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A new two-dimmensional, single series local model of the transverse vi-
bration of a multi-layer, one-span sandwich beam composed of isotropic
layers with ideally (perfectly) clamped ends is proposed in the paper.
The model is derived within the local theory of linear elastodynamics
and it is composed of two two-dimmensional fields and of two approxi-
mations of three-dimmensional fields satisfying exactly the equations of
motion as well as the Saint-Venant compatibility equations of the the-
ory. All through-the-thickness boundary conditions of the local theory
of elastodynamics as well as all local compatibility equations (for the
displacements and stresses) between adjoining layers are fulfiled in the
model. Both the cross-sectional warping and the transverse complian-
ce(s) in each layer of the beam are taken into account, thus the model is
applicable to the classical three-layer sandwich beam and to a multi-layer
sandwich or laminated narrow structure.

Key words: sandwich beam, perfect clamping, transverse vibration, local
model

Notations

E – Young’s modulus
hj – thickness of jth layer of beam
L – length of beam
Ux, Uy, Uz, ux, uy, uz – displacements in directions x, y, z, respectively
ux(j), uy(j), uz(j) – displacements within jth layer

t – time
x, y, z – space variables

X(T ) – trigonometric function of variable x

X(H) – hyperbolic function of variable x



790 S. Karczmarzyk

zj – coordinate of one (upper) surface of jth layer
εqr – strain tensor
λL, µL – Lame’s parameters
µ = µL, µ(j) – shear modulus and shear modulus of jth layer,

respectively
ν – Poisson’s ratio
ρ, ρ(j) – density and density of jth layer, respectively

σzz, σzx, σzz(j), σzx(j) – stresses and stresses in jth layer, respectively

1. Introduction

Many papers have been published lately on vibration analysis of sandwich
structures and, in particular of sandwich beams. Unfortunately, most of them
are devoted to presentation of general analytical models and are limited to nu-
merical investigation of the simply supported structures – see e.g. Frostig and
Baruch (1994), Cabańska-Płaczkiewicz (1999), Kapuria et al. (2004). It is no-
ted that the paper by Lewiński (1991) contains theoretical considerations while
papers by Lewiński (1991), Cupiał and Nizioł (1995), Szabelski and Kaźmir
(1995) refer to rectangular plates. In papers by Chen and Sheu (1994), Fasa-
na and Marchesiello (2001), Nilsson and Nilsson (2002), Backstom and Nilson
(2006, 2007), some numerical results for clamped-clamped, clamped-free and
free-free beams are also presented. In some of the papers, the numerical re-
sults are not tabulated and, therefore, are not useful for detail comparisons.
Some of the above papers contain comparisons of numerical results for diffe-
rent theories, see Kapuria et al. (2004), Backstom and Nilson (2006), Hu et
al. (2006, 2008), Wu and Chen (2008). In a paper by Backstom and Nilson
(2006) the numerical results (amplitudes) are compared with measured values
for the beam with both ends free.

Majority of analytical beam models were derived following the variational
procedure and the same path as in the case of laminated composites – see e.g.
Kapuria et al. (2004), Hu et al. (2008), Wu and Chen (2008). After looking
through the analytical and numerical results for the simply supported beams,
one may notice that the models of the eigenvalue problem of sandwich struc-
tures have got some deficiencies. Some of them are shown e.g. in a paper by
Hu et al. (2006), where the evaluation of kinematic assumptions applied by
different authors is proposed.

Some other deficiencies can be easily noticed. For example, in paper of
Frostig and Baruch (1994) the in-plane normal stresses in the core are omited



A new 2D single series model of transverse vibration... 791

and the equilibrium equation instead of the equation of motion for the core is
applied. Despite of the simplifications, the model is not compared (in Frostig
and Baruch, 1994) with other models. In paper of Kapuria et al. (2004), high
inaccuracy of eigenfrequencies of a sandwich beam predicted by the FSDT is
shown. In Backstom and Nilson (2006, 2007), the compatibility equations of
stresses between adjoining layers are not satisfied. In Wu and Chen (2009),
high percentage differences between predictions of eigenfrequencies by different
analytical models are given and commented.

Because of various assumptions and simplifications introduced into the
models of vibration of sandwich structures, the comparisons limited to sim-
ply supported members can imply misunderstandings since the comparative
results for any two models may be dependent on boundary conditions of the
structure(s). To some extent, it is suggested e.g. in Fasana and Marchesiello
(2001), where the percentage differences between the eigenfrequencies predic-
ted by the two models are within the range (3.86-0.56) for the simply supported
structure and within the range (5.85-4.22) for the free-free structure. Thus, in-
stead of investigating the simply supported beams, a direct investigation of
the clamped-clamped (C-C) sandwich structures is much more desired since
it can be useful because of their practical importance.

There is much less papers devoted to vibration analysis of clamped-
clamped unidirectional three-layer sandwich structures. Here, a few are col-
lected (Nilsson and Nilsson, 2002; Raville et al., 1961; Sakiyama et al., 1996;
Sokolinsky and Nutt, 2002; Howson and Zare, 2005). It is noticed that the
experimental data given in Raville et al. (1961) are compared in Sakiyama et
al. (1996), Sokolinsky and Nutt (2002), Howson and Zare (2005). Vibrational
models presented in Nilsson and Nilsson (2002), Raville et al. (1961), Soko-
linsky and Nutt (2002) were obtained according to the variational procedure.
In Sakiyama et al. (1996), the Green functions approach is used, and in How-
son and Zare (2005) a direct approach is employed to obtain the equations of
motion.

