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In the ground vehicle industry, it is important to simulate multibody models
of the full vehicle based on wheel forces and moments in order to derive sec-
tion forces at certain components for durability assessment. This is difficult
due to noise in the input data and the unavoidable deviation between the
model and real vehicle. Both lead to an undesired drift of the vehicle model
in the simulation. This paper shortly describes the sources of these effects
and shows that, due to missing knowledge about the true trajectory of the
vehicle, this problem cannot be solved by an improved numerical treatment
of the underlying equations. Several ways to deal with the problem are briefly
reported. Finally, a simple vehicle model is used to show all the effects.
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1. Introduction

In the ground vehicle industry, measurements on vehicles driving over test
tracks or public roads are performed in order to derive loads for test rigs
or numerical verification. Often 100-200 different quantities at different spots
of the vehicle are measured, among which we have wheel forces (measured
at the hub), spring displacements, strains, or accelerations. The data can be
used either for directly setting up rig tests for certain components or for the
excitation of multibody models of the vehicle in order to calculate section
forces.

1The paper was presented at the ECCOMAS Thematic Conference on Multibody

Dynamics which was held at Warsaw University of Technology on June 29 – July 2, 2009.
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Besides the ’internal’ excitation of the vehicle by steering, acceleration, or
braking, the main ’external’ excitation is given by the forces at the contact
patches between tyres and ground. These are reaction forces which in principle
can be computed based on a digitised road profile, a tyre model as a part of the
vehicle model, and a driver model driving the vehicle. However, this approach
requires accurate tyre models as well as the digitised road and the driver. An
alternative way of exciting the full vehicle model is to virtually cut off the
tyres and use measured wheel forces as input.

While simulating such an unconstrained system based on section forces
is very important in practice, it is difficult due to noise in the input data
and the unavoidable deviation between the model and real vehicle. This leads
to an undesired drift of the vehicle, which can be explained by the theory
of stochastic differential equations. Additional measurements are needed to
circumvent such problems. Typically, measured accelerations of the vehicle
body exist, but these alone do not help. Instead, data on the velocity or even
displacement level are needed to deal with the drift.

In Section 2, the drift due to noisy input data during integration is studied
using the most basic example of a point mass subject to a force. In Section 3,
some investigations on how to circumvent the drift are reported. Finally, in
Section 4, we use a model of a simple demonstration vehicle to exemplify the
theoretical considerations.

2. Integration of noisy data

In this section, we study a simple differential equation to illustrate the pro-
blems inherent in integrating noisy data. We make use of some basic results
from stochastic analysis but do not treat them in great detail, as this is not
the main focus of this paper. A brief introduction to the theory of stochastic
differential equations (SDEs) with applications can be found in Kloeden et al.
(2002).

As an example, we consider the one-dimensional equation of motion for a
point mass

dx = v dt dv =
( f
m
− ηv

)
dt x(0) = v(0) = 0 (2.1)

This ODE describes the velocity v(t) and position x(t) of an object with a
mass m > 0 subject to the accelerating force f(t), provided the object was
at rest at the time t = 0. The damping term (friction) proportional to the
velocity is also included, with damping constant η  0.
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The problem now is to reconstruct the velocity and position based on me-
asurements distorted by unsystematic errors which we model as independent
Gaussian random variables. If we denote the time step between observations
by ∆t, the forces we actually observe are

f̃(n∆t) ∼ N(f(n∆t), σ2M ) (2.2)

with some variance σ2M > 0 representing the accuracy of the measurement
device. The impact of the noise on the reconstructed velocity and position
depends on the discretisation scheme we have chosen to solve (2.1). We use
the explicit Euler scheme for our example, as it permits us to study error
propagation in terms of a simple SDE. To derive it, we begin with the difference
equation for the velocity, taking the time step to be equal to the rate of
observations

ṽn+1 := ṽ((n+ 1)∆t) := ṽn +
(f(n∆t) + ǫn

m
− ηṽn

)
∆t

(2.3)
ṽ0 := ṽ(0) := 0

The errors ǫn are i.i.d. Gaussian random variables with mean zero and varian-
ce σ2M . If the true force is L

2-integrable and ∆t sufficiently small, a solution
to the difference equation approximates the solution to the following Itô-SDE
on the discrete time grid given by ∆t

dx̃ = ṽ dt dṽ =
( f
m
− ηṽ

)
dt+

σ

m
dW (t)

(2.4)
x̃(0) = ṽ(0) = 0

To determine the variance σ2 of the Brownian motion in the limiting case, we
note that the variance of the increments is

Var (ǫn∆t) = σ
2
M (∆t)

2 != σ2∆t ⇐⇒ σ2 = σ2M∆t (2.5)

We have seen that if we solve ODE (2.1) with perturbed forces using the
explicit Euler scheme, what we actually do is construct a path of the solution
to SDE (2.4). Its usefulness for the purpose of simulation depends on how
far it deviates from the actual values. As the individual errors have bounded
variance, we might hope that ṽ and x̃ share this property. Unfortunately, this
is only true for the velocity, and only if the damping constant η is positive.
The unique solution to (2.1) is

x(t) =

t∫

0

v(s) ds v(t) =
1

m

t∫

0

eη(s−t)f(s) ds (2.6)
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For SDE (2.4), we distinguish two cases

