JOURNAL OF THEORETICAL AND APPLIED MECHANICS 54, 3, pp. 859-870, Warsaw 2016 DOI: 10.15632/jtam-pl.54.3.859

AN APPROACH TO FREE VIBRATION ANALYSIS OF AXIALLY GRADED BEAMS

STANISŁAW KUKLA, JOWITA RYCHLEWSKA

Czestochowa University of Technology, Institute of Mathematics, Czestochowa, Poland e-mail: stanislaw.kukla@im.pcz.pl; jowita.rychlewska@im.pcz.pl

In this study, the solution to the free vibration problem of axially graded beams with a non-uniform cross-section has been presented. The proposed approach relies on replacing functions characterizing functionally graded beams by piecewise exponential functions. The frequency equation has been derived for axially graded beams divided into an arbitrary number of subintervals. Numerical examples show the influence of the parameters of the functionally graded beams on the free vibration frequencies for different boundary conditions.

Keywords: axially graded beam, non-uniform beam, free vibration

1. Introduction

Functionally graded materials (FGMs) are a novel class of composites which have continuous variation of material properties from one constituent to another. As a result, they have various advantages over the classical composite laminates. For example, using FGMs, we avoid stress concentrations typical for heterogeneous structures with jump a discontinuity between dissimilar materials. For this reason, FGMs are widely used in mechanical, nuclear, aerospace, biomedical and civil engineering. Simultaneously, because of wide applications of FGMs, it is very important to study static and dynamic analysis of functionally graded structures, such as plates, shells and beams. In this paper, the object of consideration is the problem of free vibration of functionally graded (FG) beams. For FG beams, the gradient variation may be oriented in the axial and/or in the cross-section direction.

The literature on vibration analysis of FG beams with thickness-wise gradient variation is very extensive. For example, Anandrao *et al.* (2012) made free vibration analysis of functionally graded beams using the principle of virtual work to obtain a finite element system of equations. The variation of material properties across the thickness of the beam was governed by a power law distribution. The same type of variation of the beam properties was also assumed by Sina *et al.* (2009). They solved the resulting system of ordinary differential equations of free vibration analysis by using an exact method. An analytical solution to study free vibration of exponential functionally graded beams with a single delamination was developed by Liu and Shu (2014). Pradhan and Chakraverty (2013) used the Rayleigh-Ritz model to analyse free vibration of FG beams with material properties that continuously vary in the thickness direction according to the power-law exponent form. This type of gradation was also assumed by Wattanasakulpong and Ungbhakorn (2012). They applied the differential transformation method to solve the governing equation of free vibration of FG beams supported by various types of general boundary conditions. The line spring model to solve the free vibration problem of an exponentially graded cracked beam was employed by Matbuly *et al.* (2009).

Free vibration analysis for axially graded beams has become more complicated because of the governing equation with variable coefficients. For example, Wu *et al.* (2005) applied the semi-inverse method to find solutions to the dynamic equation of axially functionally graded simply supported beams. Huang and Li (2010) studied free vibration of axially functionally graded beams by using the Fredholm integral equations. Hein and Feklistova (2011) applied the Haar wavelet approach to analyse free vibration of axially functionally graded beams. The differential transform element method and differential quadrature element method of the lowest order were used to solve free vibration and stability problems of FG beams by Shahba and Rajasekaran (2012). The exact solution to free vibration of exponentially axially graded beams was presented by Li *et al.* (2013). Explicit frequency equations of free vibration of exponentially FG Timoshenko beams were derived by Tang *et al.* (2014). Huang *et al.* (2013) presented a new approach to the investigation of free vibration of axially functionally graded Timoshenko beams. By applying auxiliary functions, they transformed the coupled governing equations into a single governing equation. Moreover, there are some studies related with the problem of free vibration of FG beams where the gradation of the material is assumed to be along any of the possible Cartesian coordinates, see Alshorbagy *et al.* (2011), by Shahba *et al.* (2013). A review of researches on FG beam type structures can be found in Chauhan and Khan (2014).

In this contribution, we propose a new approach to free vibration analysis of FG beams with arbitrary axial inhomogeneity. The main idea presented in this paper is to approximate an FG beam by an equivalent beam with piece-wise exponentially varying material and geometrical properties. Considerations are carried out in the framework of the Euler-Bernoulli beam theory. Taking into account various boundary conditions associated with clamped, pinned and free ends, numerical solutions are obtained for different functions describing gradient variation of material/geometrical properties of an FG beam. The effectiveness of the proposed approach is confirmed by comparing the obtained numerical results with other numerical solutions available in the existing literature for homogeneous and nonhomogeneous beams. The proposed method is a certain generalization of the approach presented by Kukla and Rychlewska (2014).

2. Equations of motion

An axially graded and non-uniform beam of length L is considered. In this contribution, the material properties and/or cross-section of the beam are assumed to vary continuously along the axial direction. Based on the Euler-Bernoulli beam theory, Lebed and Karnovsky (2000), the governing differential equation is given by

$$\frac{\partial^2}{\partial x^2} \left[E(x)I(x)\frac{\partial^2 w}{\partial x^2} \right] + \rho(x)A(x)\frac{\partial^2 w}{\partial t^2} = 0 \qquad 0 < x < L$$
(2.1)

where x is the axial coordinate, A(x) is the cross-section area, I(x) is the moment of inertia, E(x) denotes the modulus of elasticity, $\rho(x)$ is the material density and w(x,t) is the transverse deflection at the position x and time t.