It is an aim of the paper to present and discuss the new two-dimmensional
(2D) model of transverse vibration of a C-C sandwich multi-layered beam with
perfectly clamped edges, that is to show both its mathematical details and
some comparison of numerical results. This model is a next result of investiga-
tions of sandwich structures by the present author within the local theory of
linear elastodynamics. Several vibrational models for the unidirectional, both
cantilever (Karczmarzyk, 1995, 1996) and clamped-clamped (C-C) (Karczma-
rzyk, 1999, 2005), sandwich structures have been elaborated within the appro-
ach. The former models and the new local model of the present author were
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obtained without the a priori expanding displacement and stress fields (within
the structures) into series. However, the stress and displacment fields in the
new model are finally expanded into the single series of the eigenfunctions of
the classical Bernoulli-Euler theory of beams. All through-the-thickness boun-
dary conditions and the compatibility equations of the local theory of linear
elastodynamics as well as some specific edge boundary conditions have been
satisfied in the former models (Karczmarzyk, 1995, 1996, 1999, 2005) and in
the new model. However, as far as the present author knows, the perfect clam-
ping edge boundary conditions for the sandwich beam are fulfiled for the first
time within the local elastodynamic approach in the present paper.

The new model is directly applicable to the beams consisting of any num-
ber of layers. This is its important feature since the multi-layered sandwich
structures are rarely investigated in the literature but they occur frequently
in the modern composite constructions (see e.g. Wu et al., 2003).

There are many formal differences between the new model and the mo-
dels presented by other authors above mentioned in particular for the C-C
sandwich beam. First, displacements and stresses within the new local model
satisfy the well known differential equations of motion of the local theory of li-
near elastodynamics – expressed in stresses and displacements. The equations
of motion of the other authors were derived for an assumed number of layers
(usually equal to three) usually within the variational procedure or within the
Bolle-Mindlin procedure. Thus, to apply (eventually) the variational theories,
e.g. for a five-layer sandwich beam one needs to derive first new equations of
motion. Secondly, the kinematic assumptions in the present new model and
in the former models are quite different. The functions of space variable in
the direction perpendicular to the interfaces appearing in the present model
are unknown while their counterparts in the former models are assumed as
known (linear or nonlinear) functions of the variable. On the other hand, the
form of functions of space variable in the direction parallel to the interfaces (to
length) of the beam is assumed in the present model whereas the functions are
derived from the equations of motion in the former models. Thirdly, the final
(computational) form of the problem within the present local model is derived
after satisfying both the local edge boundary conditions and all through-the-
thickness local boundary conditions and compatibility equations. In fact, the
final form of the problem consist of two transcendental uncoupled equations.
The computational form of the problem within the former models is derived
by using only the edge boundary conditions since through-the-thickness condi-
tions have been satisfied (more or less exactly) in the procedure(s) of deriving
the equations of motion.
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There are more formal distinctions which imply some merit differences, not
discussed here, between the local new model and the former models however,
dispite of them the numerical results show merit compatibility of the models.
The main advantage of the new model, stressed here, is its direct applicability
to the analysis of multi-layered (eg. five-layered) sandwich structures that is
when the adjoining layers in such structures are of incomparable stiffnesses. It
is also emphasized that the eigenfunctions for the C-C beam within the new
local model are the same as in the classical Bernoulli-Euler beam theory.
The exemplary structures considered in the paper are shown in Fig. 1. They

are composed of homogeneous, isotropic layers. The layers are perfectly bonded
one to another. Each layer is perfectly clamped at the edges i.e., in Fig. 1a at
x = ±L/2. Any parameter of the structure(s) is not formally limited.

Fig. 1. Multi-layered sandwich C-C beams: (a) three-layer, (b) five-layer. Thickness
of jth layer hj = zj − zj+1

In the case of the beam symmetric about its middle plane (mid-plane) it is
desired to impose the following assumptions on location of the origin of coor-
dinate system. It is convenient to place it in the middle plane of the structure
and in the middle of the span (mid-span) – as shown in Fig. 1a. Location of the
origin in the mid-plane enables us to split the boundary problem in two sub-
problems – the transverse flexural problem and the transverse breath problem.
Location of the origin in the mid-span enables decoupling of the symmetric
and anti-symmetric modes of vibration.
The new model is presented in the further text as follows. All the equations

and conditions of the local theory of linear elastodynamics, however without
the well known Hooke law, are listed in the 2nd section. Two 2D solutions
to the local 2D equations of motion of the theory of linear elastodynamics,
derived here by the present author in an original way, are described in the 3rd
section. Two 3D solutions to the local 3D equations of motion of the theory of
linear elastodynamics are given in the 4th section. The 2D and 3D solutions
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are presented widely in order to facilitate understanding the content of the 5th
section. The essential new ideas of deriving the new model (after combining the
2D and 3D fields) are presented in the 5th section. Exact formulas necessary
to create the final numerical form of the boundary problem (i.e. to create the
matrix of the problem) and some details on the final form are given in the
6th section. Numerical results and comparisons as well as some comments are
given in the 7th section. Section 8th contains a few conclusions.

2. Statement of the problem

The boundary problem is formulated and solved entirely within the local linear
theory of elastodynamics. The new solution (model) is composed of two 2D
(plane) components and two 3D components.

The following 2D local equations of motion, containing the plane stress
state components σxx, σzz, σzx and the corresponding displacements ux, uz,
are satisfied by the 2D components of the model within each layer of the
structure separately

∂σxx
∂x
+
∂σzx
∂z
= ρ
∂2ux
∂t2

∂σzx
∂x
+
∂σzz
∂z
= ρ
∂2uz
∂t2

(2.1)

Equations (2.1) can be expressed entirely in terms of the field ux, uz
(Karczmarzyk, 1996) that is

µ∇2ux + (λ+ µ)
(∂2ux
∂x2
+
∂2uz
∂x∂z

)
= ρ
∂2ux
∂t2

(2.2)

µ∇2uz + (λ+ µ)
( ∂2ux
∂x∂z

+
∂2uz
∂z2

)
= ρ
∂2uz
∂t2

The parameters λ, µ in Eqs (2.2) are defined as follows

λ = λL
1− 2ν
1− ν = 2µL

ν

1− ν λL = 2µL
ν

1− 2ν µ = µL (2.3)

where λL, µL are the Lame material parameters and ν denotes the Poisson
ratio of a particular homogeneous layer of the structure. Symbols ρ, t in (2.1)
and (2.2) stand for the layer density and time, respectively.
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The 3D components of the new solution satisfy the full 3D equations of
motion of the local linear theory of elastodynamics, i.e.

