
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

48, 3, pp. 733-750, Warsaw 2010

INTERACTIVE MULTIBODY SIMULATION
IN AUGMENTED REALITY1

Pier Paolo Valentini

Eugenio Pezzuti

University of Rome ”Tor Vergata”, Department of Mechanical Engineering, Rome, Italy

e-mail: valentini@ing.uniroma2.it

In this paper, the authors discuss a methodology to enhance multibody systems
simulations using Augmented Reality (AR) implementation. The AR deals with
the use of live video imagery which is digitally processed and augmented by the
addition of computer generated graphics. The purpose is to illustrate how recent
developments in computer-aided design and augmented reality can improve the
realism and interactivity when simulating the movement of digital mock-ups.
The paper discusses hardware and software implementations and an overview of
several illustrative examples. The basic idea is described starting from a simple
simulation of a falling body subjected to gravity with the initial conditions set
interactively by the user. Then, a more complex interactive simulation of the
kinematics of a robot whose end-effector can be grabbed and moved by the
user is presented. Finally, the real time dynamic simulation of a slider crank
mechanism is discussed. The integration between AR and multibody simulation
has revealed to be very useful for didactical purposes and collaborative design.

Key words: interactive simulation, augmented reality, multibody

1. Introduction

During the last two decades, worldwide research on multibody kinematics and
dynamics has produced a lot of very interesting results. Exploring new formu-
lations and implementing a better way to build and solve equations of motion
have been some of the investigated topics. Moreover, a great improvement has
involved the way of simulating and controlling very complex systems, including
multidisciplinary aspects. At present, it is possible to simulate very complex

1The paper was presented at the ECCOMAS Thematic Conference on Multibody

Dynamics which was held at Warsaw University of Technology on June 29 – July 2, 2009.

734 P.P. Valentini, E. Pezzuti

and large systems with a high level of reliability, requiring affordable hardware
resources. Due to these important improvements about simulation techniques,
the designer has to define a lot of input parameters and interpret a lot of out-
put results. Complex models include many bodies, a lot of constraints, maybe
3D contacts and are able to reproduce very complex three-dimensional motion.
A considerable support to the management of pre- and post-processing of data
has been offered by the development of Computer Aided Engineering (CAE)
environments (Bernard, 2005). The development of hardware and software ca-
pabilities has supported the integration between modeling environments and
multibody solvers. Moreover, many modeling environments can interpret the
mating relations in assembling, translating them into constraint equations for
multibody simulation. After (or during, in some cases) the simulation, it is
possible to use the computer graphics capabilities in order to visualize reali-
stic animation in order to have an idea about the behavior of the systems
at a glance. It is useful for debugging the implementation of the system and
correcting some evident errors without screening a lot of numerical data. The
simplification in building and reviewing models has boosted their usage in
industry where saving time and money is very important.

The support of computer graphics to multibody simulation has been use-
ful also for didactics. Teachers can prepare realistic 3D multibody models to
explain the functioning of complex mechanisms, being more effective on the
students. Presently, CAE applications support designers and teachers through
the communication of results coming from numerical computations. By using
these instruments, engineers and designers can develop their creative ideas in
front of a computer monitor using the mouse and keyboard. Although the
integration between numerical computation and graphics leads to the genera-
tion of photo-realistic digital mock-ups, they are still far from the real context
and the user has a limited interaction with them. This limitation can generate
problems (non-conformities, unexpected behavior and appearance, etc.) when
the designed products have to be integrated in the real world. For overcoming
this disadvantage, the development of new instruments, based on the mixing
between the real world and virtual objects, seems to be the future of CAE.
One of these instruments is the Augmented Reality.