In order to investigate free vibration of the beam, we assume that

$$w(x,t) = W(x)\sin\omega t \tag{2.2}$$

where W(x) is the amplitude of vibration and ω is the circular frequency of vibration. Substituting (2.2) into (2.1) and introducing the non-dimensional coordinate $\xi = x/L$, we can transform governing equation (2.1) into

$$\frac{d^2}{d\xi^2} \Big[E(\xi)I(\xi)\frac{d^2W}{d\xi^2} \Big] - L^4 \omega^2 \rho(\xi)A(\xi)W = 0 \qquad 0 < \xi < 1$$
(2.3)

In the subsequent analysis, it is assumed that

$$E(\xi)I(\xi) = d_0 g(\xi) \qquad \rho(\xi)A(\xi) = m_0 h(\xi) \qquad 0 < \xi < 1$$
(2.4)

where $d_0 = E(0)I(0)$ and $m_0 = \rho(0)A(0)$. Subsequently, we shall approximate the FG beam under consideration by an equivalent beam with piecewise exponentially varying geometrical and material properties, setting

$$g(\xi) \cong d_i \mathrm{e}^{2\beta_i \xi} \qquad h(\xi) \cong m_i \mathrm{e}^{2\beta_i \xi} \qquad \xi_{i-1} < \xi < \xi_i \qquad i = 1, \dots, n \tag{2.5}$$

where $\xi_0 = 0$ and $\xi_n = 1$. The coefficients d_i , m_i , β_i , i = 1, ..., n we determine by using the following relationships (i = 1, ..., n)

$$g(\xi_{i-1}) = d_i e^{2\beta_i \xi_{i-1}} \qquad g(\xi_i) = d_i e^{2\beta_i \xi_i} \qquad g(\xi_0) = 1$$
(2.6)

and (i = 1, ..., n)

$$h\left(\frac{\xi_i + \xi_{i-1}}{2}\right) = m_i e^{\beta_i(\xi_i + \xi_{i-1})} \qquad h(\xi_0) = 1$$
(2.7)

Hence $(i = 1, \ldots, n)$

$$\beta_{i} = \frac{1}{2(\xi_{i} - \xi_{i-1})} \ln \frac{g(\xi_{i})}{g(\xi_{i-1})} \qquad d_{i} = g(\xi_{i}) e^{-2\beta_{i}\xi_{i}}$$

$$m_{i} = h\left(\frac{\xi_{i} + \xi_{i-1}}{2}\right) e^{-\beta_{i}(\xi_{i} + \xi_{i-1})} \qquad (2.8)$$

We shall also assume that the transverse deflection of the beam has the form

 $W(\xi) = W_i(\xi)$ $\xi_{i-1} < \xi < \xi_i$ $i = 1, \dots, n$ (2.9)

Hence, the governing system of equations for such a piecewise beam can be expressed by

$$\frac{d^2}{d\xi^2} \Big[d_0 d_i e^{2\beta_i \xi} \frac{d^2 W_i}{\partial \xi^2} \Big] - L^4 \omega^2 m_0 m_i e^{2\beta_i \xi} W_i = 0 \qquad \begin{cases} \xi_{i-1} < \xi < \xi_i \\ i = 1, \dots, n \end{cases}$$
(2.10)

Introducing denotations

$$\Omega^2 = \frac{m_0 m_1}{d_0 d_1} L^4 \omega^2 \qquad \qquad \mu_i^2 = \frac{m_i d_1}{m_1 d_i} \tag{2.11}$$

equations (2.10) can be rewritten as

$$\frac{d^2}{d\xi^2} \Big[e^{2\beta_i \xi} \frac{d^2 W_i}{d\xi^2} \Big] - \Omega^2 \mu_i^2 e^{2\beta_i \xi} W_i = 0 \qquad \xi_{i-1} < \xi < \xi_i \qquad i = 1, \dots, n$$
(2.12)

After some manipulations. equations (2.12) reduce to the form

$$\frac{d^4 W_i}{d\xi^4} + 4\beta_i \frac{d^3 W_i}{d\xi^3} + 4\beta_i^2 \frac{d^2 W_i}{d\xi^2} - \Omega^2 \mu_i^2 W_i = 0 \qquad \qquad \begin{cases} \xi_{i-1} < \xi < \xi_i \\ i = 1, \dots, n \end{cases}$$
(2.13)

The parameters β_i in equations (2.8) have been determined from the function $g(\cdot)$ corresponding to the stiffness of the beam. These parameters can be determined also by using the function $h(\cdot)$ corresponding to mass of the beam. In this case, we assume that

$$h(\xi_{i-1}) = m_i e^{2\beta_i \xi_{i-1}}$$
 $h(\xi_i) = m_i e^{2\beta_i \xi_i}$ $h(\xi_0) = 1$ $i = 1, \dots, n$ (2.14)

and

$$g\left(\frac{\xi_i + \xi_{i-1}}{2}\right) = d_i e^{\beta_i(\xi_i + \xi_{i-1})} \qquad g(\xi_0) = 1 \qquad i = 1, \dots, n$$
(2.15)

Then we have

$$\beta_{i} = \frac{1}{2(\xi_{i} - \xi_{i-1})} \ln \frac{h(\xi_{i})}{h(\xi_{i-1})} \qquad m_{i} = h(\xi_{i}) e^{-2\beta_{i}\xi_{i}}$$

$$d_{i} = g\left(\frac{\xi_{i} + \xi_{i-1}}{2}\right) e^{-\beta_{i}(\xi_{i} + \xi_{i-1})} \qquad i = 1, \dots, n$$
(2.16)

Differential equation (2.13) is valid also for d_i , m_i , β_i , given by formulae (2.16).

