers.
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The first, pioneer study on this subject was published by Śmietański et
al. (2007). Tension tests of the porcine fascia – prosthetic mesh system were
described in that paper. A failure force for various kinds of tacks and implants
in different configurations was identified. The manner of the connection of the
two mediums, the fascia and the mesh were proved to be the weakest element of
the system. The authors concluded that the kind of tissue-implant connection
along with the junction force was crucial as far as the ventral hernia recurrence
was concerned.
In this paper, the authors present a next step to understand the behaviour

of the fascia – mesh system. The aim of the study is to develop a first simple
model of the system in order to distinguish most important parameters affec-
ting the junction force of the system and to outline future studies. A cable
model is proposed for this purpose (see Fig. 2). The influence of the crucial
parameters of the model on the junction force is studied by means of sensiti-
vity analysis. A preliminary study on this subject was presented by Szymczak
et al. (2009).
The research refers to the following materials which are commonly used

in the surgical practice in LVHR: Dual Mesh© (Gore&Asc., USA) and the
Protac© (Covidien Inc., France) tacks. The Dual Mesh is a biocompatible
material (extended polytetrafluoroethylene – e PTFE). Due to its antiadhesive
properties it can be placed in the peritoneum and stay in the direct contact
with the intestines and other abdominal solid organs. The Protac tacks are
convenient as far as their mechanical and homeostatic properties are concerned
(they allow suturing via vessels due to pressure inside of the tack – spiral form).
For that kind of junction the failure load has been experimentally estimated
as H = 9.05N (see Śmietański et al., 2007).

2. Cable model of internal mesh

In this analysis, the hernia with a circular orifice is considered. It is repaired
by a mesh fixed to the fascia by tacks placed in several points in a semi-
circular order (there is no practical possibility to distribute tacks in a uniform
order). Two kinds of the orifices have been modeled, with stiff or flexible
edges. The mesh and the fascia have a joint connection in several points in a
circular order (see Fig. 2a). Because in practice it is not possible to tighten the
mesh with the same force in every direction, the following extreme situation
is considered. There exists one strip of the mesh between two tacks on the
opposite sides of the orifice, which is tightened most (see Fig. 2a). The mesh is
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Fig. 2. Mathematical model of the fascia-mesh system; (a) scheme of the fascia-mesh
junction with one strip distinguished for further cable model, (b) cable model with
stiff supports, (c) cable with support springs representing an elastic mesh in the
support zone as well as with displacements of cable edges related to the flexible

edges of the hernia

subjected to a uniformly distributed load derived from the abdominal pressure.
Additionally, due to bends of the patient body, the elongation in the maximum
strain direction arises and should be taken into consideration. Under such a
load and elongation, the distinguished strip will be stressed most and the
junction force reaches its maximum value. If this strip does not fail, the whole
mesh does not either. Such assumptions allow us to reduce a 2-dimension
problem to a 1-dimension cable.

2.1. Equilibrium equation of cable subjected to distributed loads

Let us consider a cable hanging on two supports on the same level as it is
shown in Fig. 2. The cable is subjected to an arbitrary uniformly distributed
load g. A general situation, in which a horizontal relative displacement of the
supports ∆ and an initial horizontal reaction H0 occur, is considered. Since
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the cable flexural stiffness is omitted the bending moment in deflected position
of the cable should be equal to zero, and hence the cable deflection

y =
[M ]
H

(2.1)

where H is the horizontal reaction and [M ] denotes the bending moment due
to the distributed load g for the simply supported beam. The bending moment
[M ] is expressed as

[M ] =
1
2
gl2x
(

1−
x

l

)

(2.2)

where l describes the horizontal distance between the supports.
Total length of cable L can be written by formulae accounting for the

relative horizontal displacement ∆ of the supports

L = l −∆+
1
2

l−∆∫

0

(dy

dx

)2

dx (2.3)

Using Eqs. (2.1) and (2.2) in Eq. (2.3), we arrive at the relation

L = l
(

1−
∆

l
+
g2l2

24H2
)