2. Augmented reality

The Augmented Reality (AR) is an emerging field of the visual communication
and computer technologies (Azuma, 1997; Azuma et al., 2001; Bimber and
Raskar, 2005). It deals with the combination of real world images and computer

Interactive multibody simulation... 735

generated data. At present, most AR research is concerned with the use of live
video imagery which is digitally processed and ”augmented” by the addition
of computer generated graphics. With an AR system, the user can extend the
visual perception of the world, being supported by additional information and
virtual objects. These objects do not remain inside a computer monitor but
they are integrated in the real world. The AR system has some similarities
with the Virtual Reality (VR) one. The main difference is that in the VR the
perceived world is fully virtual (generated by one or more rendering pipelines),
while in the AR the virtual world merges the real one. The level of details of
the augmented scene has to be very realistic in order to give the user the
illusion of a unique real world. The ways to capture images from the real
world, process and project again to the user can be different (Vallino, 1998).
The most implemented and promising technology for engineering purposes is
the video see-through system. As illustrated in Fig. 1, it is based on the use of
one or two cameras which acquire an image stream from the real world. The
stream is processed by a computer which adds the virtual content, producing
an augmented image stream which is projected again to the user by means of
a blind visor.

Fig. 1. AR video see-through system

Scientific literature reports an increasing interest for the development of
applications of augmented reality in many different fields. The AR has been
used in medicine, surgery, military field, implant and components maintenance,
robotics, and architecture. Most of these applications deal with the merging

736 P.P. Valentini, E. Pezzuti

in the real world of objects, scene and animation which have been modeled
and simulated outside the system. It means that the user perceived a real
scene augmented with pre-computed objects. His interaction with them is
often limited to exploration. A good interaction with the scene may improve
the impact of such technology (Klinker et al., 1999). Recent contributions
in the scientific literature report and increasing interest in the development
of engineering tools in augmented reality environment (Stilman et al., 2005;
Valentini, 2009; Valentini et al., 2008, 2009).

Fig. 2. The implemented AR system

For the specific purpose of this investigation, the implemented AR sys-
tem (see Fig. 2) is comprised of an input video device Microsoft LifeCam
VX6000 USB 2.0 camera, able to catch frames up to 30Hz with a resolu-
tion of 1024 × 768 pixels. The camera has been rigidly mounted on an Head
Mounted Display equipped with OLed displays (Z800 3D visor by Emagin –
http://www.3dvisor.com/). It is able to support a resolution of 800× 600 pi-
xels for each eye. The processing unit is a personal computer with an Intel
Core 2 Quad-core processor, 3 GB RAM and a NVidia Quadro FX3700 gra-
phic card. The operating system was Windows XP and the development suite
for programming was Microsoft Visual Studio 2003.

Routines for image processing have been developed using the well known
open source library named ARToolkit which can be freely downloaded from
http://sourceforge.net/project/showfiles.php?group id=116280. It comprises
a set of numerical procedures which are able to detect and recognize a planar
patterned marker in a video stream in real time. Using correlation techniques,
the routines are also able to compute the relative position and attitude between
markers and camera with good precision. This computation is necessary for an

Interactive multibody simulation... 737

accurate perspective collimation between the virtual entities and the real scene.
The details about specific implementation and about the contents of the libra-
ry go beyond the scope of this paper, and the interested reader can find useful
material at the internet site http://www.hitl.washington.edu/artoolkit/.

3. Implementing multibody simulation into augmented reality
environment

Starting from the description of the capabilities of the Augmented Reality, the
next question is ”how can the AR support multibody simulations?”. There are
two possible answers. The first is about the possibility to project on the real
world the results coming from a pre-computed simulation. It concerns the ren-
dering on the scene of all the objects involved in the simulation whose position
is updated according to the results of the simulation. This implementation is
similar to that of the common post-processing software for visualizing graphics
results. The only difference is in the introduction of the simulated system in
the real world. The advantage is to perceive the interaction with the real
world and check working spaces, possible interferences, etc. Although it can
be useful, this approach does not use all the potential of AR. A smarter way
to enhance the multibody simulation is to introduce interactivity. It means
that the user does not only watch the augmented scene, but interacts with it.
Interaction can concern both the definition of boundary conditions and initial
parameters and the real time control of the simulation. In all these cases, the
solution of the equations of motion has to be computed in real time in order
to populate the scene with quickly updated information.