µ∇2ux + (λL + µ)
(∂2ux
∂x2
+
∂2uy
∂y∂x

+
∂2uz
∂z∂x

)
= ρ
∂2ux
∂t2

µ∇2uy + (λL + µ)
( ∂2ux
∂x∂y

+
∂2uy
∂y2
+
∂2uz
∂z∂y

)
= ρ
∂2uy
∂t2

(2.4)

µ∇2uz + (λL + µ)
( ∂2ux
∂x∂z

+
∂2uy
∂y∂z

+
∂2uz
∂z2

)
= ρ
∂2uz
∂t2

The 2D and 3D fields, satisfying the above equations of motion, fulfil the
Saint-Venant compatibility equations expressed in terms of strains εqr in the
following well known abbreviated form

εkl,mn + εmn,kl − εkm,ln − εln,km = 0 (2.5)

The following through-the-thickness local boundary conditions, (2.6), and
compatibility equations (2.7) for the whole structure are satisfied by the total
stress and displacemnnt fields within the new model

σ̃zz(1)(x, z=z1) = σ̃zx(1)(x, z=z1) = σ̃zz(p)(x, z=zp+1) =
(2.6)

= σ̃zx(p)(x, z=zp+1) = 0

and

σ̃zz(j)(x, z = zj+1) = σ̃zz(j+1)(x, z = zj+1)

σ̃zx(j)(x, z = zj+1) = σ̃zx(j+1)(x, z = zj+1)

ũz(j)(x, z = zj+1) = ũz(j+1)(x, z = zj+1)

ũx(j)(x, z = zj+1) = ũx(j+1)(x, z = zj+1)

(2.7)

where j = 1, 2, . . . , p− 1.
The symbols with the sign ”∼” denote the total stresses and displacements,

the subscript p means the number of layers, subscripts, 1, j, j + 1 identify
the 1st, jth and (j + 1)th layer, respectively. The coordinates z1, zj, etc. are
explained in Fig. 1.

It is noticed that assuming in Eqs (2.6) the normal stresses as non-equal to
zero, we have the boundary conditions for the forced vibration. It is explained
that the stresses result from the Hooke law applied in the paper.
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The following edge boundary conditions are satisfied within the new model
(j = 1, 2, . . . , p)

ũx(j)(x = ±L/2, z) = 0 ũz(j)(x = ±L/2, z) = 0
(2.8)

∂ũz(j)
∂x

∣∣∣∣
(x=±L/2,z)

= 0

As far as the present author knows, local edge boundary conditions (2.8)
for the perfect clamping of the edges for all layers of the sandwich structure
have been fulfiled for the first time within the local elastodynamic approach.

3. Solutions to the 2D (plane) local equations of motion of the
linear elastodynamics

In order to derive 2D solutions for an isotropic continuous layer, the following
kinematic assumptions are used

ux = −g(z)T (t)
dX(T )

dx
uz = f(z)X

(T )T (t)

d2X(T )

dx2
= −α2X(T ) α2 > 0

(3.1)

The functions g, f of the space variable z are unknown, the function X(T )

of the space variable x will be defined later. The function T (t) = exp(iωt),
where i2 = −1 and ω, t are the vibration frequency and time, respectively.
Due to (3.1), Eqs (2.2) can be transformed to the following form

−µd
2g

dz2
+ [(λ+ 2µ)α2 − ρω2]g + (λ+ µ)df

dz
= 0

(3.2)

(λ+ 2µ)
d2f

dz2
− (µα2 − ρω2)f + (λ+ µ)α2 dg

dz
= 0

Equations (3.2) can be solved in many ways, and one of them, which is very
convenient, is shown below. It is noticed that Eqs (3.2) may be rearranged as
follows

−µd
2g

dz2
+ (µα2 − ρω2)g + (λ+ µ)

(
α2g +

df

dz

)
= 0

(3.3)

µ
d2f

dz2
− (µα2 − ρω2)f + (λ+ µ)

(
α2
dg

dz
+
d2f

dz2

)
= 0
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The underlined term occurs in each of Eqs (3.3). It is seen form Eqs (3.3)
that,

d2g

dz2
=
(
α2 − ρω

2

µ

)
g ≡ β21g β21 = α

2 − ρω
2

µ

d2f

dz2
=
(
α2 − ρω

2

µ

)
f ≡ β21f g = − 1

α2
df

dz

(3.4)

Thus, the first rearrangement of Eqs (3.2) leads to the first solution, expres-
sed in the following matrix form:
— for β21 > 0

[
f1
g1

]
=



cosh(β1z) sinh(β1z)

−β1
α2
sinh(β1z) −

β1
α2
cosh(β1z)



[
C1
C2

]
(3.5)

— for β21 < 0, β
2
1 = −β21
[
f1
g1

]
=



cos(β1z) sin(β1z)

β1
α2
sin(β1z) −

β1
α2
cos(β1z)



[
C1
C2

]
(3.6)

Equations (3.2) can be also rearranged in a second manner

−(λ+ 2µ)d
2g

dz2
+ [(λ+ 2µ)α2 − ρω2]g + (λ+ µ)

(d2g
dz2
+
df

dz

)
= 0

(3.7)