3. Solution to the free vibration problem

On the assumption $\beta_i^2 < \mu_i \Omega$, the general solution to equations (2.13) has the form

$$W_i(\xi) = e^{-\beta_i \xi} (A_i \cos \delta_i \xi + B_i \sin \delta_i \xi + C_i \cosh \overline{\delta}_i \xi + D_i \sinh \overline{\delta}_i \xi) \qquad \xi_{i-1} < \xi < \xi_i \quad (3.1)$$

where $\delta_i = \sqrt{\mu_i \Omega - \beta_i^2}$, $\overline{\delta}_i = \sqrt{\mu_i \Omega + \beta_i^2}$, $A_i, B_i, C_i, D_i \in \mathbb{R}$, $i = 1, \dots, n$. In order to analyse the free vibration of functionally graded beams, solution (3.1) has to be

In order to analyse the free vibration of functionally graded beams, solution (3.1) has to be applied to certain boundary conditions. In this paper we shall consider the following types of boundary conditions:

— clamped-clamped beam (C-C)

$$W_1(0) = 0$$
 $\frac{dW_1}{d\xi}(0) = 0$ $W_n(1) = 0$ $\frac{dW_n}{d\xi}(1) = 0$ (3.2)

— pinned-pinned beam (P-P)

$$W_1(0) = 0 \qquad \frac{d^2 W_1}{d\xi^2}(0) = 0 \qquad W_n(1) = 0 \qquad \frac{d^2 W_n}{d\xi^2}(1) = 0 \tag{3.3}$$

— clamped-pinned beam (C-P)

$$W_1(0) = 0 \qquad \frac{dW_1}{d\xi}(0) = 0 \qquad W_n(1) = 0 \qquad \frac{d^2W_n}{d\xi^2}(1) = 0 \tag{3.4}$$

— pinned-clamped beam (P-C)

$$W_1(0) = 0 \qquad \frac{d^2 W_1}{d\xi^2}(0) = 0 \qquad W_n(1) = 0 \qquad \frac{d W_n}{d\xi}(1) = 0 \tag{3.5}$$

— clamped-free beam (C-F)

$$W_1(0) = 0 \qquad \frac{dW_1}{d\xi}(0) = 0 \qquad \frac{d^2W_n}{d\xi^2}(1) = 0 \qquad \frac{d}{d\xi} \left(e^{2\beta\xi} \frac{d^2W_n}{d\xi^2}\right)(1) = 0 \qquad (3.6)$$

— free-clamped beam (F-C)

$$\frac{d^2 W_1}{d\xi^2}(0) = 0 \qquad \frac{d}{d\xi} \left(e^{2\beta\xi} \frac{d^2 W_1}{d\xi^2} \right)(0) = 0 \qquad W_n(1) = 0 \qquad \frac{d W_n}{d\xi}(1) = 0 \qquad (3.7)$$

The matching conditions between two connecting elements of the piecewise beams satisfy the following continuity conditions

$$W_{i}(\xi_{i}) = W_{i+1}(\xi_{i}) \qquad \frac{dW_{i}}{d\xi}(\xi_{i}) = \frac{dW_{i+1}}{d\xi}(\xi_{i})
\frac{d^{2}W_{i}}{d\xi^{2}}(\xi_{i}) = \frac{d^{2}W_{i+1}}{d\xi^{2}}(\xi_{i}) \qquad \frac{d^{3}W_{i}}{d\xi^{3}}(\xi_{i}) = \frac{d^{3}W_{i+1}}{d\xi^{3}}(\xi_{i}) \qquad i = 1, \dots, n-1$$
(3.8)

Substituting functions (3.1) into one of the set of boundary conditions (3.2)-(3.7) and continuity conditions given by equations (3.8), we obtain a system of 4n equations which can be written in the matrix form

$$\mathbf{A}(\omega)\mathbf{X} = \mathbf{0} \tag{3.9}$$

where $\mathbf{X} = [A_1, B_1, C_1, D_1, \dots, A_n, B_n, C_n, D_n]^T$ and $\mathbf{A}(\omega) = [a_{kj}]_{4n \times 4n}$. The matrix \mathbf{A} can be expressed as

$$\mathbf{A}(\omega) = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{C}_1 \\ \mathbf{C}_2 \\ \vdots \\ \mathbf{C}_{n-1} \\ \mathbf{B}_n \end{bmatrix}_{4n \times 4n}$$
(3.10)

where the matrices $\mathbf{B}_1, \mathbf{B}_n$ of size $(2 \times 4n)$ represent the boundary conditions and matrices \mathbf{C}_i , $i = 1, \ldots, n-1$ of size $(4 \times 4n)$ represent the continuity conditions. The matrices associated with the boundary conditions corresponding to the four kinds of end supports can be written as follows:

- clamped beams

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & \cdots & 0 \\ -\beta_{1} & \delta_{1} & -\beta_{1} & \overline{\delta}_{1} & 0 & \cdots & 0 \end{bmatrix}_{2 \times 4n}$$

$$\mathbf{B}_{n} = \begin{bmatrix} 0 & \cdots & 0 & \cos \delta_{n} & \sin \delta_{n} & \cosh \overline{\delta}_{n} & \sinh \overline{\delta}_{n} \\ 0 & \cdots & 0 & a_{4n,4n-3} & a_{4n,4n-2} & a_{4n,4n-1} & a_{4n,4n} \end{bmatrix}_{2 \times 4n}$$
(3.11)

where

$$a_{4n,4n-3} = -\beta_n \cos \delta_n - \delta_n \sin \delta_n$$

$$a_{4n,4n-2} = -\beta_n \sin \delta_n + \delta_n \cos \delta_n$$

$$a_{4n,4n-1} = -\beta_n \cosh \overline{\delta}_n + \overline{\delta}_n \sinh \overline{\delta}_n$$

$$a_{4n,4n} = -\beta_n \sinh \overline{\delta}_n + \overline{\delta}_n \cosh \overline{\delta}_n$$
(3.12)

— pinned-pinned beams

$$\mathbf{B}_{1} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & \cdots & 0 \\ \beta_{1}^{2} - \delta_{1}^{2} & -2\beta_{1}\delta_{1} & \beta_{1}^{2} + \overline{\delta}_{1}^{2} & -2\beta_{1}\overline{\delta}_{1} & 0 & \cdots & 0 \end{bmatrix}_{2 \times 4n}$$

$$\mathbf{B}_{n} = \begin{bmatrix} 0 & \cdots & 0 & \cos \delta_{n} & \sin \delta_{n} & \cosh \overline{\delta}_{n} & \sinh \overline{\delta}_{n} \\ 0 & \cdots & 0 & a_{4n,4n-3} & a_{4n,4n-2} & a_{4n,4n-1} & a_{4n,4n} \end{bmatrix}_{2 \times 4n}$$
(3.13)

where

$$a_{4n,4n-3} = 2\beta_n \delta_n \sin \delta_n + (\beta_n^2 - \delta_n^2) \cos \delta_n$$

$$a_{4n,4n-2} = -2\beta_n \delta_n \cos \delta_n + (\beta_n^2 - \delta_n^2) \sin \delta_n$$

$$a_{4n,4n-1} = -2\beta_n \overline{\delta}_n \sinh \overline{\delta}_n + (\beta_n^2 + \overline{\delta}_n^2) \cosh \overline{\delta}_n$$

$$a_{4n,4n} = -2\beta_n \overline{\delta}_n \cosh \overline{\delta}_n + (\beta_n^2 + \overline{\delta}_n^2) \sinh \overline{\delta}_n$$
(3.14)

— free-clamped beams

$$\mathbf{B}_{1} = \begin{bmatrix} \beta_{1}^{2} - \delta_{1}^{2} & -2\beta_{1}\delta_{1} & \beta_{1}^{2} + \overline{\delta}_{1}^{2} & -2\beta_{1}\overline{\delta}_{1} & 0 & \cdots & 0\\ \beta_{1}^{3} + \beta_{1}\delta_{1}^{2} & -\beta_{1}^{2}\delta_{1} - \delta_{1}^{3} & \beta_{1}^{3} - \beta_{1}\overline{\delta}_{1}^{2} & -\beta_{1}^{2}\overline{\delta}_{1} + \overline{\delta}_{1}^{3} & 0 & \cdots & 0 \end{bmatrix}_{2 \times 4n}$$
(3.15)

the matrix \mathbf{B}_n is given by $(3.11)_2$

— clamped-free beams

the matrix \mathbf{B}_1 is given by $(3.11)_1$

$$\mathbf{B}_{n} = \begin{bmatrix} 0 & \cdots & 0 & a_{4n-1,4n-3} & a_{4n-1,4n-2} & a_{4n-1,4n-1} & a_{4n-1,4n} \\ 0 & \cdots & 0 & a_{4n,4n-3} & a_{4n,4n-2} & a_{4n,4n-1} & a_{4n,4n} \end{bmatrix}_{2 \times 4n}$$
(3.16)