In order to enable communication between the user and the scene, the
scene has to contain some specific sensors. Since the implementations of AR
are based on the image acquisition and processing, the most simple sensor is a
flat patterned marker. Starting from these considerations, a generic multibody
simulation in augmented reality can be implemented following four main steps:

1. Before the simulation starts, the geometries and topological properties
(joints and connections) have to be defined (as for any multibody sys-
tem);

2. The real scene has to contain information for collimating the real world to
the virtual objects and the virtual sensor(s) for the interactive action of
the user (i.e. has to contain an adequate number of patterned markers);

738 P.P. Valentini, E. Pezzuti

3. During each frame acquisition, the multibody equations have to be solved
in order to compute the correct position of all the virtual bodies in the
scene, taking into account the information coming from the sensors;

4. For each frame acquisition, virtual objects have to be rendered on the
scene in the correct position and attitude.

The rendering of geometries can be implemented using OpenGL capabili-
ties. In order to use quite complex shapes, all the geometries can be modeled
in .vrml (or modeled in a CAD and then exported in .vrml). In this case, ano-
ther coded library can be useful, the OpenVrml, that is able to manage the
OpenGL rendering of .vrml contents. The details about OpenVrml goes bey-
ond the scope of this paper and the interested reader can find useful material
at the internet site of such projects (http://openvrml.org/).

A scheme of the workflow for the entire simulation is depicted in Fig. 3.

Fig. 3. Tasks for implementing multibody simulation in augmented reality

Between the input procedures (data acquisition and markers recognition)
and the output procedures (rendering of the virtual objects on the input scene),
the multibody computation has to be interposed. Since it has to be performed
between the acquisition of one frame and the next one, all the equations need
a real-time solution. For this purpose, it is useful to optimize the solution stra-
tegy, and kinematic simulations are more suitable because involve the solution

Interactive multibody simulation... 739

to a system of non-linear equations, instead of a system of differential-algebraic
equations (Garçıa de Jálon and Bayo, 1994).
In order to explain in details all the steps required to implement a mul-

tibody simulation in an Augmented Reality environment, three examples are
described next.

4. First example: a bouncing ball

The first example deals with the simulation of a rigid sphere that falls sub-
jected to gravity and bounces on a plane. The initial condition of motion of
the body has to be chosen by the user interactively. The simulation needs two
patterned markers. The first defines the position and attitude of the world
reference frame. It is useful for computation of the sphere reference frame
and for the location of the rigid plane which the ball bounces on. The second
marker can be reviewed as a communication sensor. The user’s intent can be
interpreted by tracking the position and velocity of the point P on this mar-
ker. The position of point P can be computed starting by recognition of the
marker in the scene, computing its homogeneous transformation matrix with
respect to the camera T2−camera.
The generic transformation matrix T is a 4×4 matrix which expresses the

relative position and attitude between two reference systems. The first 3× 3
portion of this matrix is used to define the relative orientation between the
two reference frames. The last column is used to describe the relative position
between the origins of the coordinate frames. The last row of the matrix is
[

0 0 0 1
]

T =

[

[Orientation]3×3 [Position]3×1
0 0 0 1

]

(4.1)

The relative position between marker 2 and marker 1 can be computed by
multiplication of the transformation matrices, and the position of point P
with respect to marker 1 (world) reference frame can be computed as

P 1 = T
−1
1−camT2−camP 2 (4.2)

where

P i = {x, y, z}
⊤
i – position vector of point P , expressed using marker i;

Ti−cam – transformation matrix between marker i and camera, expressed as
in Eq. (4.1).

740 P.P. Valentini, E. Pezzuti

Concerning the velocity of the point P , it can be estimated from compu-
tation of the position in two consecutive frames as

Ṗ 1 = T
−1
1−camT2−camṖ 2 = T

−1
1−camT2−cam

(

P
fr i
2 − P

fr (i−1)
2

1
framerate

)

(4.3)

where

Ṗ j = {vx, vy, vz}
⊤
j – velocity vector of point P , expressed using marker j

reference frame;

P
fr i
j – position vector of point P , expressed using marker j computed at
frame i;

framerate – frame rate of video stream [frame/s].