(1) No damping: If η = 0, the solution is

x̃(t) = x(t) +
σ

m

t∫

0

W (s) ds ṽ(t) = v(t) +
σ

m
W (t) (2.7)

The integrated Brownian motion has mean zero and variance t3/3, me-
aning that the expectation and variance of the solutions are

E(x̃(t)) = x(t) Var (x̃(t)) =
σ2t3

3m2

E(ṽ(t)) = v(t) Var (ṽ(t)) =
σ2t

m2

(2.8)

While the stochastic process is centered around the true solution, its
variance grows to infinity as time progresses. As a measure of the error
growth, we use the standard deviation, since it is proportional to the
width of the confidence interval for the Gaussian process around its
mean

Std (ṽ(t)) = O(t
1

2 ) Std (x̃(t)) = O(t
3

2 ) (2.9)

(2) Damping: For η > 0, we obtain

x̃(t) = x(t) +
σ

ηm

(
W (t)−

t∫

0

eη(s−t) dW (s)

)

(2.10)

ṽ(t) = v(t) +
σ

m

t∫

0

eη(s−t) dW (s)

In this case, the velocity consists of a deterministic trend and an
Ornstein-Uhlenbeck (mean reversal) process with mean 0. As the lat-
ter has bounded variance, the reconstruction of v is merely a question of
how accurate the initial measurements are. Unfortunately, the variance
of the position is once again unbounded although it grows more slowly
than in the undampened case

E(x̃(t)) = x(t)

Var (x̃(t)) =
σ2

η2m2

(
t+
1− e−2ηt
2η

− 2(1− e
−ηt)

η

)
(2.11)

E(ṽ(t)) = v(t) Var (ṽ(t)) =
σ2

2ηm2
(
1− e−2ηt

)
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Here, we have used the Itô-isometry to calculate

Var

( t∫

0

eη(s−t) dW (s)

)
= E

(( t∫

0

eη(s−t) dW (s)
)2
)
=
1− e−2ηt
2η

(2.12)
To evaluate the variance of x̃(t), we also need

Cov

(
W (t),

t∫

0

eη(s−t) dW (s)

)
= E

(
W (t)

t∫

0

eη(s−t) dW (s)

)
=
1− e−ηt
η

(2.13)
where we use the product rule of Itô-calculus to evaluate the product,
dropping all stochastic terms as they have the mean zero.

In the presence of damping, the standard deviations grow with time as

Std (ṽ(t)) = O(1) Std (x̃(t)) = O(t
1

2 ) (2.14)

We have seen that even for simple model (2.1), a stable (bounded variance)
solution exists only if we integrate but once and include a correction term in
the equations. Integrating twice will always lead to errors that grow progressi-
vely larger over time. The situation can only get worse for a problem involving
several bodies, as their relative position and orientation is progressively distor-
ted. This leads to spurious interaction forces and gravity acting in the wrong
direction.
It should be noted that the problems caused by noise integration are of

principal nature, as there is no way to reconstruct the true forces from the
measurements. Preprocessing (e.g. smoothing the data) or more sophisticated
integration schemes can reduce the variance σ2, but this only serves to rescale
the error, not bound it.

3. Drift correction

In this section, we describe some possible solutions to the drift problem. We
consider the case of full vehicle simulation which is needed to derive section
forces for certain components. The model is unconstrained and excited by me-
asured wheel forces which are always noisy to some extent. Thus, we have to
be aware of the drift of the vehicle body due to the ’Brownian motion effect’
described above. Another reason for observing the drift is the fact that the
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numerical model is only an approximation of the real vehicle. If, for example,
the total mass of the model is too small, then it will lift off during simulation.
While the measured wheel forces (up to measurement noise) are ’in equili-
brium’ with the real vehicle and its motion, this fact need not be true for the
numerical model.
First we perform the simulation while ignoring a possible drift and sub-

sequently check the motion of the model. If the observed drift is such that
the section forces can be regarded as sufficiently accurate, we are done. This
is the case if we have a drift in the translational degrees of freedom only. If
the drift of the pitch angle (rotation about the lateral axis) and the roll angle
(rotation about the longitudinal axis) is too large, we have to assume that
the simulation results are falsified and reject them. We consider the following
approaches to deal with the drift:

1. Artificially constraining the model: For a vehicle driving over a
(possibly rough) horizontal road, we can assume that the pitch and roll
angles are small. Thus, we apply a correction to the simulation as soon as
the angles become too large. Sometimes this is accomplished by attaching
a rotational spring between the vehicle body and ground which always
tries to keep the angles close to zero. While this is a simple workaround, it
is not clear how to choose the spring parameters and undesired reaction
torques are induced. The size of these reaction torques can be taken as
a measure of validity of this approach: the larger the torques, the more
doubtful the results. Of course, this approach does not help at all if the
assumption of the ”horizontal road” is not guaranteed, i.e. if we need to
simulate curvy, hilly, or even off-road driving.

2. Additional acceleration sensors: We use sensors to measure the ac-
celerations at different spots of the vehicle body. This is rather cheap
and convenient. These accelerations are used to estimate the motion of
the body prior to the simulation. Again, we only need to estimate the
orientation (rotational degrees of freedom). The approach is described
in more detail in Sec. 3.1 below. As we will see, it does not fully solve
the drift problem (since two integration steps are needed here too) such
that we have to consider measuring quantities at the velocity or even
position level.