(λ+ 2µ)
d2f

dz2
− [(λ+ 2µ)α2 − ρω2]f + (λ+ µ)α2

(dg
dz
+ f
)
= 0

Again, there is a term (underlined) occuring in both Eqs (3.7). It is seen
directly from Eqs (3.7) that the functions g,f are now defined as follows

d2g

dz2
=
(
α2 − ρω2

λ+ 2µ

)
g ≡ β22g β22 = α

2 − ρω2

λ+ 2µ

d2f

dz2
=
(
α2 − ρω2

λ+ 2µ

)
f ≡ β22f f = −dg

dz

(3.8)

Thus, the second rearrangement of Eqs (3.2) leads to the second solution,
expressed in the following matrix form: — for β22 > 0

[
f2
g2

]
=




cosh(β2z) sinh(β2z)

− 1
β2
sinh(β2z) −

1

β2
cosh(β2z)




[
C3
C4

]
(3.9)
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— for β22 < 0, β
2
2 = −β22
[
f2
g2

]
=




cos(β2z) sin(β2z)

− 1
β2
sin(β2z)

1

β2
cos(β2z)




[
C3
C4

]
(3.10)

The constants Cl, l = 1, 2, 3, 4, in (3.5), (3.6) and (3.9), (3.10) are unknown.

4. Solutions to the 3D (plate) local equations of motion of the
linear elastodynamics

In order to derive 3D solutions for an isotropic continuous layer, the following
kinematic assumptions are used

Ux = −G(z)Y (y)
dX(H)

dx
T (t) Uy = −G(z)

dY

dy
X(H)T (t)

Uz = F (z)Y (y)X
(H)T (t)

d2X(H)

dx2
= α2X(H) α2 > 0

d2Y

dy2
= −β2Y β2 > 0

(4.1)

Ux, Uy and Uz are displacements dependent on three space variables x, y, z.
The functions G, F of the variable z are unknown. The function X(H) of the
variable x as well as Y (y) will be defined later. T (t) is the same function of
time which appears in (3.1). Now Eqs (2.4) can be transformed to the following
(two) ordinary differential equations

−µd
2G

dz2
− [(λL + 2µ)(α2 − β2) + ρω2]G+ (λL + µ)

dF

dz
= 0

(4.2)

(λL + 2µ)
d2F

dz2
+ [µ(α2 − β2) + ρω2]F − (λL + µ)(α2 − β2)

dG

dz
= 0

It is noticed that a first rearrangement of Eqs (4.2) is as follows

−µd
2G

dz2
− [µ(α2 − β2) + ρω2]G− (λL + µ)

[
(α2 − β2)G− dF

dz

]
= 0

(4.3)

µ
d2F

dz2
+ [µ(α2 − β2) + ρω2]F − (λL + µ)

[
(α2 − β2)dG

dz
− d
2F

dz2

]
= 0
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The underlined term occurs in each of Eqs (4.3). It is seen form Eqs (4.3) that

d2G

dz2
= −
(
α2 − β2 + ρω

2

µ

)
G ≡ −R21G R21 = α

2 − β2 + ρω
2

µ

d2F

dz2
= −
(
α2 − β2 + ρω

2

µ

)
F ≡ −R21F G =

1

α2 − β2
dF

dz

(4.4)

Now it is seen that the first solution to Eqs (4.3) can be expressed in the
matrix form:
— for R21 < 0, R

2
1 = −R21

[
F1
G1

]
=




cosh(R1z) sinh(R1z)
R1
α2 − β2 sinh(R1z)

R1
α2 − β2 cosh(R1z)



[
D1
D2

]
(4.5)

— for R21 > 0

[
F1
G1

]
=




cos(R1z) sin(R1z)

− R1
α2 − β2 sin(R1z)

R1
α2 − β2 cos(R1z)



[
D1
D2

]
(4.6)

The second rearrangement of Eqs (4.2) is as follows

−(λL + 2µ)
d2G

dz2
−[(λL + 2µ)(α2 − β2) + ρω2]G+ (λL + µ)

(d2G
dz2
+
dF

dz

)
=0

(4.7)

(λL + 2µ)
d2F

dz2
+ [(λL + 2µ)(α

2 − β2) + ρω2]F +

−(λL + µ)(α2 − β2)
(dG
dz
+ F
)
= 0

Directly from Eqs (4.7), one obtains

d2G

dz2
= −
(
α2 − β2 + ρω2

λL + 2µ

)
G ≡ −R22G

R22 = α
2 − β2 + ρω2

λL + 2µ
(4.8)

d2F

dz2
= −
(
α2 − β2 + ρω2

λL + 2µ

)
F ≡ −R22F F = −dG

dz

Finally, it is seen that the second solution to Eqs (4.2) can be expressed in
the following matrix form:
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— for R22 < 0, R
2
2 = −R22

[
F2
G2

]
=



cosh(R2z) sinh(R2z)

− 1
R2
sinh(R2z) −

1

R2
cosh(R2z)



[
D3
D4

]
(4.9)

— for R22 > 0
[
F2
G2

]
=




cos(R2z) sin(R2z)

− 1
R2
sin(R2z)

1

R2
cos(R2z)




[
D3
D4

]
(4.10)

The constants Dl, l = 1, 2, 3, 4, in (4.5), (4.6) and (4.9), (4.10) are unknown.