(2.4)

On the other hand, the cable length is equal to its initial length L0 plus its
elongation ∆L caused by the cable force increase N −N0

∆L = L− l =
∫

L0

N −N0
EA

ds ≈
H −H0
EA

L0 (2.5)

where EA is the axial stiffness of the cable.
Substitution of Eq. (2.5) into Eq. (2.4), after some algebra, leads to the

equation for calculating the supports reaction sought

H3 +H2
(

−H0 +∆
EA

L0

)

−
EA

L0

g2l3

24
= 0 (2.6)

where H denotes the horizontal reaction of the cable, E stands for Young’s
modulus of the cable material, A – the cable cross-section, H0 – initial hori-
zontal reaction originating from the initial tightening of the mesh, L0 – initial
cable length, g – uniformly distributed load (referred to the abdominal pres-
sure), ∆ – relative horizontal displacement of the cable edges, l – length of
the cable span. Thermal effects are neglected in the calculations.
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2.2. Mesh modeling

Let us consider ∆ as a resultant displacement of the following two,
∆m connected with the elasticity of the mesh, which represents an exten-
sion in the radial direction of this part of the mesh, which is supported by the
fascia (the mesh and the fascia overlap on a width ls, marked in Fig. 2a) and
∆p resulting from the elasticity of the fascia and being a displacement of the
hernia edges. Then, from (2.6), the following formula is obtained

H3 +H2
(

−H0 + (∆m +∆p)
EA

L0

)

−
EA

L0

g2l3

24
= 0 (2.7)

The elasticity of the mesh is represented by a linear spring of length ls, appro-
priate to the mesh and the fascia overlap (see Fig. 2a,c). The force H causes
the spring elongation by ∆m. From the unit load method ∆m = Hls/(EA),
which leads to final equation

H3
(

1 +
ls
L0

)

︸ ︷︷ ︸

B

+H2
(

−H0 +∆p
EA

L0

)

︸ ︷︷ ︸

C

−
EA

L0

g2l3

24
︸ ︷︷ ︸

D

= 0 (2.8)

In order to simulate situations for various ventral hernias, with stiff or
elastic edges, one decided to study three kinds of models:

• M1 model – the cable with stiff support – presented in Fig. 2b

This is the simplest model, representing an ideal situation in vivo, in
which the hernia orifice created in connective tissue is stiff and the mesh
is fixed to the edges of the orifice.

• M2 model – the cable with elastic support – presented in Fig. 2c

The springs in the supports of the cable represent elasticity of the mesh
in a region supported by the fascia, so the model describes the natural
situation after mesh implantation. The hernia orifice is stiff in this model
so displacements of its edges are not possible (∆p = 0).

• M3 model – the cable with elastic supports and displacement

of the support – presented in Fig. 2c

This model represents the most general situation, in which the ventral
hernia orifice is not stiff, its edges can displace and also the mesh elasti-
city in the supported by the fascia zone is considered.
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3. The data

It can be noticed that the value of the force H in Eq. (2.8) depends on 8 qu-
antities. Four of them: A, g, l and ls have constant values in the analysis,
because they are related to the assumptions about the model (dimensions
and loads). The latter four quantities: L0, H0, ∆p, E are difficult to specify in
practical cases, thus in this study they take approximate (starting) values with
some dispersion, and they are considered as the parameters of the problem.
The importance of the parameters to the junction force is investigated by me-
ans of the sensitivity analysis, which allows us to identify the most significant
elements in the study. Below the starting value for each quantity is defined.
The constant values of the analysis are described at first. The assumed her-