3. Additional measurements on the velocity or position levels: Sin-
ce both approaches above are not fully satisfying, we have to introduce
additional measurements of either (angular) velocities or angles. If the
angles of the vehicle body can be measured, we can guide it during the
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simulation to prevent the drift. If only angular velocities can be me-
asured, we still have to perform one integration to get the angles such
that we have to expect small drifts. Sec. 3.2 gives some details of that
approach.

3.1. Calculating the rigid body motion from measured accelerations

Here, we investigate how to calculate the body motion of a vehicle from
measured accelerations. We assume that there are m + 1, m  3 sensors at
different positions on the body and introduce the following notation:

xC ,xi – positions of the reference point C and of the sensors i of the
body given in a fixed reference (global frame),

S – transformation from the local to global frame. This is the body’s
orientation in the global frame,

ω,ωl – angular velocity in the global and local frame,
ri – positions of the sensors in the local frame, i = 1, . . . ,m+ 1,
ai – measured accelerations at positions xi, i = 1, . . . ,m+ 1,
ãi – accelerations at positions xi in the local frame, i = 1, . . . ,m+1,
A – matrix of the local relative accelerations,

A = [a1 − am+1, . . . ,am − am+1]
R – matrix of the local relative coordinates,

R = [r1 − rm+1, . . . , rm − rm+1].

With these notations, we have

xi = xC + Sri i = 1, . . . ,m+ 1 (3.1)

This relation is true only if the body is rigid. Otherwise, we would have to
add the deformations. Differentiation and transformation into the local frame
gives

ãi = S
⊤ẍi = S

⊤ẍC + S
⊤
S̈ri i = 1, . . . ,m+ 1 (3.2)

By calculating the relative accelerations we eliminate the translational motion
and get ãi − ãm+1 = S⊤S̈(ri − rm+1), i = 1, . . . ,m. Usually, the sensors are
performing a correction with respect to gravity. Since the orientation of the
sensors during measurement is unknown, the result of the correction is

ai = ãi + ge3 − S⊤ge3 i = 1, . . . ,m (3.3)

where g denotes the gravitational constant and e3 denotes the direction of
gravity (global z-coordinate). For the relative accelerations ai − am+1 this
correction term cancels and we get A = S⊤S̈R. The matrices R and A contain
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the relative positions and accelerations respectively of the first m sensors with
respect to the last one. Since the unknown transformation matrix S contains
only three degrees of freedom (for example Euler or Cardan angles), this matrix
equation is an overdetermined set of equations for the three parameters (if
m > 3). The number of equations depends on the number of sensors. By
multiplication with the pseudo inverse (Moore-Penrose inverse) R+ from the
right, we get

S
⊤
S̈ = AR+ (3.4)

This operation partly removes the redundant accelerations. The remaining
equation still contains the inherent consistency condition induced by the fact
that the body is non-deformable.

Calculation of the transformation matrix and the angles

By differentiating the identity I3 = S
⊤
S we obtain

S
⊤
Ṡ = ω̃l =



0 −ωl,3 ωl,2
ωl,3 0 −ωl,1
−ωl,2 ωl,1 0


 (3.5)

where ωl denotes the vector of the local angular velocity and ω̃l is
the corresponding skew symmetric matrix. Another differentiation leads to
S
⊤
S̈ = ˙̃ωl − ω̃lω̃⊤l = ˙̃ωl + ω̃lω̃l, and together with (3.4) we obtain
˙̃ωl + ω̃lω̃l = S

⊤
S̈ = AR+ =: M. Since ˙̃ωl is skew symmetric and the pro-

duct ω̃lω̃l is symmetric, we have a decomposition of the left-hand side of this
equation into the symmetric and skew symmetric part. Thus, if we define

M− =
1

2
[AR+ − (AR+)⊤] M+ =

1

2
[AR+ + (AR+)⊤]

we arrive at
˙̃ωl =M− ω̃lω̃l =M+ (3.6)

The first of these relations is a simple set of three uncoupled equations for
the local angular velocities and the second one is the consistency condition
mentioned above. The transition from A and R+ to M− can be interpreted
as a projection onto the rigid body motion. Due to possible measurement errors
and the deviation from the rigid body motion, we have to take into account
large uncertainties in M−. Using (3.6) we obtain ωl by simple integration. Of
course, during integration we have to deal with the accumulation of random
errors leading to a drift.
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The next step is to calculate the transformation matrix S from the local
angular velocities ωl. To this end, we write S using quaternions in the form

S = S(q) =



q21 + q

2
2 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) q21 − q22 + q23 − q24 2(q3q4 − q1q2)
2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 − q22 − q23 + q24


 (3.7)

where q = [q1, q2, q3, q4]
⊤ and ‖q‖2 = q21 + q22 + q23 + q24 = 1. Using (3.5), we

arrive at the linear system of equations

q̇ =
1

2
Ωlq

(3.8)

Ωl =




0 −ωl,1 −ωl,2 −ωl,3
ωl,1 0 ωl,3 −ωl,2
ωl,2 −ωl,3 0 ωl,1
ωl,3 ωl,2 −ωl,1 0


 =

[
0 −ωl
ωl −ω̃l

]

for the quaternions q. Since Ωl is skew symmetric, the normalisation ‖q‖2 = 1
is preserved during integration. In contrast to other representations of the
transformation matrix (Euler or Cardan angles), (3.8) does not contain singu-
larities and can be integrated over the desired period.

