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The present paper deals with an influence of the axial extension mode
on static and dynamic interactive buckling of a thin-walled channel with
imperfections subjected to uniform compression when the shear lag phe-
nomenon and distortional deformations are taken into account. A plate
model is adopted for the channel. The structure is assumed to be simply
supported at the ends. Equations of motion of component plates were
obtained from Hamilton’s principle taking into account all components
of inertia forces. In the frame of first order nonlinear approximation, the
dynamic problem of modal interactive buckling is solved by the transition
matrix using the perturbation method and Godunov’s orthogonalization.
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1. Introduction

Thin-walled structures composed of plate elements have many different buc-
kling modes that vary in quantitative and qualitative aspects. In the case of
finite displacements, different buckling modes are interrelated even with the lo-
ads close to their critical values. The postcritical behavior cannot be described
any more by a single generalized displacement. When the postcritical beha-
vior of each individual mode is stable, their interaction can lead to unstable
behavior, and thus to an increase in the imperfection sensitivity. A nonlinear
stability theory should describe all modes and interactive buckling, taking into
consideration imperfections of the structure.
The theory of interactive buckling of thin-walled structures subjected to

static and dynamic loading has been already widely developed for over forty
years. Although the problem of static coupled buckling can be treated as
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pretty well recognized, the analysis of dynamic interactive buckling is limited
in practice to columns (adopting their beam model), single plates and shells.
In the world literature, a substantial lack of the nonlinear analysis of dynamic
stability of thin-walled structures with complex cross-sections can be felt.

In this study, a special attention is focused on the influence of the axial
extension mode on the global flexural buckling mode of a thin-walled channel.

1.1. Static interactive buckling

When components of the displacement state for the first nonlinear order
approximation are taken into account, it can be followed by a decrease in values
of global loads. In the case when the critical values corresponding to global
buckling modes are significantly lower than those for local modes, then their
interaction can be considered within the first nonlinear approximation. It is
possible as the post-buckling coefficient for uncoupled buckling is equal to zero
for the second order global mode in the Euler column model, and in the case
of an exact solution, it is very often of little significance. The theoretical static
load-carrying capacity obtained within the frame of the asymptotic theory of
the nonlinear first order approximation is always lower than the minimum
value of critical load for the linear problem, and the imperfection sensitivity
can only be obtained.

Since the late 1980’s, the Generalized Beam Theory (GBT) (Basaglia et al.,
2008; Camotim et al., 2008; Silva et al., 2008) has been developed extensively.
Recently, a new approach has been proposed, i.e., the constrained Finite Strip
Method (cFSM) (Adany and Schafer, 2006a,b; Dinis et al., 2007; Schafer,
2006). These two alternative modal approaches to analyze the elastic buckling
behavior have been compared in papers.

In the current decade, in more and more numerous publications (Adany
and Schafer, 2006a,b; Basaglia et al., 2008; Camotim et al., 2008; Dinis et al.,
2007; Schafer, 2006; Silva et al., 2008), the attention has been paid to the
global axial mode, which is considered only in the theoretical aspect in linear
issues, that is to say, in critical loads. Adany and Schafer (2006a) said that ”it
should be noted that this axial mode is a theoretically possible buckling mode,

even though it has little practical importance”. In the axial extension mode,
longitudinal displacements of the cross-section dominate and this mode can be
referred to as the shortening one (Fig. 1). The axial mode is symmetric with
respect to the cross-section axis of symmetry and it is symmetric with respect
to the axis of overall bending (Kołakowski and Kowal-Michalska, 2010).

In the present study, a trial to dispute with the statement included in the
paper by Adany and Schafer (2006a) has been undertaken and the attention



Static and dynamic interactive buckling... 705

Fig. 1. Longitudinal displacement distributions of the axial mode of the channel

has been focused on an interaction of the global flexural mode of buckling with
the global axial extension mode in the first order nonlinear approximation of
the perturbation method (Kołakowski and Kowal-Michalska, 2010).

The present study is based on the numerical method of the transition
matrix using Godunov’s orthogonalization. Instead of the finite strip method,
the exact transition matrix method is used in this case. A plate model of the
column has been adopted in the study to describe global buckling, which leads
to lowering the theoretical value of the limit load. In the solution obtained,
the co-operation between all the walls of structures being taken into account,
the effects of an interaction of certain modes having the same wavelength,
the shear lag phenomenon and also the effect of cross-sectional distortions
are included. The distortion instability of the channel is investigated using
the nonlinear theory. The solution method was partially presented in paper
Kołakowski and Królak (2006).

1.2. Dynamic interactive buckling

Dynamic pulse load of thin-walled structures can be divided into three
categories, namely: impact with accompanying perturbation propagation (a
phenomenon that occurs with the sound wave propagation speed in the struc-
ture), dynamic load of a mean amplitude and a pulse duration comparable to
the fundamental flexural vibration period, and quasi-static load of a low am-
plitude and a load pulse duration approximately twice as long as the period of
fundamental natural vibrations. As for dynamic load, effects of damping can
be neglected in practice.

Dynamic buckling of a column can be treated as reinforcement of imperfec-
tions, initial displacements or stresses in the column through dynamic loading
in such a manner that the level of dynamic response becomes very high. When
the load is low, the column vibrates around the static equilibrium position.
On the other hand, when the load is sufficiently high, then the column can
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vibrate very strongly or can move divergently, which is caused by dynamic
buckling (i.e. dynamic response).
In the literature on this problem, various criteria concerning dynamic sta-

bility have been adopted. The most widely used is the Budiansky-Hutchinson
criterion (Budiansky and Hutchinson, 1966; Hutchinson and Budiansky, 1966),
in which it is assumed that the loss of dynamic stability occurs when the veloci-
ty with which displacements grow is the highest for a certain force amplitude.
Other criteria were discussed in Ari-Gur and Simonetta (1997), Huyan and
Simitses (1977), Petry and Fahlbusch (2000), Volmir (1972), for instance.
The critical values of dynamic stresses, obtained for the first nonlinear ap-

proximation, may be higher than the minimum values of static critical stresses,
respectively.
The dynamic response to the rectangular pulse load of the duration corre-

sponding to the fundamental period of flexural free vibration has been analy-
sed.