nia radius is equal to r = 0.05m, so the cable span l = 0.1m. The overlap of
the hernia and the mesh is 0.04m, which is typical in practice, so ls = 0.04m.
From the practical point of view, the width of the strip of the mesh which
is considered in the cable model equals 0.015m (0.015m is the maximum
distance between tacks to prevent the incarceration of the bowels among the
tacks), so the cross section of the strip A = 0.015 · 0.0009 = 1.35 · 10−5m2.
An extreme load acting on the mesh is derived from the critical pressure in
the abdominal cavity P = 270mmHg (35 997 Pa) appearing during postope-
rative cough (Twardowski et al., 1986). This uniformly distributed load of one
selected strip of the mesh is given as g = Fn/l, where Fn = 2Fp/N is a force
acting on a couple of tacks on two opposite sides of the hernia, N is the total
number of tacks and Fp = Pπr2. Thus, for the assumed hernia geometry the
pressure is equal to g = 148.80 N/m.
Secondly, the parameters of the sensitivity analysis are specified. The initial

junction force H0 is taken as 10% of the failure load identified by Śmietań-
ski et al. (2007) in the experiment, so H0 = 1N. As far as L0 is concerned,
L0 = 1.05l seems to be a reasonable value. Since mechanical properties of the
implant are not available, Young’s modulus of the mesh has been identified in
an experiment. The considered Dual Mesh is not reinforced by any textile or
fiberglass. A one-dimensional stretching test in a range of extension 0-1mm
with a constant increment has been performed. It is assumed that this range of
elongation refers to a real situation. Dimensions of a measurement base of the
specimen are 50mm × 80mm. The edge 80mm has been cut in the direction
of strongest resistance of the mesh to elongation and the specimen has been
stretched in this direction. That kind of experiment represents exactly the
modeled strip of the mesh. The Zwick Roell testing machine (see Fig. 3) has
been used. It has been assumed that the elongation of the specimen is equal to
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the position of the machine crosshead. Such an approach is compatible with
the European Code EN ISO 1421 Rubber- or plastics-coated fabrics – Deter-
mination of tensile strength and elongation at break’. The obtained nearly
linear stress-strain relation allowed one to specify Young’s modulus of the im-
plant as E = 10.77MPa. For comparison, Young’s modulus of PTFE coated
textile membranes used for coatings in building industry equals 420MPa (see
e.g. Minami et al. 1992; Kuwazuru and Yoshikawa 2004). Again, due to lack
of information about the elastic properties of the fascia, the authors had to
identify ∆p experimentally. In this approach, ∆p is related to displacement
of some points of the fascia during human movement. The monitored points
are tacks visible on Roentgen photos of a patient after LVHR. The bounda-
ry displacement ∆p equals the average displacement of the tacks toward the
centre of the ventral hernia measured as the difference of tacks positions du-
ring maximal inhalation and exhalation. Exemplary Roentgen photos in such
a situation are presented in Fig. 4. The displacements are specified with a re-
ference to the Protac tack dimensions: 2mm height and radius of 3mm. Thus
∆p is estimated as 0.005m.

Fig. 3. One-dimensional stretching test of Dual Mesh (WL Gore) on the Zwick Roell
testing machine

The following ranges of parameter variability are considered: E ± 50%,
L0±10%, H0−100%, +400% and ∆p±50% in relation to the starting values,
described above. The ranges relate to the authors’ uncertainties about the
starting value of each parameter. The starting value of each quantity present
in Eq. (2.8) and the parameter variability are listed in Table 1.
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Fig. 4. Roentgen photos of a patient after LVHR: (a) position of the tacks at
maximal inhalation, (b) position at maximal exhalation. One example of the tack

displacement is marked by a square frame and the second by a circle

Table 1. Constant values and parameters of the sensitivity analysis

Constans

A [m2] g [N/m] l [m] ls [m]

135 · 10−5 148.8 0.1 0.04

Parameters – starting values and dispersions

E [MPa] L0 [m] H0 [m] ∆p [m]