Calculation of the body position

Once the angles α resp. the transformation matrix S are known, we can
calculate the body position xC . Combining (3.2) and (3.3), we get

ẍC = Sãi − S̈ri = S(ai − ge3) + ge3 − S̈ri i = 1, . . . ,m+ 1

To minimise errors, we calculate the average acceleration

ẍC =
1

m+ 1

m+1∑

i=1

[S(ai − ge3) + ge3 − S̈ri] (3.9)

Integrating twice leads to the position xC . Of course, we will again have a
drift during the integration of ẍC . The remaining positions xi follow from
(3.1).

Summary

The process of calculating the position and orientation of the body from
the measured accelerations can be summarised as follows:
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1. Calculate the matrix M− = 0.5[AR
+ − (AR+)⊤].

2. Calculate the local angular velocity by integration of ˙̃ωl =M−.

3. Calculate the quaternions q by integration of q̇ = 0.5Ωlq.

4. Calculate the transformation matrix S from (3.7).

5. Calculate ẍC according to (3.9) and xC by twofold integration.

6. Calculate the remaining positions xi according to (3.1).

Remarks

1. Having calculated the transformation matrix S, a convenient parame-
trisation, e.g. Euler or Cardan angles, can be derived.

2. The calculation of the local angular velocities ωl by integration of
˙̃ωl = M− is the most critical step since the right hand side M− is
disturbed by measurement errors and the fact that the car body is not
really rigid. Thus, we have to expect a drift in ωl. If the real vehicle
motion during measuring is such that the angular velocities as well as
the angles have mean zero and no drift, we can apply a high pass filter
to ωl prior to solving q̇ = 0.5Ωlq and again apply a high pass filter
to the resulting angles α. However, the final results will depend on the
filter parameters (cut-off frequency) and the best choice of parameters
is subjective.

3. With this approach (just like the ”big spring constraint”) we still cannot
objectively distinguish the undesired angular drift from angular move-
ment that may come from a curvy or hilly road.

4. A direct measurement of the angular velocities would be much more
reliable. The same remarks apply to the calculation of the position by
twofold integration of ẍC . Again we can apply high pass filtering, but
the parameter choice is subjective.

5. Nevertheless, the algorithm establishes the relation between the vehicle
body motion and accelerations in a rigorous way and, at least, enables the
estimation of motion in case no additional measurements are available.

3.2. Measurement of angular velocities or angles

We have already argued that for the purpose of calculating section forces,
the errors in the position of the vehicle are negligible, while its orientation with
respect to gravity must be known with sufficient accuracy. An obvious way to
improve the quality of simulation is thus to include measured angles. Typically,
these are determined by an inertial navigation system (INS) on board the
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vehicle. Since an INS uses gyroscopes for measuring angular velocities, any
angles reported are derived via integration.

As in Sec. 2, we model the noise on the angular velocities as a Brownian
motion with variance σ2 > 0. The angular velocities in the local reference
frame are replaced by

ωl,j → ωl,j + σ dWj(t) (3.10)

with independent Brownian motions Wj. Now, quaternion representation (3.7)
yields the following SDE

dq̃ =
1

2
Ωlq̃ dt +

σ

2

3∑

j=1

Bj q̃ dWj(t)

(3.11)
q̃(0) = q(0) s.t. ‖q(0)‖ = 1

As we are interested in the cumulative effect of measurement noise over time,
we do not include an error for the initial value. The matrices Bj correspond
to the imaginary units of the quaternions expressed as a subspace of R

4×4

B1 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 B2 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




(3.12)

B3 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0




The matrices Ωl and Bj do not commute under multiplication, so there is no
simple closed form solution for (3.11). To obtain a qualitative understanding
of the error dynamics, we consider the simpler problem

dq̃ =
σ

2
Bj q̃ dWj(t) q̃(0) = q(0) s.t. ‖q(0)‖ = 1 (3.13)

with no actual rotation and a single perturbed measurement. The unique so-
lution is

q̃ = exp
[σ
2
BjWj(t)−

1

2

(σ
2
Bj

)2
t
]
q(0) =

(3.14)

= exp
(σ2t
8

)[
cos
(σ
2
Wj(t)

)
I4 + sin

(σ
2
Wj(t)

)
Bj

]
q(0)
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Here, we use the fact that Bj and I4 commute, as well as the properties

B
2
j = −I4 exp(λBj) = cos(λ)I4 + sin(λ)Bj (3.15)

Note that the norm of q grows at an exponential rate although the exact
solution always satisfies ‖q(t)‖ = 1. This is a property of the Itô integral
which is replicated if we solve the SDE using the explicit Euler scheme. As
we are only interested in the angles, the result is still useful if we normalise
q before calculating the rotation matrix. A more satisfying solution would be
to use an integration scheme that treats (3.13) as an SDE in the sense of
Stratonovich, as the corresponding solution omits the growth term. However,
the usual situation in practice is that neither the ODE nor the solver permit
the analysis of error propagation in terms of a simple SDE. The recommended
approach in this case is a Monte-Carlo study.
After we normalise the solution to the quaternion equation, its position

on the unit sphere is still perturbed by the measurement noise. To see what
this means in terms of the rotation matrix S, we first consider the case that
j = 1 and q(0) is equal to the first unit vector. Equation (3.7) now yields the
following result for θ(t) := σW1(t)/2

q(t) =




cos θ(t)
sin θ(t)
0
0


 ⇒ S =



1 0 0
0 cos 2θ(t) − sin 2θ(t)
0 sin 2θ(t) cos 2θ(t)