where

$$\begin{aligned} a_{4n-1,4n-3} &= 2\beta_n \delta_n \sin \delta_n + (\beta_n^2 - \delta_n^2) \cos \delta_n \\ a_{4n-1,4n-2} &= -2\beta_n \delta_n \cos \delta_n + (\beta_n^2 - \delta_n^2) \sin \delta_n \\ a_{4n-1,4n-1} &= -2\beta_n \overline{\delta}_n \sinh \overline{\delta}_n + (\beta_n^2 + \overline{\delta}_n^2) \cosh \overline{\delta}_n \\ a_{4n-1,4n} &= -2\beta_n \overline{\delta}_n \cosh \overline{\delta}_n + (\beta_n^2 + \overline{\delta}_n^2) \sinh \overline{\delta}_n \\ a_{4n,4n-3} &= (\beta_n^2 \delta_n + \delta_n^3) \sin \delta_n + (\beta_n^3 + \beta_n \delta_n^2) \cos \delta_n \\ a_{4n,4n-2} &= -(\beta_n^2 \delta_n + \overline{\delta}_n^3) \cos \delta_n + (\beta_n^3 + \beta_n \delta_n^2) \sin \delta_n \\ a_{4n,4n-1} &= (-\beta_n^2 \overline{\delta}_n + \overline{\delta}_n^3) \sinh \overline{\delta}_n + (\beta_n^3 - \beta_n \overline{\delta}_n^2) \cosh \overline{\delta}_n \\ a_{4n,4n} &= (-\beta_n^2 \overline{\delta}_n + \overline{\delta}_n^3) \cosh \overline{\delta}_n + (\beta_n^3 - \beta_n \overline{\delta}_n^2) \sinh \overline{\delta}_n \end{aligned}$$
(3.17)

For clamped-pinned and pinned-clamped beams, the matrices \mathbf{B}_1 , \mathbf{B}_n are given by equations $(3.11)_1$ - $(3.13)_2$ and $(3.13)_1$ - $(3.11)_2$, respectively. The matrices associated with the continuity conditions are represented by

$$\mathbf{C}_{i} = \begin{bmatrix} 0 & \cdots & 0 & a_{4i-1,4i-3} & \cdots & a_{4i-1,4i+4} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a_{4i,4i-3} & \cdots & a_{4i,4i+4} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a_{4i+1,4i-3} & \cdots & a_{4i+1,4i+4} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a_{4i+2,4i-3} & \cdots & a_{4i+2,4i+4} & 0 & \cdots & 0 \end{bmatrix}_{4 \times 4n} \qquad \qquad i = 1, \dots, n-1 \qquad (3.18)$$

The non-zero elements of these matrices are given in Appendix.

The determinant of the matrix \mathbf{A} has to vanish for a non-trivial solution of equation (3.9) to exist. The frequency equation

 $\det \mathbf{A}(\omega) = 0 \tag{3.19}$

is then solved numerically using an approximate method.

4. Numerical results

The numerical computations have been carried out for an FG beam which was divided into n segments of the same length. The functions $g(\cdot)$, $h(\cdot)$ introduced into equations (2.4) are assumed in the form $g(\xi) = (1+\gamma\xi)^{\alpha}$, $h(\xi) = 1+\gamma\xi$. In the computations, the formulae given by equation (2.8) have been used. The first three non-dimensional free vibration frequencies obtained in the present study for n = 100 are listed in Tables 1 and 2 in comparison with those presented by Huang and Li (2010) and calculated by using a power series expansion. From Tables 1-2, it can be seen that the present results are in good agreement with the existing results. For $\gamma = 0$, we have the case of a homogeneous beam. It is seen in Tables 1 and 2 that in this case the agreement is excellent.

	D : (1 1		\mathbf{D} () 1
γ	Power series method	Huang and Li (2010)	Present study
-0.1	21.2409777868	21.24097778688	21.242905
	58.5500545739	58.55005461550	58.567526
	114.780241659	114.78027750905	114.824704
0	22.3732854478	22.37328544806	22.373285
	61.6728228676	61.67282294761	61.672823
	120.903391727	120.90340027002	120.903392
0.1	23.4796072481	23.47960724845	23.460013
	64.7210676329	64.72106768601	64.678046
	126.878016311	126.87805071630	126.802905
0.2	24.5634175322	24.5634175326	24.508817
	67.7047553171	67.7047553184	67.596273
	132.723976757	132.7240684027	132.546612

Table 1. The first three non-dimensional free vibration frequencies for $g(\xi) = (1 + \gamma \xi)^3$, $h(\xi) = 1 + \gamma \xi$, clamped-clamped beam

Table 2. The first three non-dimensional free vibration frequencies for $g(\xi) = (1 + \gamma \xi)^3$, $h(\xi) = 1 + \gamma \xi$, clamped-pinned beam

γ	Power series method	Huang and Li (2010)	Present study
-0.1	14.8488960557	14.84889605539	14.844562
	47.6370371901	47.63703719174	47.647237
	99.171635183	99.17165323722	99.206918
0	15.4182057169	15.41820571698	15.418206
	49.964862032	49.96486203816	49.964862
	104.247696458	104.24770194514	104.247696
0.1	15.968709884	15.96870988416	15.950015
	52.2372268871	52.23722689317	52.198883
	109.202352455	109.20235370558	109.134912
0.2	16.5028988943	16.50289889399	16.445277
	54.4614625302	54.46146253076	54.360368
	114.051623344	114.05163085534	113.888586

The effects of parameters α , γ and the number of segments n on the first three nondimensional frequencies for different boundary conditions are presented in Tables 3-5. It can be observed that an increase in the value of the parameter α causes an increase in the difference between the results obtained for n = 5, n = 10 and n = 20, respectively.