10.77 ± 50% 0.105 ± 10% 1− 100%,+400% 0.005 ± 50%

4. Sensitivity analysis

Sensitivity analysis is a powerful tool in engineering design (see for example
Haug at al. 1986). Some applications are also described by Szymczak (1998).
In this research, the importance of each parameter to the junction force H is
assessed.
Let the term s represent a parameter. A derivative of the left hand side of

formula (2.8) with respect to the parameter s is specified

3H2
dH

ds
B +H3

dB

ds
+ 2H

dH

ds
C +H2

dC

ds
−
dD

ds
= 0 (4.1)
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and then the derivative dH/ds sought is arrived

dH

ds
=
−H3 dB

ds
−H2 dC

ds
+ dD
ds

3H2B + 2HC
(4.2)

Small variations are assumed, so dH = δH, ds = δs and

δH =
−H3 dB

ds
−H2 dC

ds
+ dD
ds

3H2B + 2HC
δs = wsδs (4.3)

where ws is the sensitivity coefficient of the force H with respect to the
parameter s.
Relative variations take the form

δH

H
= ws

δs

s

s

H
→ δH = ws

s

H
δs =Wsδs

The following formulae represent the variations of the force H related to the
variations of subsequent parameters s

s = L0 : δH =
H3ls +H2∆pEA−

EAg2l3

24

L0H2
[

3H
(

1 + ls
L0

)

+ 2
(

−H0 +∆p EAL0

)]δL0 =WL0δL0

s = H0 : δH =
−H0

3H
(

1 + ls
L0

)

+ 2
(

−H0 +∆p EAL0

)δH0 =WH0δH0

(4.4)

s = ∆p : δH =
−
EA
L0
∆p

3H
(

1 + ls
L0

)

+ 2
(

−H0 +∆p EAL0

)δ∆p =W∆pδ∆p

s = E : δH =
−H2∆pEA+

EAg2l3

24

L0H2
[

3H
(

1 + ls
L0

)

+ 2
(

−H0 +∆p EAL0

)]δE =WEδE

where WL0,WH0,W∆p,WE are relative sensitivity coefficients related to rela-
tive variations of L0, H0, ∆p and E, respectively. The sensitivity coefficients
express the importance of each variation of parameter in the calculation of the
junction force.

5. Results

There are three solutions to equation (2.8), but only one of them is real for
the values written in Table 1. The highest value of the searched junction
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force has been obtained for M1 model, HM1 = 11.194 N. The same force in
M2 model has been calculated as HM2 = 9.991N. The lowest junction force
HM3 = 8.503N has been achieved for M3 model. These results are comparable
with the experimentally determined failure load of the fascia-mesh connection
H = 9.05N, see Śmietański et al. (2007).

Fig. 5. Junction force H in M1, M2, M3 models vs. Young’s modulus E

Fig. 6. Junction force H in M1, M2, M3 models vs. initial cable length L0

In Figs. 5, 6, 7, 8, direct influence of each parameter variability on the force
H is presented. In the diagrams, only one parameter is changing in the range
described in Table 1, while the other parameters are constant and equal to their
starting values. Those graphs prove that in the assumed range the change of
Young’s modulus E causes relatively big changes of the junction force, while
changes of the cable length L0 do not affect H significantly. Changes of the
other two parameters: H0 and ∆p implicate moderate changes of H. These
results are similar in each of the three models.
The effect of variations of the parameters upon the junction force variation

is investigated also in the sensitivity analysis. The change of the junction
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Fig. 7. Junction force H in M1, M2, M3 models vs. initial junction force H0

Fig. 8. Junction force H in M3 model vs. displacement of hernia edges ∆p

force with respect to a parameter is described by sensitivity coefficients in the
following manner, the higher is the absolute value of the sensitivity coefficient
related to the parameter, the higher is change of the junction force. Negative
values of the coefficient indicate a decline of the junction force due to higher
values of the mentioned parameters.
In this study, the sensitivity coefficients have been calculated for four chan-

geable parameters in the range described in Section 3. The tendencies of the
coefficient values observed are similar in every model, so only results for M3
one are presented. In Figs. 9-12, the sensitivity coefficients for the discussed
range of the four parameters E, L0, H0, ∆p are given. In calculations con-
cerning each coefficient, three parameters have constant values equal to their
starting values, while the fourth, which is of interest, is changeable. In Figs.
9-11, the highest absolute values of the relative sensitivity coefficients WE and
little lower values of WL0 are observed. That proves the highest importance of
values E and L0 in calculations of H. Similar situation is observed in Fig. 12,
but only for the hernia boundary displacements 0.0005m < ∆p < 0.0065m.
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Fig. 9. Relative sensitivity coefficients calculated for M3 model vs. Young’s
modulus E