 (3.16)

This is a rotation around the x-axis, where the angle behaves like a Brownian
motion, so its standard deviation is O(t

1

2 ), which we might expect for a single
integration step. Analogous calculations for other values of j and i show that
distorting (only) ωl,1 always results in a spurious rotation around the x-axis,
while ωl,2 affects the y-axis, and ωl,3 the z-axis. We cannot provide an exact
solution in the case of three noise terms and non-zero excitation, but the best
we may expect are the errors growing at the same rate. Thus, including an INS
in the process does not solve the problem of noisy data in general. However,
short simulations can be stabilised using angular velocities measurements that
are sufficiently accurate.
In practice, the accuracy of an INS is affected by other factors besides

random noise. For short-term stability, manufacturers often express the stan-
dard deviation as being linear in operation time (a more detailed analysis may

distinguish bias instability of O(t) and angle random walk of O(t
1

2 )). The
magnitude of these effects can range from below 0.001◦ per hour for high-
performance INS used in aeronautics to over 10◦ per hour for the cheapest
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units (Titterton and Weston, 2004). To choose the right measuring equipment
for a task, one has to know the length of the individual measurements as well
as the sensitivity of the vehicle model to deviations from the true angle. Even
an error of 10◦ per hour can be acceptable for simulating a 5 minute drive.
As the final example, we consider a 10 minute segment of INS data re-

corded at a frequency of 1000Hz (∆t = 0.001 s) on board a moving vehicle.
Angular velocities were reconstructed by smoothing with a low-pass filter and
taking central differences. For the purpose of demonstration, these will be tre-
ated as the ’true’ values. The angles were reconstructed by solving quaternion
equation (3.7) with added noise using the DOPRI(4,5) scheme (Dormand and
Prince, 1980). For the errors, we used independent Gaussian random variables
with mean zero and standard deviation σM = 0.1 radians per second. Taking
(2.5) as a simple approximation, we expect that the angles behave similar to
Brownian motion with standard deviation σ = 180

◦

π
σM
√
∆t = 0.18 ◦√

s
. As the

plots in Figs. 1 and 2 show, the errors are indeed of comparable magnitude.

Fig. 1. True and reconstructed angles

Fig. 2. Reconstruction error for angles
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3.3. Stabilising the force-based simulation

In the preceding two sections, we have presented how to use additional
measurements in order to approximately derive the true trajectory of a certain
reference point of the vehicle body. Now, the vehicle motion in the force-based
simulation can be stabilised by additionally prescribing the measured motion
at the reference point. However, the enforced motion induces reaction forces
given by the corresponding Lagrange multipliers. In an ideal situation with no
noise in the measured data and a ”perfect” model, these reaction forces should
be zero.

There is a certain similarity to the Gear-Gupta-Leimkuhler stabilisation
for the index reduced formulations of multibody equations (see Gear et al.,
1985). The idea of index reduction is to use constraints on the velocity or
acceleration level in order to reduce the index of the DAE. But this leads to the
well-known drift effect during integration of index 2 or index 1 formulations.
This drift can be corrected either by projecting onto the known constraints on
the position level or by using constraints both on the position as well as on the
velocity or acceleration level. To compensate the additional constraints in the
latter case, Gear, Gupta, and Leimkuhler introduced corresponding Lagrange
multipliers η to the kinematic equation ẋ = v −G⊤(x)η. In contrast to our
case, no additional forces are introduced by that approach.

Since we are transferring data measured on a real vehicle to a numerical
model, the reaction forces observed at the point of the prescribed motion are
not only due to the noise in the wheel forces but also due to the fact that
the numerical model is only an approximation of the real vehicle. While for
the real vehicle the measured prescribed motion is ’in equilibrium’ with the
measured wheel forces (up to measurement noise), this need not be true for
the numerical model. If, for example, the weight of the vehicle model is too
small, then the vertical reaction force will show an offset which is needed to
prevent the vehicle model from lifting off during simulation.

If the stabilised simulation is used, one has to check subsequently the ma-
gnitude of the artificial reaction forces in order to decide whether the approach
is valid (small reaction forces) or not. Of course, in the latter case, it is in ge-
neral not easy to find out the reason for the mismatch.

4. A simple example

We want to illustrate the considerations above using the vehicle model shown
in Fig. 3. It is taken from Popp and Schiehlen (2008) and simple enough to
write down the equations of motion explicitly and nevertheless useful for de-
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monstrating the drift effects. The model contains three bodies (the chassis
and two wheels) as well as two spring damper systems between the wheels and

Fig. 3. A simple vehicle model

the chassis and two additional spring damper systems representing the tyres.
The connection between the springs and the chassis is via revolute joints. The
chassis moves in the vertical direction z3 (positive z oriented downward) and
rotates about the angle β (I denotes the moment of inertia of the chassis).
The degrees of freedom of the wheels are z1, z2 resp. Thus, the entire system
has six degrees of freedom, namely the coordinates of the three bodies z1, z2,
z3, β and the coordinates ζ1, ζ2 of the contact points to the ground. Details
of the model can be found in App. 5.