After computation of initial conditions, the simulation can start. The user
can chose this event using the keyboard or mouse as trigger. After the begin-
ning of the simulation, the position of the sphere in the space cannot be chosen
by the user, but it is computed by integrating the equations of dynamics. Since
the computation and the rendering have to be real time processed, an explicit
integration procedure has to be preferred. Assuming the gravity acting along
the world – y direction, for the free falling of the sphere the equations are

vx
vy
vz

fr i

=

vx
vy − g∆t
vz

fr (i−1)

px
py
pz

fr i

=

px + vx∆t
py + vy∆t− g∆t

2

py + vy∆t

fr (i−1)

(4.4)
where

pfr i – position vector of the center of the sphere at frame i;

vfr i – velocity vector of the center of the sphere at frame i.

The detection of the contact with a generic plane can be computed using
a proximity condition on the distance between the ball and the plane as

Contact→ |d|sph-pl −Rsph ¬ Tolerance (4.5)

where

Rsph – radius the sphere;

|d|sph-pl – modulus of the distance between the sphere and the plane.

Interactive multibody simulation... 741

When Eq. (4.5) is fulfilled, the integration of the equation of motion has
to be stopped, imposing the impact condition for computing the new initial
conditions

vfr inpl = −ev
fr (i−1)npl (4.6)

where

npl – unit vector normal to plane;

e – restitution coefficient of impact (scalar).

Figure 4 summarizes four snapshots taken during the simulation. The tra-
jectory of the center of the ball has been tracked using small spheres in order
to visualize the sequence of bounces and the effect of restitution coefficient.

Fig. 4. Four snapshots from bouncing ball simulation

5. Second example: inverse kinematics of a spatial manipulator

The second example deals with the simulation of a spatial manipulator. With
reference to Fig. 5, let us consider a mechanism with 4 rigid links connected

742 P.P. Valentini, E. Pezzuti

with 3 revolute joints and 1 spherical joint. According to Grüebler’s count, the
manipulator has 6 degrees of freedom

dof = 6nlink −
joints
∑

i=1

(6− fi) = 6

It means that in order to define in a unique way the spatial position of the
manipulator we have to prescribe 6 independent parameters (i.e. position and
attitude of the end-effector). For an interactive inverse kinematics simulation,
it means that the user can freely choose the position and attitude of the end
effector and the Augmented Reality scene has to be able to include such a
6 d.o.f. sensor.

The first step in building the model is the construction of geometries of
each link that can be stored in a .vrml file. The second step is about the
preparation of the scene. We need a marker (marker 0) to define the position
and orientation of the manipulator world coordinate system (i.e. its position
inside the scene) and another marker (marker 1) to define the position and
the orientation of the end-effector that will work as an active sensor (Fig. 5,
on the right).

Fig. 5. The manipulator of the second example (nomenclature and topology on the
left, reference frames and patterned markers on the right)

The third step is about the implementation of the system of constraint
equations. It is useful, for the subsequent graphical operations, to use a 4× 4
homogeneous transformation matrix T to express the relative position and
attitude between two generic reference frames. The first 3× 3 portion of this
matrix is used to define the relative orientation between the two reference

Interactive multibody simulation... 743

frames. The last column is used to describe the relative position between the

origins of the coordinate frames. The last row of the matrix is
[

0 0 0 1
]

T =

[

[Orientation]3×3 [Position]3×1
0 0 0 1

]

Looking at the tip point P on link 2 (center of the spherical joint), we can
deduce its position with respect to marker 0 as

Pmarker 0 = T0−l0Tl0−l1Tl1−l2P link 2 (5.1)

where

Pmarker 0 – position vector of point P in marker 0 (world) coordinate system;

P link 2 – position vector of point P in link 2 (local) coordinate system;

T0−l0 – homogeneous transformation matrix between the base (considered as
link 0) and marker 0. It is a function of the parameter α which describes
the relative rotation at their relative revolute joint;

Tl0−l1 – homogeneous transformation matrix between link 1 and the base
(considered as link 0). It is a function of the parameter β which describes
the relative rotation at their relative revolute joint;

Tl1−l2 – homogeneous transformation matrix between link 2 and link 1. It is
a function of the parameter γ which describes the relative rotation at
their relative revolute joint.