Fig. 10. Relative sensitivity coefficients calculated for M3 model vs. initial cable
length L0

Fig. 11. Relative sensitivity coefficients calculated for M3 model vs. initial junction
force H0
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Fig. 12. Relative sensitivity coefficients calculated for M3 model vs. displacement of
hernia edges ∆p

If the displacement is higher, 0.0065m < ∆p < 0.01m, the role of the para-
meter ∆p becomes dominant. In each diagram, the coefficients WH0 have the
smallest values, which practically means that for calculating the exact value
of the junction force the accurate identification of H0 is not a priority.

6. Discussion

The presented study is the first one of that kind in which the junction force in
the fascia-implant system in a laparoscopic ventral hernia repair problem is cal-
culated. The authors have conducted an analytical investigation and identified
the most significant factors influencing the junction force. This is important
for the future research orientation, when a more complex mathematical model
of the system will be made. At present, a few following conclusions may be
drawn.

1. The presented cable model and its parameters determined by the authors
represents a real intraoperative situation well, because the calculated
junction force is comparable to the experimentally determined failure
load.

2. To calculate the exact value of the junction force, it is important to know
an appropriate value of Young’s modulus of the mesh or, in general, a
constitutive model of the mesh material. This requirement is proved by
the highest values of the sensitivity coefficients WE, among others, and
by the biggest changeability of the junction force H for different values
of Young’s modulus E.
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3. The next important problem is proper modeling of the hernia orifice with
appropriate boundary conditions. The authors’ future study, related to a
more complex model will be oriented to the identification of mechanical
properties of the fascia.

4. The initial force in the mesh (H0) reveals little significance to the junc-
tion force. Introducing a specific value of the initial force to the mesh
during implantation is a quite difficult surgical problem, so this fact
brings more convenience for operating doctors.

5. Current stage of knowledge allows us to present two remarks, specifically
for practicing surgeons:

• The higher Young’s modulus of the mesh, the higher the junction
force in the analyzed system – this observation may be helpful in
the mesh selection for a given hernia orifice.

• The smaller the force of initial mesh tension (H0), the smaller the
final junction force in the analyzed system, what is important from
a practical point of view because surgeons can pay less attention to
the mesh tightening, which simplifies the operation process.
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Modelowanie układu powięź-siatka i analiza wrażliwości siły połączenia

po laparoskopowej operacji przepukliny brzusznej

Streszczenie

W pracy rozpatrywano prosty model układu powięź-siatka do oszacowania siły
połączenia siatki z powięzią po laparoskopowej operacji przepukliny brzusznej. Celem
pracy jest zastosowanie modelu cięgna do wyznaczenia siły połączenia tego układu
oraz do wyznaczenia najważniejszych parametrów mających wpływ na siłę połącze-
nia implantu z powięzią. W tym celu zastosowano analizę wrażliwości siły połączenia
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względem wariacji początkowej siły rozciągającej siatki, jej długości i modułu spręży-
stości oraz podatności powięzi. Cięgno jest obciążone ciśnieniem wewnątrz brzusznym
oraz przemieszczeniami jego końców wywołanymi skłonami ciała pacjenta. Wszystkie
podane wyżej parametry są istotne dla bezpieczeństwa operacji przepukliny. W wyni-
ku pracy sformułowano pewne wnioski ważne dla chirurgów oraz dla dalszych bardziej
zaawansowanych badań z zastosowaniem modeli dwuwymiarowych układu powięź-
siatka.
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