4.1. Excitation modes of the model

The system may be excited by prescribing either (i) the vertical forces f1,
f2 at the contact points, (ii) the road profile given by ζ1, ζ2, or (iii) the vertical
forces f1, f2 and the pitch angle β. In the first case, the equations of motion
may be written in the form

Mẋ = A(x)x+ F (4.1)

where the vector of unknowns x is given by x = [z1, z2, z3, β, ż1, ż2, ż3,
β̇, ζ1, ζ2]

⊤ and the mass matrix M as well as the system matrix A(x) and
the right hand side F are given in App. 5. In the second case, the forces f1,
f2 at the contact points are reaction forces which are unknown and have to be
calculated. The dynamic equations are now given by

Mẋ = A(x)x+ F (4.2)
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where the vector of unknowns is given by x = [z1, z2, z3, β, ż1, ż2, ż3, β̇]
⊤, and

the mass matrix M as well as the system matrix A(x) and the right hand side
F are given in App. 5. After solving these equations for x, we get the contact
forces by

f1 = k1(x1 − ζ1) + d1(x5 − ζ̇1)
(4.3)

f2 = k2(x2 − ζ2) + d2(x6 − ζ̇2)

In the third case, we stabilise the force-based simulation using the measured
pitch angle. Here the vector of unknowns is x̂ = [z1, z2, z3, ż1, ż2, ż3, ζ1, ζ2]

⊤

and the equations of motion are

M̂ ˙̂x = Âx̂+ F̂ (4.4)

The mass matrix M̂, the system matrix Â, and the right side F̂ are given in
the appendix. The prescription of the angle β induces an enforced moment λ
at the chassis center. Once the equations of motion have been solved, λ can
be calculated by

λ = Iβ̈ − cos β(bf3 − af4)
where f3, f4 are the chassis spring forces defined in Appendix, Eqs. (A.1).
We now use the model to illustrate what may happen if wheel forces measured
at a prototype vehicle on a certain track are used for exciting a numerical
model (MBS) of the vehicle. Here, we have to replace the measurement by a
first simulation of the model based on a predefined road profile ζ1, ζ2. The
following steps are performed:

1. We simulate the model based on a prescribed road profile. The equations
of motion are given by (4.2). Results are the vertical wheel forces which

we denote by f
(0)
1 , f

(0)
2 . This step is called virtual measurement.

2. We simulate the model using (4.1), where f1 = f
(0)
1 and f2 = f

(0)
2 .

This step is called simulation based on undisturbed forces. In the
absence of noise and calculation errors, we should get the same vehicle
motion as in the virtual measurement.

3. We pretend a measurement error by adding a synthetic noise ε1, ε2
to the forces f

(0)
1 , f

(0)
2 . The noise is stationary with zero mean and va-

riance σ2. Then, we simulate the model using (4.1), where f1 = f
(0)
1 + ε1

and f2 = f
(0)
2 + ε2. This step is called simulation based on noisy

forces.

4. We pretend a modelling error by slightly changing the stiffness and
damping parameters k3, d3, k4, d4 of the chassis springs as well as the
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moment of inertia I of the chassis. Then, we simulate the modified mo-

del using (4.1) with the unperturbed forces f
(0)
1 , f

(0)
2 . This step is called

simulation of a perturbed model. Again we compare the correspon-
ding vehicle motion with the motion from the virtual measurement.

5. We assume, that we have measured the pitch angle β and simulate the
perturbed model with the noisy forces under prescription of β using
(4.4). This step is called stabilised simulation of the perturbed
model.

4.2. Simulation results

The road profile and the wheel forces

In Fig. 4, the road profile used for the virtual measurement and the re-
sulting wheel forces are shown. The profile starts at level zero and ranges

Fig. 4. The basic road profile ζ1, ζ2 at the top and the resulting wheel forces
at the bottom

approximately between −2m and +2m, simulating some small hill grades.
The resulting vertical wheel forces are shown below. They are rather simi-
lar for both wheels. Their amplitudes (approximately between −10 kN and
+16 kN) are due to the road roughness which can be seen in a detail plot of
the profile.

Noisy forces and perturbed models

As a model for the measurement error of the forces, we have used Gaussian
white noise signals ε1, ε2 with standard deviation σ = 0.002fmax, where fmax
is the maximum absolute force. Thus, we get σ ≈ 32N.
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When comparing the simulation results with the virtual measurement, we
only show the vertical chassis motion z3 and the pitch angle β. The latter is the
most sensitive variable. The differences in z1 and z2 are smaller in most cases.
The virtual measurement is compared to the simulation with undisturbed
forces, to the simulation with noisy forces, and to the simulation with the
perturbed model. Figure 5 shows the results for the vertical chassis motion

Fig. 5. Vertical chassis motion z3 and the pitch angle β during different simulations

(left) as well as for the pitch angle (right). There is nearly no drift in z3
with the exception of the noisy force excitation, where a relatively small drift
can be observed. For the pitch angle, we observe a drift beyond 20 s even
for the simulation with undisturbed forces. As can be expected, the drift-off
occurs much earlier (at 10 s approximately) in the case of noisy forces or the
perturbed model.