Figure 1 presents the first free vibration frequencies calculated for the functions $g(\xi) = (1 + \gamma \xi)^{\alpha}$ and $h(\xi) = 1 + \gamma \xi$ for $\alpha = 1$, $\alpha = 2$ and $\alpha = 3$. The calculations have been performed for six types of boundary conditions. It can be noticed that variation of the parameter γ has a significant effect on the free vibration frequency. For the clamped-free beams, the greatest impact of the parameter γ occurs for $\alpha = 1$, and for all the other boundary conditions under considerations it is for $\alpha = 3$. For the clamped-clamped and pinned-pinned beams, the differences between the values of free vibration frequencies for $\alpha = 1$ are negligible.

BC	n	$\alpha = 1$		$\alpha = 2$		$\alpha = 3$	
		$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$
C-C	5	22.03982	22.264535	19.265636	24.165700	16.814251	26.214186
	10	22.051059	22.262618	19.048822	24.459508	16.441212	26.863566
	20	22.053796	22.261942	18.935593	24.609820	16.247100	27.197036
P-P	5	9.583045	9.773619	8.177437	10.524969	6.896407	11.294071
	10	9.588353	9.772740	8.086959	10.653015	6.746380	11.574244
	20	9.589777	9.772464	8.039484	10.718554	6.667729	11.718081
C-P	5	15.838604	14.907051	14.080008	15.909067	12.483974	16.939622
	10	15.845921	14.905829	13.922110	16.102144	12.209467	17.358429
	20	15.847897	14.905405	13.839671	16.201108	12.066042	17.573873
P-C	5	14.448440	15.749301	12.216596	17.289925	10.244436	18.957895
	10	14.456396	15.747708	12.079634	17.500534	10.017769	19.429126
	20	14.458368	15.747212	12.008080	17.608138	9.899795	19.670529
C-F	5	4.379586	3.121248	4.321434	3.188805	4.234717	3.251220
	10	4.380502	3.120991	4.252879	3.232930	4.103112	3.342365
	20	4.380745	3.120903	4.222757	3.254157	4.045646	3.386566
F-C	5	2.887779	3.995266	2.290903	4.643804	1.807925	5.384977
	10	2.889157	3.994728	2.270108	4.689088	1.774671	5.492166
	20	2.889508	3.994563	2.257891	4.715110	1.755475	5.553767

Table 3. The first non-dimensional free vibration frequency for different boundary conditions, $g(\xi) = (1 + \gamma \xi)^{\alpha}, h(\xi) = 1 + \gamma \xi$

Table 4. The second non-dimensional free vibration frequency for different boundary conditions, $g(\xi) = (1 + \gamma \xi)^{\alpha}, h(\xi) = 1 + \gamma \xi$

BC	n	$\alpha = 1$		$\alpha = 2$		$\alpha = 3$	
		$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$
C-C	5	61.187699	61.527290	53.563835	66.810777	46.705060	72.453327
	10	61.220229	61.522622	52.964685	67.624175	45.679608	74.250130
	20	61.227661	61.520754	52.649784	68.039773	45.140471	75.171899
P-P	5	39.248490	39.415763	34.281704	42.767233	29.772507	46.312345
	10	39.265508	39.411680	33.896833	43.288075	29.121704	47.465112
	20	39.270192	39.410436	33.695664	43.554164	28.779150	48.054717
C-P	5	50.300388	49.461958	44.282315	53.482420	38.806190	57.735593
	10	50.321872	49.457835	43.792788	54.127769	37.971984	59.156518
	20	50.327702	49.456336	43.532945	54.460171	37.525512	59.890410
P-C	5	48.939014	50.267141	42.517999	54.777959	36.759687	59.599505
	10	48.964462	50.262091	42.035739	55.451783	35.941623	61.097469
	20	48.970497	50.260490	41.785685	55.792915	35.517228	61.857034
C-F	5	23.381744	21.158807	21.233450	22.452525	19.191540	23.771357
	10	23.393474	21.157385	20.890872	22.761849	18.565383	24.434588
	20	23.396111	21.156800	20.740129	22.911071	18.295994	24.757241
F-C	5	20.476134	22.847483	17.187639	25.342189	14.317750	28.060961
	10	20.488032	22.845673	17.036003	25.587931	14.064074	28.609593
	20	20.490837	22.844949	16.945280	25.728924	13.914191	28.926634

BC	n	$\alpha = 1$		$\alpha = 2$		$\alpha = 3$	
		$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$	$\gamma = -0.5$	$\gamma = 0.5$
C-C	5	120.319511	120.746274	105.344423	131.127496	91.681928	142.145173
	10	120.392769	120.740300	104.218260	132.739432	89.853340	145.728137
	20	120.407372	120.736681	103.598604	133.555211	88.792805	147.537078
P-P	5	88.594258	88.779880	77.531290	96.389774	67.426814	104.429449
	10	88.629715	88.770369	76.684167	97.575681	66.023866	107.072172
	20	88.639792	88.767515	76.229088	98.175746	65.248530	108.403315
C-P	5	104.554645	103.740552	91.766692	112.472339	80.084560	121.703952
	10	104.597719	103.733256	90.815730	113.815304	78.503258	124.685866
	20	104.609566	103.730098	90.278366	114.513546	77.584066	126.231330
P-C	5	103.144606	104.556740	90.048791	113.706807	78.140870	123.417530
	10	103.202283	104.546600	89.029672	115.147269	76.462403	126.629660
	20	103.214761	104.543267	88.499082	115.856814	75.558342	128.206906
C-F	5	62.982515	60.852831	56.140476	65.522940	49.819399	70.432539
	10	63.020704	60.849312	55.256707	66.417417	48.227924	72.379515
	20	63.028371	60.847560	54.856960	66.851872	47.524147	73.333012
F-C	5	60.136355	62.488331	51.918494	68.523131	44.593816	75.023941
	10	60.171203	62.485112	51.449765	69.200653	43.789492	76.516820
	20	60.178811	62.483270	51.173617	69.581994	43.319244	77.363991