Looking at the same point P but on the slider, since the slider is attached
to marker 1, we can deduce its position with respect to marker 0 as

Pmarker 0 = T0−1P slider (5.2)

where

P slider – position vector of point P in slider or marker 1 (local) coordinate
system;

T0−1 – homogeneous transformation matrix between marker 1 and marker 0.
It is a function of 6 independent parameters which describe the relative
position and the relative rotation between the two markers. These para-
meters can be considered as the input of the inverse kinematic analysis
because can be freely chosen by the user to move the manipulator.

744 P.P. Valentini, E. Pezzuti

Since at the point P link 1 is connected to the slider by means of a spherical
joint, we can obtain the closure loop equation of the mechanism as

T0−l0Tl0−l1Tl1−l2P link 2 − T0−1P slider =

0
0
0
1

(5.3)

The system of equations (5.2) can be solved for the unknown kinematic
parameters α, β, γ starting from the knowledge of the position and attitude
of marker 1 (and the end-effector slider) with respect to marker 0. In order
to compute this information, we have to know the relative transformation
between marker 1 and marker 0.
ARToolkit deals with matrices which are similar to the homogeneous ones.

They are 3 × 4 transformation matrices, containing information about the
relative position and attitude as the homogeneous ones but without the last
dummy row. Quaternions and the position vector can be extracted from these
matrices by using arUtilMat2QuatPos Artoolkit procedure.
The relative position of marker 0 (Tc0) and marker 1 (T

c
1) with respect to

the camera can be computed using the Artoolkit procedure arGetTransMat.
Their inverse matrices (T0c and T

1
c , respectively) represent the relative trans-

formations between the camera and the markers. The relative transformation
between marker 1 and marker 0 can be computed as

T
1
2 = T

c
2T
1
c (5.4)

This relation is used to compute the vector d and the vector a2 in the
world reference frame. By doing this, Eq. (5.2) can be solved for the unknown
angles. At this point the virtual position and attitude of each link of the me-
chanism are known. The next step is to compute the projection of geometries
in the augmented scene. Since the renderer engine is OpenGL, we have to deal
with the ModelView projection matrix which maps the 3D points coordinates
into 2D (scene) coordinates. The first step in the rendering concerns the load
of the projection matrix computed from the perspective of marker 0. This task
can be performed by using arglCameraViewRH whose output is a vector of 16
elements containing the transformation and scale information to project the
object from the 3D coordinate system of marker 0 into the camera view plane.
This transformation can be used to relate the position and attitude of each
object according to the virtual world coordinate system (marker 0). The next
steps concern the computation of the transformations in order to draw the
manipulator links in the scene, using the OpenGL operators glRotated and

Interactive multibody simulation... 745

glTranslated. The first procedure performs a rotation of an angle about a
specified axis, the second performs a translation of a specified amplitude along
a specified direction.

For the base, it is sufficient to perform a rotation about the z axis of
marker 0 by an angle α:

glRotated(alpha,0.0,0.0,1.0)

For the first link, three transformations are needed: translation of a1,
rotation about the z axis of marker 0 by angle α and rotation by angle β
about the axis of the first revolute joint:

glTranslated(0.0,0.0,a1)

glRotated(alpha,0.0,0.0,1.0)

glRotated(beta,0.0,-1.0,0.0)

For the second link, three transformations need: rotation by angle α about
the −z axis of marker 0, translation to the center of the revolute joint between
the 1st and the 2nd links and rotation by angle γ about the axis of the revolute
joint between the 1st and the 2nd links:

glRotated(alpha,0.0,0.0,1.0)

glTranslated(l1*cos(beta),0.0,l1*sin(beta)+a1)

glRotated(gamma,0.0,-1.0,0.0)

The end-effector, since it is fixed to marker 1 can be projected using the
projection matrix of marker 1 without applying any further transformation.

Screen shots of animation are reported in Fig. 6.

6. Third example: dynamics of a slider-crank mechanism

The third example deals with simulation of the dynamic behavior of a slider-
crank mechanism shown in Fig. 7. It comprises four links: the base, crank, rod
and slider. The slider is connected to the base with a spring damper element.
The example will show how the augmented reality can be used in order to
interactively define the initial conditions of the simulation and review a real-
time processed animation.