5. Idea of the new solution to the boundary problem –
combination of the 2D and 3D fields

Let us assume the following relationships

d2gi
dz2
=
d2Gi
dz2
⇔ β2i gi = −R2iGi

(5.1)
d2fi
dz2
=
d2Fi
dz2
⇔ β2i fi = −R2iFi i = 1, 2

The above assumption is one of new ideas in the paper. Equations (5.1) will
be satisfied if the following equalities are valid

β2i = −R2i ∧ gi ≡ Gi ∧ fi ≡ Fi ⇒
(5.2)

⇒ d2gi
dz2
=
d2Gi
dz2

∧ d2fi
dz2
=
d2Fi
dz2

i = 1, 2

It is evident that Eqs (5.1) will be satified if β2 is defined as follows

β21 = −R21 ⇔ β2 = 2α2

(5.3)

β22 = −R22 ⇔ β2 = 2α2 + ρω2
( 1

λL + 2µ
− 1

λ+ 2µ

)

If λL ≈ λ, as assumed in the further text, we can write down

β21 = −R21 ∧ β22 = −R22 ⇔ β2 = 2α2 (5.4)

It is noted however that the final form of the solution proposed here is the
same irrespective of applying or omiting the assumption λL ∼= λ.
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Due to Eqs (5.1)-(5.4), one can write displacements (4.1) by replacing
Gi(z) with gi(z) and Fi(z) with fi(z), for i = 1, 2, respectively

Uxi = −gi(z)Y (y)
dX(H)

dx
T (t) Uyi = −gi(z)

dY

dy
X(H)T (t)

Uzi = fi(z)Y (y)X
(H)T (t) i = 1, 2

d2X(H)

dx2
= α2X(H) α2 > 0

d2Y

dy2
= −2α2Y

(5.5)

It is explained here that the function Y is assumed to be even, i.e.

Y (
√
2αy) = Y (−

√
2αy) Y = cos(

√
2αy) = cos[αL(

√
2y/L)] (5.6)

It is obvious that for a sufficiently small y, the following approximations
are valid

Y ∼= 1 dY

dy
∼= 0 (5.7)

Approximations (5.7) imply a limitation of the model proposed here to a
narrow structure. After taking into account (5.7), one obtains approximations
of diplacements (5.5)

Uxi ∼= −gi(z)
dX(H)

dx
T (t) Uyi ∼= 0 Uzi ∼= fi(z)X(H)T (t)

(5.8)

i = 1, 2
d2X(H)

dx2
= α2X(H) α2 > 0

Let us assume the following (total) displacement field within the isotropic
layer

ũx =
∑

i

ũxi =
∑

i

(uxi − Uxi) ∼= −
∑

i

gi(z)
(dX(T )

dx
− dX

(H)

dx

)
T (t) ũyi ∼= 0

(5.9)
ũz =

∑

i

ũzi =
∑

i

(uzi − Uzi) ∼=
∑

i

fi(z)(X
(T ) −X(H))T (t) i = 1, 2

Assumption (5.9) is the next new idea of the solution presented here. It is
stated that the 3D components of the solutions (of the equations of motion)
derived in Section 4 do not occur in the final, total displacement field (5.9).
They have ”disapeared” due to assumptions (5.1) and (5.7). The only trace
of including the 3D components into field (5.9) is the function X(H) and its
derivative. We further assume, as in Karczmarzyk (1999), that the functions
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of the variable x for the symmetric (about the mid-span) vibration are as
follows

X(T ) =
cos(αx)

cos αL2
X(H) =

cosh(αx)

cosh αL2
(5.10)

When the anti-symmetric (about the mid-span) vibrations are considered, the
functions of the variable x are defined as follows

X(T ) =
sin(αx)

sin αL2
X(H) =

sinh(αx)

sinh αL2
(5.11)

It is noted that functions (5.10), (5.11) are the eigenfunctions within the
classical Bernoulli-Euler theory of beam. It is seen that irrespective of the type
of vibration, the following equalities are satisfied, for x = ±L/2

X(T )(x = ±L/2)−X(H)(x = ±L/2) = 0 ⇔ ũzi(x = ±L/2) = 0 (5.12)

The right-hand side of Eq. (5.12) is one of the edge(s) boundary conditions
for the perfect clamping of the edge(s). It means that irrespective of value
of the variable z, the transversal (out-of-plane) vibrational displacement at
the edges x = ±L/2 is equal to zero. It is noticed that the derivative of the
transverse displacement equals to zero at x = ±L/2 for any value of z.
The second edge boundary condition for the perfect clamping solution is

as follows

ũxi(x = ±L/2) = 0 ⇔ dX(T )

dx

∣∣∣∣
x=±L/2

− dX
(H)

dx

∣∣∣∣
x=±L/2

= 0 (5.13)

After substituting functions (5.10) into the right-hand side Eq. (5.13), one
obtains the following transcendental equation for the symmetric modes of vi-
bration enabling us to calculate α

sin αL2
cos αL2

+
sinh αL2
cosh αL2

= 0 (5.14)

When functions (5.11) are used, the right-hand side Eq. (5.13) is transformed
to the form

cos αL2
sin αL2

− cosh
αL
2

sinh αL2
= 0 (5.15)

In the literature, there are the following approximate values of α satisfying
Eqs (5.14) and (5.15), i.e.:



A new 2D single series model of transverse vibration... 803

— for symmetric modes

α1L

2
∼= 2.365

αkL

2
∼=
(4k − 1)π
4

k = 2, 3, 4, . . .

α1L

2
∼= 2.365

αmL

2
∼=
(2m+ 1)π

4
m = 3, 5, 7, . . .

(5.16)

— for anti-symmetric modes

α1L

2
∼= 3.927

αlL

2
∼=
(4l + 1)π

4
l = 2, 3, 4, . . .

α2L

2
∼= 3.927 αmL

2
∼= (2m+ 1)π

4
m = 4, 6, 8, . . .

(5.17)

6. Through-the-thickness boundary and compatibility equations
and a numerical form of the boundary value problem

Upon the basis of the displacement field, defined by (5.9), (3.5), (3.6), (3.9) and
(3.10), we are able to derive the total strain field and, after its substitution
to the Hooke law, we obtain the following expressions for the total stresses
within the layer (i = 1, 2)

σ̃zx =
∑

i

σ̃zxi =
∑

i

µ
(
fi −
dgi
dz

)(dX(T )

dx
− dX

(H)

dx

)
T (t) =

=
∑

i

Szxi
(dX(T )

dx
− dX

(H)

dx

)
T (t)

(6.1)

σ̃zz =
∑

i

σ̃zzi =
∑

i

(
λα2gi + (λ+ 2µ)

dfi
dz

)
(X(T ) −X(H))T (t) =

=
∑

i

Szzi(X
(T ) −X(H))T (t)

It is seen from Eqs (6.1) that irrespective of value of the variable z (inclu-
ded in the functions gi, fi), the total shear stresses and normal (out-of-plane)
stresses are equal to zero at the edges x = ±L/2. In order to write the explicit
expressions for the stresses, we use the following relationships for the stress
components, i.e.