Table 5. The third non-dimensional free vibration frequency for different boundary conditions, $g(\xi) = (1 + \gamma \xi)^{\alpha}, h(\xi) = 1 + \gamma \xi$

The presented numerical results have been obtained by using coefficients d_i , m_i , β_i , i = 1, ..., n, given by equations (2.8). Numerical computations show that the application of equations (2.16) leads to results which are in good agreement with the obtained by using equations (2.8).

5. Conclusions

In the paper, a solution to the free vibration problem of axially functionally graded beams is presented. An exact solution is derived for axially piece-wise exponential graded beams. The frequency equation for beams with various combinations of clamped, pinned and free ends has been obtained. In this approach, the distributed parameters which describe continuous axial changes of the material properties of the beam are approximated by piecewise exponential functions. The non-dimensional free vibration frequencies for a chosen function characterizing the functionally graded beams have been numerically computed. An improvement of the accuracy of the numerical results for a larger number of beam subsections applied in the method has been demonstrated. A high agreement of the numerical results obtained by using the presented method with the results obtained by using the power series method as well as with results given by other authors has also been observed. The numerical investigation shows that the beam stiffness distribution in the axial direction significantly effects free vibration frequencies of the system.

Fig. 1. The first non-dimensional free vibration frequency as a function of γ for $\alpha = 1$ (solid line), $\alpha = 2$ (dashed line), $\alpha = 3$ (dotted line) for different boundary conditions

Appendix

Let us denote $exi = e^{\xi_i}(\beta_{i+1} - \beta_i), ci = \cos(\delta_i \xi_i), si = \sin(\delta_i \xi_i), chi = \cosh(\overline{\delta}_i \xi_i), shi = \sinh(\overline{\delta}_i \xi_i), ci1 = \cos(\delta_{i+1}\xi_i), si1 = \sin(\delta_{i+1}\xi_i), chi1 = \cosh(\overline{\delta}_{i+1}\xi_i), shi1 = \sinh(\overline{\delta}_{i+1}\xi_i).$

The non-zero elements of the matrix \mathbf{C}_i , i = 1, ..., n-1, which occur in equation (3.18) are given by

 $a_{4i-1,4i-3} = exi \cdot ci$ $a_{4i-1,4i-2} = exi \cdot si$ $a_{4i-1,4i-1} = exi \cdot chi$ $a_{4i-1,4i+1} = -ci1$ $a_{4i-1,4i+2} = -si1$ $a_{4i-1,4i} = exi \cdot shi$ $a_{4i-1,4i+3} = -chi1$ $a_{4i-1,4i+4} = -shi1$ $\begin{aligned} a_{4i,4i-3} &= -exi(\beta_i ci + \delta_i si) \\ a_{4i,4i-1} &= -exi(\beta_i chi - \overline{\delta}_i shi) \end{aligned} \qquad \begin{aligned} a_{4i,4i-2} &= -exi(\beta_i si - \delta_i ci) \\ a_{4i,4i} &= -exi(\beta_i shi - \overline{\delta}_i chi) \end{aligned}$ $a_{4i,4i+1} = \beta_{i+1}ci1 + \delta_{i+1}si1$ $a_{4i,4i+2} = \beta_{i+1}si1 - \delta_{i+1}ci1$ $a_{4i,4i+3} = \beta_{i+1}chi1 + \overline{\delta}_{i+1}shi1 \qquad \qquad a_{4i,4i+4} = \beta_{i+1}shi1 - \overline{\delta}_{i+1}chi1$ $a_{4i+1,4i-3} = exi[(\beta_i^2 - \delta_i^2)ci + 2\beta_i\delta_i si]$ $a_{4i+1,4i-2} = exi[(\beta_i^2 - \delta_i^2)si - 2\beta_i\delta_ici]$ $a_{4i+1,4i-1} = exi[(\beta_i^2 + \overline{\delta}_i^2)chi - 2\beta_i\overline{\delta}_ishi]$ $a_{4i+1,4i} = exi[(\beta_i^2 + \overline{\delta}_i^2)shi - 2\beta_i\overline{\delta}_ichi]$ $a_{4i+1,4i+1} = -2\beta_{i+1}\delta_{i+1}si1 + (-\beta_{i+1}^2 + \delta_{i+1}^2)ci1$ $a_{4i+1,4i+2} = 2\beta_{i+1}\delta_{i+1}ci1 + (-\beta_{i+1}^2 + \delta_{i+1}^2)si1$ $a_{4i+1,4i+3} = 2\beta_{i+1}\overline{\delta}_{i+1}shi1 - (\beta_{i+1}^2 + \overline{\delta}_{i+1}^2)chi1$ $a_{4i+1,4i+4} = 2\beta_{i+1}\overline{\delta}_{i+1}chi1 - (\beta_{i+1}^2 + \overline{\delta}_{i+1}^2)shi1$ $a_{4i+2,4i-3} = -exi[(\beta_i^2 - 3\delta_i^2)\beta_i ci + (3\beta_i^2 - \delta_i^2)\delta_i si]$ $a_{4i+2,4i-2} = -exi[(\beta_i^2 - 3\delta_i^2)\beta_i si + (-3\beta_i^2 + \delta_i^2)\delta_i ci]$ $a_{4i+2,4i-1} = -exi[(\beta_i^2 + 3\overline{\delta}_i^2)\beta_i chi - (3\beta_i^2 + \overline{\delta}_i^2)\overline{\delta}_i shi]$ $a_{4i+2,4i} = -exi[(\beta_i^2 + 3\overline{\delta}_i^2)\beta_i shi - (3\beta_i^2 + \overline{\delta}_i^2)\overline{\delta}_i chi]$ $a_{4i+2,4i+1} = (\beta_{i+1}^2 - 3\delta_{i+1}^2)\beta_{i+1}ci1 - (-3\beta_{i+1}^2 + \delta_{i+1}^2)\delta_{i+1}si1$ $a_{4i+2,4i+2} = (\beta_{i+1}^2 - 3\delta_{i+1}^2)\beta_{i+1}si1 + (-3\beta_{i+1}^2 + \delta_{i+1}^2)\delta_{i+1}ci1$ $a_{4i+2,4i+3} = -(3\beta_{i+1}^2 + \overline{\delta}_{i+1}^2)\overline{\delta}_{i+1}shi1 + (\beta_{i+1}^2 + 3\overline{\delta}_{i+1}^2)\beta_{i+1}chi1$ $a_{4i+2,4i+4} = -(3\beta_{i+1}^2 + \overline{\delta}_{i+1}^2)\overline{\delta}_{i+1}chi1 + (\beta_{i+1}^2 + 3\overline{\delta}_{i+1}^2)\beta_{i+1}shi1$