In Fig. 6 and Fig. 7, the results for different noise samples and different
perturbed models resp. are shown. While the behaviour of the different noisy
force results is fairly similar with respect to the ”drift-off” time, the specific

Fig. 6. Vertical displacement (left) and the pitch angle β (right) of the chassis
during force-based excitation for several samples of the noise
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Fig. 7. Vertical displacement (left) and the pitch angle β (right) of the chassis
during force-based excitation for several perturbed models. The perturbation is a
random factor between 0.9 and 1.1 (at most 10%) on the stiffness and damping
parameters of the chassis springs and on the moment of inertia of the chassis

trajectories differ a lot. This is in accordance with what can be observed for
multiple paths of the simple point mass example in Sec. 2. In the case of the
perturbed model, we observe nearly no drift in the vertical chassis displacement
and different types of drifts for the pitch angle depending on the specific way,
the perturbed model parameters are affecting the physical behaviour.

Prescription of the pitch angle

Next we study the effect of prescribing the pitch angle β (stabilisation).
When simulating the original model with presribed β and undisturbed forces,
we get a small enforced moment (not shown) due to small numerical integra-
tion errors. In that case its magnitude is approximately 70Nm. If we do the
same for the perturbed model and the noisy forces, we have to expect a larger
moment. In Fig. 8, the results from the stabilised simulation of the perturbed
model excited by the noisy forces are shown. The plot shows the enforced
moment (right) and compares it to the inertia term Iβ (left). The enforced
moment approximately ranges between (−800Nm, 800Nm) which is conside-
rably larger than in the case without the model and force error. However, if
we compare the magnitude of the enforced moment with the magnitude of the
inertia term Iβ, which approximately is 15 kNm, we find that it is relatively
small.

The magnitude of the moment can be regarded as a measure of incon-
sistency between the applied forces, the model, and the enforced motion β.
Thus, it should be as small as possible. Of course, in practice it is not known,
whether the enforced moment is mainly due to erroneous forces, model errors,
or an erroneous prescribed motion.
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Fig. 8. The inertia term Iβ (left) and the moment enforced by the prescription of
the pitch angle (right)

Remark

For the calculations above, the equations of motion given in the appendix
have been implemented in MATLAB and solved with different integration sche-
mes (ode45: a Runge-Kutta method by Dormand and Prince (1980), ode113:
a variable order Adams-Bashforth-Moulton method, see Shampine and Gor-
don (1975), ode15s: a variable order solver based on numerical differentiation
formulas (NDFs), see Shampine and Reichelt (1997)) and different error tole-
rances (tolrel ∈ {10−4, 10−8}, tolabs ∈ {10−6, 10−10}). It turned out that the
presence of the observed drift is essentially independent of the solver and the
accuracy of the integration.

5. Conclusions

Starting with the theory of stochastic differential equations, we argued that
the drift effect during force-based simulation of unconstrained models cannot
be eliminated by suitable integration schemes. It is a consequence of noise in
the excitation data. In addition, the integration errors, although controlled
by tolerances, may accumulate as has been described in Sec. 2. This can be
compared to the well known drift-off of DAE solutions using index 1 or 2 for-
mulations. However, in those cases, we can apply stabilisation techniques (e.g.
Baumgarte stabilisation, see Baumgarte (1972)) since we know the constra-
ints at the position level as well. See Ascher and Petzold (1998), Brenan et
al. (1996), or Eich-Soellner and Führer (1998) for details on ODE and DAE
solving.
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As we do not know the true trajectory, such techniques do not help here.
The only way around that problem is to stabilise the simulation (Sec. 3.3)
making use of data on the position level. Since a pure translational drift does
not affect section forces, we can concentrate on controlling the orientation.

As we have seen in Sec. 3.1, we can calculate the orientation from measu-
red accelerations, but during that twofold integration process, we again have
the drift problem. Using suitable measurement equipment, we can obtain the
angular velocities such that we have to perform only one integration leading
to a much smaller drift. It is now a matter of the quality of the measurement
equipment to keep the errors sufficiently small. Some of the measurement devi-
ces internally perform that integration step and deliver the orientation angles
directly. For more details see Sec. 3.2 and the references therein. Finally, in
Sec. 4, a simple example has been used to illustrate the considerations.

Appendix A: The equations of motion of the vehicle model

In the following, the equations of motion of the system are derived (see Fig. 3 for
notation). We start with the spring forces given by Hook’s law and a viscous damping
term and the force equilibrium

fi = ki(zi − ζi) + di(żi − ζ̇i) i = 1, 2

f3 = k3(z3 − z1 − b sinβ) + d3(ż3 − ż1 − bβ̇ cosβ) (A.1)

f4 = k4(z3 − z2 + a sinβ) + d4(ż3 − ż2 + aβ̇ cosβ)

and
m1z̈1 = m1g + f3 − f1 m2z̈2 = m2g + f4 − f2
m3z̈3 = m3g − f3 − f4 Iβ̈ = cosβ(bf3 − af4)

(A.2)

Force excitation

Introducing x = [z1, z2, z3, β, ż1, ż2, ż3, β̇, ζ1, ζ2]
⊤, combining (A.1), (A.2) and

using the abbreviations c4 = cosx4, s4 = (sinx4)/x4 results in the following equ-
ations

Mẋ = A(x)x+ F M = diag (1, 1, 1, 1,m1,m2,m3, I, d1, d2)