σ̃zx1 = µ
(
1 +
β21
α2

)
f1
(dX(T )

dx
− dX

(H)

dx

)
T (t)

σ̃zz1 = 2µ
df1
dz
(X(T ) −X(H))T (t)
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σ̃zx2 = 2µf2
(dX(T )

dx
− dX

(H)

dx

)
T (t)

σ̃zz2 =
[
2µ+ λ

(
1− α

2

β22

)]df2
dz
(X(T ) −X(H))T (t) (6.2)

σ̃zx1 = Szx1
(dX(T )

dx
− dX

(H)

dx

)
T (t) Szx1 = µ

(
1 +
β21
α2

)
f1

σ̃zz1 = Szz1(X
(T ) −X(H))T (t) Szz1 = 2µ

df1
dz

σ̃zx2 = Szx2
(dX(T )

dx
− dX

(H)

dx

)
T (t) Szx2 = 2µf2

σ̃zz2 = Szz2(X
(T ) −X(H))T (t)

Szz2 =
[
2µ+ λ

(
1− α

2

β22

)]df2
dz

If we use (3.5), (3.6), (3.9), (3.10) and (6.2), we obtain Szx = Szx1 + Szx2
and Szz = Szz1 + Szz2 in the explicit form:

— for β21 > 0, β
2
2 > 0

[
Szz
Szx

]
=

[
2µβ1 sinh(β1z) 2µβ1 cosh(β1z) A sinh(β2z) A cosh(β2z)
B cosh(β1z) B sinh(β1z) 2µ cosh(β2z) 2µ sinh(β2z)

]



C1
C2
C3
C4




(6.3)
where

A =
[
2µ+ λ

(
1− α

2

β22

)]
β2 B = µ

(
1 +
β21
α2

)

— for β
2
1 = −β21 > 0, β

2
2 = −β22 > 0

[
Szz
Szx

]
=

[
−2µβ1 sin(β1z) 2µβ1 cos(β1z) −A sin(β2z) A cos(β2z)
B cos(β1z) B sin(β1z) 2µ cos(β2z) 2µ sin(β2z)

]



C1
C2
C3
C4




(6.4)
where

A =
[
2µ+ λ

(
1 +
α2

β
2
2

)]
β2 B = µ

(
1− β

2
1

α2

)

Analogously, g = g1 + g2, f = f1 + f2 in the explicit form are as follows:
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— for β21 > 0, β
2
2 > 0

[
−g
f

]
=




β1
α2
sinh(β1z)

β1
α2
cosh(β1z)

1

β2
sinh(β2z)

1

β2
cosh(β2z)

cosh(β1z) sinh(β1z) cosh(β2z) sinh(β2z)








C1
C2
C3
C4




(6.5)

— for β
2
1 = −β21 > 0, β

2
2 = −β22 > 0

[
−g
f

]
=



−β1
α2
sin(β1z)

β
1

α2 cos(β1z)
1

β2
sin(β2z) −

1

β2
cos(β2z)

cos(β1z) sin(β1z) cos(β2z) sin(β2z)







C1
C2
C3
C4




(6.6)
For a particular mode of free vibration, the symbol α in expressions (6.3)-

-(6.6) must be replaced with αm, m = 1, 2, 3 – see (5.16)2, while the symbol ω
(frequency) appearing in β1, β2 must be replaced with ωm (mth eigenfrequ-
ency).
It is noticed that any limitation on parameters of the beam (such as thick-

nesses, densities etc.) as well as any restriction on the ratios h(j)/h(j+1),
ρ(j)/ρ(j+1), µ(j)/µ(j+1), L/ht, ht = h1 + h2 + . . . + hp, etc., have not been
introduced into the model. Therefore, it can be applied for the vibration ana-
lysis of both the multi-layered, slender and thickset, sandwich beams and the
classical laminated beams consisting of stiffness-comparable layers. Obviously,
this statement is true provided that the edge fixing of the structure assures
perfect edge clamping boundary conditions (2.8).
It is noted (repeated) that the stress and displacement fields derived in

Sections 3-6 occur in an isotropic, homogeneous (let us say in jth) layer of the
multi-layered structure. If we want to have such fields for any (j + k)th layer,
we have to substitute the material parameters ρ, λ and µ for this particular
layer into the all above expressions – in particular into formulas (6.3)-(6.6). The
distinction between the stress and displacement fields for two different layers,
let us say jth and (j + k)th, is seen in the following exemplary expressions

d2g(j)
dz2

=
(
α2 −

ρ(j)ω
2

µ(j)

)
g(j) ≡ β21(j)g(j) β21(j) = α

2 −
ρ(j)ω

2

µ(j)

d2g(j+k)

dz2
=
(
α2 −

ρ(j+k)ω
2

µ(j+k)

)
g(j+k) ≡ β21(j+k)g(j+k) (6.7)