References

- 1. ALSHORBAGY A.E., ELTAHER M.A., MAHMOUD F.F., 2011, Free vibration characteristics of a functionally graded beam by finite element method, *Applied Mathematical Modelling*, **35**, 412-425
- 2. ANANDRAO K.S., GUPTA R.K., RAMACHANDRAN P., RAO G.V., 2012, Free vibration analysis of functionally graded beams, *Defence Science Journal*, **62**, 3, 139-146
- CHAUHAN P.K., KHAN I.A., 2014, Review on analysis of functionally graded material beam type structure, *International Journal of Advanced Mechanical Engineering*, 4, 3, 299-306
- 4. HEIN H., FEKLISTOVA L., 2011, Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets, *Engineering Structures*, **33**, 3696-3701
- HUANG Y., LI X.-F., 2010, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section, *Journal of Sound and Vibration*, 329, 2291-2303
- HUANG Y., YANG L.-E., LUO Q.-Z., 2013, Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, *Composites: Part B*, 45, 1493-1498
- 7. KUKLA S., RYCHLEWSKA J., 2014, Free vibration of axially functionally graded Euler-Bernoulli beams, *Journal of Applied Mathematics and Computational Mechanics*, **13**, 1, 39-44
- 8. LEBED O.I., KARNOVSKY I.A., 2000, Formulas for Structural Dynamics, Mc Graw-Hill

- 9. LI X.-F., KANG Y.-A., WU J.-X., 2013, Exact frequency equations of free vibration of exponentially functionally graded beams, *Applied Acoustics*, **74**, 413-420
- 10. LIU Y., SHU D.W., 2014, Free vibrations analysis of exponential functionally graded beams with a single delamination, *Composites: Part B*, **59**, 166-172
- MATBULY M.S., RAGB O., NASSAR M., 2009, Natural frequencies of a functionally graded cracked beam using the differential quadrature method, *Applied Mathematics and Computation*, 215, 2307-2316
- 12. PRADHAN K.K., CHAKRAVERTY S., 2013, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method, *Composites: Part B*, **51**, 175-184
- SHAHBA A., ATTARNEJAD R., ZARRINZADEH H., 2013, Free vibration analysis of centrifugally stiffened tapered functionally graded beams, *Mechanics of Advanced Materials and Structures*, 20, 331-338
- 14. SHAHBA A., RAJASEKARAN S., 2012, Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials, *Applied Mathematical Modelling*, **36**, 3094-3111
- 15. SINA S.A., NAVAZI H.M., HADDADPOUR H., 2009, An analytical method for free vibration analysis of functionally graded beams, *Materials and Design*, **30**, 741-747
- TANG A.-Y., WU J.-X., LI X.-F., LEE K.Y., 2014, Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams, *International Journal of Mechanical Sciences*, 89, 1-11
- 17. WATTANASAKULPONG N., UNGBHAKORN V., 2012, Free vibration analysis of functionally graded beams with general elastically end constraints by DTM, World Journal of Mechanics, 2, 297-310
- 18. WU L., WANG Q., ELISHAKOFF I., 2005, Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode, *Journal of Sound and Vibration*, 284, 1190-1202

Manuscript received July 8, 2015; accepted for print December 4, 2015