F = [0, 0, 0, 0,m1g − f1,m2g − f2,m3g, 0,−f1,−f2]⊤

A =




0 I4 0
A21 A22 0
A31 A32 A33
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A21 =




−k3 0 k3 −bk3s4
0 −k4 k4 ak4s4
k3 k4 −k3 − k4 (bk3 − ak4)s4

−bk3c4 ak4c4 (bk3 − ak4)c4 (−b2k3 − a2k4)c4s4


 (A.3)

A22 =




−d3 0 d3 −bd3c4
0 −d4 d4 ad4c4
d3 d4 −d3 − d4 (bd3 − ad4)c4

−bd3c4 ad4c4 (bd3 − ad4)c4 (−b2d3 − a2d4)c24




A31 =

[
k1 0 0 0
0 k2 0 0

]
A32 =

[
d1 0 0 0
0 d2 0 0

]

A33 = −
[
k1 0
0 k2

]

Equation (A.3) describes the system excited by the forces f1, f2 at the contact points
to the ground. The system matrix A(x) depends on the pitch angle only (A(x) =
A(x4) = A(β)). For small angles β we have cosβ ≈ 1 and (sinβ)/β ≈ 1 such that
the vehicle can be described by a linear system Mẋ = A(0)x+ F .

Excitation by a road profile

If the system is excited by a given road profile ζ1, ζ2, then the forces f1, f2 at
the contact points are reaction forces which are unknown prior to simulation. In that
case the dynamic equations are given by

Mẋ = A(x)x+ F M = diag (1, 1, 1, 1,m1,m2,m3, I)

F = [0, 0, 0, 0,m1g + k1ζ1 + d1ζ̇1,m2g + k2ζ2 + d2ζ̇2,m3g, 0]
⊤

A =

[
0 I4

A21 A22

]
(A.4)

A21 = A21 −




k1 0 0 0
0 k2 0 0
0 0 0 0
0 0 0 0




A22 = A22 −




d1 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 0




where the vector of unknowns x is given by x = [z1, z2, z3, β, ż1, ż2, ż3, β̇]
⊤.

Force excitation with a prescribed pitch angle

If we prescribe the pitch angle β during force excitation f1, f2, we get an enforced
moment λ at the center of mass of body 3. Since β is no longer an unknown, we



Undesidered drift of multibody models... 835

introduce the new variable vector x̂ = [z1, z2, z3, ż1, ż2, ż3, ζ1, ζ2]
⊤. Skipping the β-

rows of the matrix A(x) in (A.3) and putting the β-columns into the new force

vector F̂ leads to

M̂ ˙̂x = Âx̂+ F̂ M̂ = diag (1, 1, 1,m1,m2,m3, d1, d2)

F̂ =




0
0
0

m1g − f1 − k3b sinβ − d3bβ̇ cosβ
m2g − f2 + k4a sinβ + d4aβ̇ cosβ

m3g + (k3b− k4a) sinβ + (d3b− d4a)β̇ cosβ
−f1
−f2




(A.5)

Â =




0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−k3 0 k3 −d3 0 d3 0 0
0 −k4 k4 0 −d4 d4 0 0
k3 k4 −k3 − k4 d3 d4 −d3 − d4 0 0
k1 0 0 d1 0 0 −k1 0
0 k2 0 0 d2 0 0 −k2




The system matrix Â does no longer depend on the unknown states x̂. Thus, the
vehicle excited by the contact forces and guided by the prescription of β is represented
by a linear model.

Model parameters

The following parameters are used:

geometry [m] inertia stiffness [N/m] damping [Ns/m]

a = 1 m1 = 15kg k1 = 2 · 105 d1 = 2 · 102
b = 1 m2 = 15kg k2 = 2 · 105 d2 = 2 · 102

m3 = 750kg k3 = 1 · 105 d3 = 1 · 104
I = 500kgm2 k4 = 1 · 105 d4 = 1 · 104

For the perturbed model, the stiffness and damping of the chassis springs as well as
the moment of inertia of the chassis have been changed according to

k3 ← k3 · 1.05 k4 ← k4 · 0.95 d3 ← d3 · 0.95
d4 ← d4 · 1.05 I ← I · 0.95
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Efekt niestabilności numerycznej wielobryłowego modelu pojazdu przy
wymuszeniu zadanym przyspieszeniami lub siłami wziętymi z pomiarów

Streszczenie

W przemyśle samochodowym bardzo istotną rolę pełnią symulacje numeryczne
wielobryłowych modeli kompletnych pojazdów, wykonywane na podstawie pomiarów
sił i momentów działających na koła, w celu późniejszego obliczania sił wewnętrznych
w przekrojach różnych elementów dla oceny ich wytrzymałości. Zadanie to jest dość
trudne ze względu na szum danych wejściowych uzyskanych w drodze pomiarów oraz
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nieuniknione rozbieżności w sformułowaniu modelu w stosunku do obiektu rzeczywi-
stego. Obydwa te czynniki powodują niestabilność numeryczną modelu. Prezentowana
praca opisuje pokrótce źródła tych efektów i pokazuje, że wskutek braku wiedzy na
temat rzeczywistej trajektorii pojazdu, problem ten nie może być rozwiązany jedynie
w drodze zastosowania bardziej wydajnych narzędzi całkowania numerycznego rów-
nań ruchu. Przedstawiono jednak kilka koncepcji wyjścia naprzeciw temu problemowi.
Na koniec, opisano prosty model pojazdu odzwierciedlający wszystkie te zagadnienia.
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