β21(j+k) = α
2 −
ρ(j+k)ω

2

µ(j+k)
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In order to obtain a numerical form of the boundary problem, we have to
use the derived expressions for the displacements and stresses and substitu-
te it into through-the-thickness boundary conditions (2.6) and compatibility
equations (2.7). The creation and the structure of the resulting matrix of the
eigenvalue problem for a three-layered sandwich beam is illustrated in the
following formal expression (scheme)




z = z1 σ̃zz(1) = 0

σ̃zx(1) = 0

z = z2 σ̃zz(1) = σ̃zz(2)
σ̃zx(1) = σ̃zx(2)
ũz(1) = ũz(2)
ũx(1) = ũx(2)

z = z3 σ̃zz(2) = σ̃zz(3)
σ̃zx(2) = σ̃zx(3)
ũz(2) = ũz(3)
ũx(2) = ũx(3)

z = z4 σ̃zz(3) = 0

σ̃zx(3) = 0




≡




++++
++++
++++ ++++
++++ ++++
++++ ++++
++++ ++++

++++ ++++
++++ ++++
++++ ++++
++++ ++++

++++
++++







C1(1)
C2(1)
C3(1)
C4(1)
C1(2)
C2(2)
C3(2)
C4(2)
C1(3)
C2(3)
C3(3)
C4(3)




= 0 ≡

(6.8)
≡ AC = 0

The pluses in the matrix A denote, in a general case, the non-zero elements
of the matrix. After solving the equation detA = 0, one obtains the eigen-
frequencies ωm. There are many ways for numerical solving of the eigenvalue
equation. One of them is using a standard software module for evaluation
the determinants. The other way may be transformation of the matrix to the
smallest dimension and then obtaining a computational code. It is noted that
the whole eigenvalue problem is expressed by one of Eqs (5.14), (5.15) and
Eq. (6.8).
If the matrix 0 in Eq. (6.8) is replaced with a non-zero matrix containing

components of sinusoidally varying loads of the structure, Eq. (6.8) together
with one of Eqs (5.14) and (5.15) will be the final, matrix form of the boundary
problem of the forced vibration (in this case, the loads will be expanded into
series (5.14) and (5.15)). Anyway, the boundary problem in its final form
consists of two uncoupled Eqs: (5.14) or (5.15) and (6.8).
The dimension of the square matrix A for the structure consisting of p lay-

ers is equal to 4p × 4p. It is easy to show that for the structure symmetric
about the middle plane, the matrix dimension can be decreased two times. For
the symmetric structure, the boundary problem (6.8) splits into two subpro-
blems: one for the transverse flexural vibration and the other for the transverse



A new 2D single series model of transverse vibration... 807

breath problem. Thus, for the classical sandwich beam symmetric about the
mid-plane (as shown in Fig. 1a), whose outer layers are of the same thickness
and the same materials, the matrix A dimension is equal to 6× 6 ≡ 2p× 2p,
p = 3.

Let us finally note that after substituting into (3.5), (3.6), (3.9), (3.10),
(6.3)-(6.6) and (6.8) αm = mπ/L for m = 1, 2, 3, . . ., after replacing
the function X(T ) − X(H) in (5.9) by the sinus Fourier series function
X(x) = sin(mπx/L) and the function d(X(T )−X(H))/dx in (5.9) by the func-
tion αm cos(mπx/L), we obtain a local 2D solution to the sinusoidal vibration
problem of the simply supported multi-layer sandwich beam (Karczmarzyk,
1999). This advantageous property of the model proposed here shows its ef-
ficiency and its (limited) similarity to the classical Bernoulli-Euler theory of
homogeneous beam based on the assumption of plane cross-sections.

The opposite idea of replacing the sinus Fourier series functions with the
Bernoull-Euler eigenfunctions was first proposed and numerically verified by
the present author in Karczmarzyk (2005). It was only an intuitive proposition.
In the present paper, the idea checked in Karczmarzyk (2005) has been justified
for the first time mathematically. Due to the present paper we know, among
other things, that the model is exact and accurate only for sufficiently narrow
sandwich structures (beams) and not for wide rectangular plates with two
parallel edges clamped and the other edges free.

7. Numerical results and comparisons

In order to check the new model, some computations have been made for the
input data given in Table 1. The results are listed and compared in Table 2.
Eight eigenfrequencies ωSK obtained after numerical solving of eigenvalue
problem (5.14), (5.15), (6.8) for the C-C beam, for the input data given in
Raville et al. (1961), Sakiyama et al. (1996), Sokolinsky and Nutt (2002),
Howson and Zare (2005), are presented. Apart from the new results, the reader
will find in Table 2 the eigenfrequencies presented (for the structure) in the
literature, i.e., ωExExp – obtained experimentally (Raville et al., 1961) and
listed in Sakiyama et al. (1996), Sokolinsky and Nutt (2002), Howson and
Zare (2005) and ωRAV , ωSAK, ωV SS, ωHZ computed according to the models
by Raville et al. (1961), Sakiyama et al. (1996), Sokolinsky and Nutt (2002),
Howson and Zare (2005), respectively. The percentage differences between the
results predicted by the different models are shown in Fig. 2.
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Table 1. Parameters of the classical three-layered sandwich beam of length
L = 1.21872m

Para- h E ν ρ µ λ
meter [mm] [Pa] [–] [kg·m−3] [Pa] [Pa]

Layer 1 0.40624 0.6890 · 1010 0.33 2687.3 0.2590 · 1010 0.2551 · 1010
Layer 2 6.34750 0.1833 · 109 0.33 119.69 0.6891 · 108 0.6788 · 108
Layer 3 0.40624 0.6890 · 1010 0.33 2687.3 0.2590 · 1010 0.2551 · 1010

Table 2. Flexural eigenfrequencies of the sandwich C-C beam according to
different models

Vibr. Mode (m)
[rad·s−1] 1(s) 2(a) 3(s) 4(a) 5(s) 6(a) 7(s) 8(a)

ωSK 220.50 597.91 1144.0 1834.7 2645.1 3551.4 4537.4 5568.3
ωExExp – – 1165.5 1761.2 2509.5 3362.8 4277.0 5448.8
ωRAV 229.88 617.81 1173.8 1872.0 2685.6 3596.0 4575.3 5618.7
ωV SS 217.40 584.96 1113.4 1776.9 2552.9 3419.9 4358.6 5353.3
ωSAK 210.88 567.77 1081.2 1727.3 2484.5 3332.2 4252.7 5230.3
ωHZ 217.38 584.96 1113.1 1776.8 2553.0 3420.1 4359.2 5354.2