As discussed in the previous example, the first step in building the model is
the construction of the geometry of each link which is subsequently stored in a
.vrml file. The second step regards the preparation of the scene. We need two
patterned markers: marker 0 to define the position and orientation of the world
coordinate system, and marker 1 to define the position and the orientation of
the slider that will work as an active sensor (Fig. 7, on the right).

746 P.P. Valentini, E. Pezzuti

Fig. 6. Snapshots from the inverse kinematics simulation of a spatial manipulator

Fig. 7. The mechanism of the third example (nomenclature and topology on the left,
reference frames and patterned markers on the right)

In order to interactively solve the equations of motion, the DAE system
has to be build before the simulation starts, and has to be embedded in the
run-time code.

Interactive multibody simulation... 747

For the example, it is useful to implement these equations in a matrix form
(Haug, 1989)

[

M Ψ⊤q
Ψq 0

]{

q̈

λ

}

=

{

F

γ

}

(6.1)

where

q̈ – vector of generalized accelerations (q is the vector of generalized coordi-
nates and q̇ – of generalized velocities);

λ – vector of Lagrange multipliers;

F – vector of generalized forces (which includes the contribution of the spring-
damper element and gravity);

Ψq – Jacobian of the constraint equations vector Ψ ;

γ = −(Ψqq̇)qq̇ − 2Ψqtq̇ − Ψ tt , in which the generic subscript i means ∂/∂i;

M – inertial matrix.

For the proposed example we have 23 constraint equations (5 for the revo-
lute joint and 3 for the planar joint) and the mechanism possesses one degree
of freedom.

In order to be real time evaluated, the system in Eq. (6.1) has to be com-
puted using an explicit integrator. The integration time has to be identical to
that of the video frame rate.

With reference to Fig. 8, the simulation strategy is the following. As the
first step, the user can manipulate marker 1, moving the slider (snapshot a
of Fig. 8). The equations for the real time computation of the position and
attitude of each link can be obtained like in the previous example. Then,
the user can interactively define the undeformed length of the spring, placing
the slider and pressing a key on the keyboard or a button on the mouse. As
a result, the spring is rendered on the scene (snapshot b of Fig. 8). At this
point, the user can move the slider, and the spring will be still attached to it
and is rendered as deformed (snapshot c of Fig. 8). By pressing another key
or button, the user can start the simulation. When the simulation begins, the
position of the slider can not be chosen any more by moving marker 1, but the
position and attitude of each link are computed according to Eq. (6.1). A real
time animation is rendered on the scene (snapshot d of Fig. 8). According to
the simulation outputs, the position and attitude of the links can be drawn by
using the OpenGL operators glRotated and glTranslated as shown in the
previous example.

748 P.P. Valentini, E. Pezzuti

Fig. 8. Snapshots from the dynamic simulation of a slider-crank mechanism

7. Conclusions

The implementation of multibody simulation in the augmented reality reveals
many attractive features. First of all, it is possible to perform simulation of
a virtual object projecting the results in the real environment. By this way
it is possible to check the integration between the virtual objects and the re-
al ones. It is also possible to move the digital mechanism dragging intuitive
sensors, instead of the mouse and keyboard, as it happens in the standard
CAE environment. These simulations can be also useful for didactics purposes
to support the explanation of motion of complex mechanisms, the effects of
specific joints, the comprehension of working space, etc. In regards to the im-
plementation details, the current level of hardware performance allows finding
the real-time solutions to both kinematics and dynamics equations between
the acquisition of two subsequent camera frames. All the tasks concerning the
recognition of markers and the computation of view transformation matrices
can be performed using Artoolkit libraries. On the other hand, all the tasks
concerning the drawing of textured shapes can be performed using the Ope-

Interactive multibody simulation... 749

nVrml and OpenGL libraries. All these routines are open source and can be
easily personalized.