Fig. 2. Percentage differences between eigenfrequencies listed in Table 2

It is explained that the notation m = [1(s), 3(s), 5(s), 7(s)] is used in
Fig. 2 to denote vibration symmetric about the middle of the beam span (mid-
span), while the notation m = [2(a), 4(a), 6(a), 6(a)] refers to vibration anti-
symmetric about the mid-span. The abbreviations used in Fig. 2 are defined
as follows: RAV −SK = 100(ωRAV −ωSK)/ωRAV , V SS−SK = 100(ωV SS−
ωSK)/ωV SS, SAK − SK = 100(ωSAK − ωSK)/ωSAK , SK − ExExp =
100(ωSK − ωExExp)/ωExExp, V SS −ExExp = 100(ωV SS − ωExExp)/ωExExp.
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The abbreviations SK − Exp and V SS − Exp do not stand for de-
finitions analogous to the above outlined, but they are approximate, po-
tential elongations of the curves SK − ExExp and V SS − ExExp, re-
spectively. Unfortunately, the eigenfrequencies of the first symmetric mo-
de and first unsymmetric mode of vibration are not explicitely given (ta-
bulated) in the literature (Raville et al., 1961; Sakiyama et al., 1996;
Sokolinsky and Nutt, 2002; Howson and Zare, 2005) and, therefore, the
present author was not able to calculate SK − Exp = 100(ωSK −
ωExExp)/ωExExp, V SS − Exp = 100(ωV SS − ωExExp)/ωExExp for the two
lower modes.

It is seen from Table 2 and in Fig. 2 that the following relationships, con-
cerning the computational eigenfrequencies, are observed, ωRAV > ωSK >
ωV SS > ωSAK . It is noted that the eigenfrequencies ωV SS are almost equ-
al to the eigenfrequencies ωHZ . This means that models presented in So-
kolinsky and Nutt (2002), Howson and Zare (2005) are compatible. The re-
sults predicted by the new model and models by Raville et al. (1961), So-
kolinsky and Nutt (2002), Howson and Zare (2005) are close. The curves
RAV − SK and V SS − SK are parallel and distant approximately by 6%.
The model by Sakiyama et al. (1996) gives lower eigenfrequencies than the
new model and the models by Sokolinsky and Nutt (2002), Howson and
Zare (2005).

However, the comparisons of the computational results and the existing
experimental results (Raville et al., 1961), see the curves SK − ExExp and
V SS − ExExp, suggest high inaccuracy of all the models (see Raville et al.,
1961; Sakiyama et al., 1996; Sokolinsky and Nutt, 2002; Howson and Zare,
2005; and the new one) for the lower modes of vibration. This is suggested
by the elongations SK − Exp and V SS − Exp. The computed eigenfrequ-
encies for the lower modes of vibration are probably much lower than the
corresponding measured values. The first mode eigenfrequency according to
the model by Sokolinsky and Nutt (2002) seems to be some 16% lower than
the expected experimental value. It is difficult to explain this phenomenon
exactly, but one of potential explanations is suggested here. Most proba-
bly, the existing experimental eigenfrequencies ωExExp, presented in Ravil-
le et al. (1961) and listed in Sakiyama et al. (1996), Sokolinsky and Nutt
(2002), Howson and Zare (2005), were measured for the vibrating sandwich
beam with fixed (or free – see e.g. Nilsson and Nilsson, 2002) edges (ends),
which in any case were not perfectly clamped – see definition of boundary
conditions (2.8).
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8. Conclusions

A new two-dimmensional, single series local model of transverse vibration of
a multi-layered one-span sandwich beam with perfectly clamped edges has
been presented in the present paper. It is derived in the local theory of linear
elastodynamics after satisying all the rigorous requirements of the theory.
The eigenfunctions for the C-C sandwich multi-layered beam within the

new model are the same as in the classical theory of homogeneous beam, based
on the assumption of plane cross-sections.
The model is applicable to beams composed of any number of layers ir-

respective of their parameters. It is applicable to structures with both edges
clamped or simply supported, after replacing (if it is necessary) the Bernoulli-
Euler eigenfunctions with the sinus Fourier series functions.
In the case of a beam symmetric about its middle plane, the model splits

into two submodels: one for the transverse flexural anti-symmetric vibration
and the second for the transverse symmetric (breathing) vibration.
The model predicts the eigenfrequencies close to the counterparts predicted

by different former models published by other authors.
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Nowy dwuwymiarowy pojedyńczo szeregowy model drgań poprzecznych
wielowarstwowej belki sandwiczowej z idealnie utwierdzonymi

krawędziami

Streszczenie

W tej pracy jest przedstawiony nowy dwuwymiarowy, pojedyńczo szeregowy, lo-
kalny model drgań poprzecznych wielowarstwowej, jednoprzęsłowej belki sandwiczo-
wej, złożonej z warstw izotropowch, z idealnie utwierdzonymi końcami. Model ten,
otrzymany w ramach lokalnej teorii liniowej elastodynamiki, składa się z dwóch pól
dwuwymiarowych i dwóch aproksymacji pól trójwymiarowych spełniających ściśle
równania ruchu oraz warunki zgodności Saint-Venanta. W modelu zostały spełnio-
ne wszystkie warunki brzegowe po grubości, jak również lokalne warunki ciągłości
(przemieszczeń i naprężeń) między przylegającymi warstwami. Uwzględniono depla-
nacje przekrojowe, jak też poprzeczne podatności każdej warstwy i dlatego model ten
jest stosowalny zarówno do klasycznej trójwarstwowej belki sandwiczowej, jak i do
wielowarstwowej struktury sandwiczowej czy laminatowej.

Manuscript received October 8, 2009; accepted for print March 4, 2010