The future work will focus on two aspects. One concerns the implementa-
tion of numerical results (such as reaction forces at joints, velocities, energy,
etc.) directly on the augmented scene. The second focuses on the integration
of specific and multipurpose real time integrators. A collaborative design (two
or more people managing the same scene) and the implementation of stereo
vision are other interesting aspects to be investigated.

References

1. Azuma R.T., 1997, A survey of augmented reality, Teleoperators and Virtual
Environments, 6, 4, 355-385

2. Azuma R., Baillot Y. et al., 2001, Recent advances in augmented reality,
IEEE Computer Graphics, 21, 6, 34-47

3. Bernard A., 2005, Virtual engineering: methods and tools, Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-

ture, 219, 5, 413-422

4. Bimber O., Raskar R., 2005, Spatial Augmented Reality Merging Real and
Virtual Worlds, A.K. Peters Ltd.

5. Garçıa de Jálon J., Bayo E., 1994, Kinematic and Dynamic Simulation of
Multibody Systems – the Real-Time Challenge, Springer-Verlag, New York

6. Haug E.J., 1989, —em Computer-Aided Kinematics and Dynamics of Mecha-
nical Systems, Allyn and Bacon, Boston, MA, USA

7. Klinker G., Stricker D., Reiners D., 1999, Optically based direct mani-
pulation for augmented reality, Computers and Graphics, 23, 827-830

8. Stilman M., Michel P., Chestnutt J., Nishiwaki K., Kagami S., Kuf-
fner J.J., 2005, Augmented Reality for Robot Development and Experimen-
tation, Tech. Report CMU-RI-TR-05-55, Robotics Institute, Carnegie Mellon
University

9. Valentini P.P., 2009, Interactive virtual assembling in augmented reality,
International Journal on Interactive Design and Manufacturing, 3, 109-119

10. Valentini P.P., Gattamelata D., Pezzuti E., 2008, A CAD system in Au-
gmented Reality application, Proc. of 20th European Modeling and Simulation
Symposium, Track on Virtual Reality and Visualization

750 P.P. Valentini, E. Pezzuti

11. Valentini P.P., Pezzuti E., Gattamelata D., 2009, Virtual engineering in
augmented reality, Computer Animation, series Computer Science, Technology
and Applications, Nova Publishing [in press]

12. Vallino J., 1998, Interactive augmented reality, PhD Thesis, Department of
Computer Science, University of Rochester, USA

Interaktywna symulacja wielobryłowa w Rzeczywistości Poszerzonej
(AR)

Streszczenie

W pracy autorzy przedyskutowali metodologię usprawnienia symulacji wielobry-
łowej poprzez zastosowanie tzw. Rzeczywistości Poszerzonej (Augmented Reality –
AR). Metodologia ta obejmuje obróbkę cyfrową obrazu pozyskanego kamerą z rozsze-
rzeniem polegającym na dodaniu do tego obrazu grafiki komputerowej. Celem pracy
jest pokazanie, na ile najnowsze osiągnięcia komputerowo wspomaganej obróbki ob-
razu mogą poprawić wrażenie realizmu zapisywanych cyfrowo obrazów i polepszyć
interaktywność z użytkownikiem podczas symulacji ruchu uzyskanych makiet rzeczy-
wistych przedmiotów. Zaprezentowano kilka przykładów z omówieniem zastosowanych
programów i parametrów sprzętu komputerowego. Podstawowa idea została przedsta-
wiona na przykładzie ciała spadającego pod wpływem siły ciężkości na inny obiekt
przy możliwości interakcji użytkownika, który wybiera warunki początkowe upadku.
Następnie opisano bardziej złożony model, tj. kinematykę robota, w którym ruch
chwytaka może być kontrolowany poprzez użytkownika. Na koniec pokazano symula-
cję dynamiki suwakowego mechanizmu korbowego w czasie rzeczywistym. Tezą pracy
jest wykazanie, że integracja symulacji wielobryłowej z możliwościami Rzeczywistości
Poszerzonej (AR) posiada ogromne walory dydaktyczne i stanowi pomoc w zadaniach
międzyzespołowego projektowania.

Manuscript received November 25, 2009; accepted for print February 22, 2010