2. Formulation of the problem

The cross-section of the structure composed of a few plates is presented in
Fig. 2 along with local Cartesian systems of co-ordinates. A long prismatic
thin-walled channel built of panels connected along longitudinal edges has
been considered. The channel is simply supported at its ends. In order to
account for all modes and coupled buckling, a plate model of the thin-walled
channel has been assumed. The material the channel is made of is subject to
Hooke’s law.
For each plate component, precise geometrical relationships are assumed

in order to enable the consideration of both out-of-plane and in-plane bending
of the i-th plate (Kołakowski and Królak, 2006)

εxi = ui,x +
1

2
(w2i,x + v

2
i,x + u

2
i,x)

εyi = vi,y +
1

2
(w2i,y + u

2
i,y + v

2
i,y) (2.1)

2εxyi = γxyi = ui,y + vi,x + wi,xwi,y + ui,xui,y + vi,xvi,y

and
κxi = −wi,xx κyi = −wi,yy κxyi = −2wi,xy (2.2)

where: ui, vi, wi are components of the displacement vector of the i-th plate
in the xi, yi, zi axis direction, respectively, and the plane xiyi overlaps the
central plane before its buckling.
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Fig. 2. Prismatic plate structure and the local co-ordinate system

When the full tensor of membrane strains (2.1) εxi, εyi, γxyi = 2εxyi is
taken into account, then a ”full” analysis of all buckling modes, including the
axial extension mode, can be carried out.
The main limitation of the assumed theory lies in an assumption of linear

relationships between curvatures (2.2) and second derivatives of the displace-
ment w. This is the most often applied limitation in the theory of thin-walled
structures.
The attention has been drawn to the necessity of considering the full strain

tensor and all the components of inertial forces in order to carry out a proper
dynamic analysis in the whole range of length of the structures.
For thin-walled structures with initial deflections, Lagrange’s equations

of motion for the case of an interaction of N eigenmodes can be written as
(Kowal-Michalska, 2007; Schokker et al., 1996; Sridharan and Benito, 1984)

1

ω2r
ζr,tt+

(

1−
σ

σr

)

ζr+ aijrζiζj − ζ
∗

r

σ

σr
+ . . . = 0 for r = 1, . . . , N (2.3)

where: ζr is the dimensionless amplitude of the r-th buckling mode, σr, ωr,
ζ∗r – critical stress, circular frequency of free vibrations and dimensionless
amplitude of the initial deflection corresponding to the r-th buckling mode,
respectively.
Due to the fact that the axial mode is taken into consideration, in the

present paper it is assumed that the absolute maximum value of one of the
components of the displacement field of the r-th mode is equal to the first
plate thickness t1. The expressions for aijr are to be found in Kołakowski
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and Królak (2006), Kowal-Michalska (2007). In equations of motion (2.3), the
inertia forces of the pre-buckling state and second order approximations have
been neglected (Kowal-Michalska, 2007; Schokker et al., 1996). The initial
conditions have been assumed in the form

ζr(t = 0) = 0 ζr,t(t = 0) = 0 (2.4)

The static problem of interactive buckling of the thin-walled channel (i.e.
for ζr,tt = 0 in (2.3)) has been solved with the method presented in Kołakowski
and Królak (2006). The frequencies of free vibrations have been determined
analogously as in Teter and Kołakowski (2003), whereas the problem of inte-
ractive dynamic buckling (2.3) has been solved by means of the Runge-Kutta
numerical method modified by Hairer and Wanner.

At the point where the load parameter for static problems σ reaches its
maximum value σs (the so-called theoretical load carrying capacity) for the
imperfect structure with regard to the imperfection of the buckling mode with
the amplitude ζ∗r , the Jacobian of the nonlinear system of equations (2.3) is
equal to zero.

3. Analysis of the calculation results

3.1. Eigenvalue problems

A detailed analysis of the calculations is conducted for the compressed
channel with the following dimensions of its cross-section (Fig. 3) (Adany et
al., 2008)

b1 = 150mm b2 = 60mm

b3 = 15mm t1 = t2 = t3 = 2mm

Fig. 3. Geometry of the thin-walled channel
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Each plate is made of steel characterized by the following mechanical pro-
perties: E = 210GPa, ν = 0.3, ρ = 7850 kg/m3.

The global flexural mode (m = 1) and the axial extension mode (for
m = 1) for the assumed length ℓ have been analyzed. The following index
symbols have been introduced: 1 – flexural mode for m = 1; 2 – axial mode
for m = 1.

Calculations have been conducted for four lengths of the column:
ℓ = 10000, 7500, 5000, 2500mm. The lengths ℓ have been selected as to make
the values of global critical stresses (i.e., for m = 1) lower than local critical
loads, which enables us to analyze the column buckling within the first order
approximation.

In Table 1 values of critical loads σr for four lengths ℓ of the channel
under investigation are shown. The critical loads σ2 for the axial mode,
which is identical for the lengths considered, are collected. For the channel
whose length is 2500 ¬ ℓ ¬ 10000mm, the maximum displacements in the
cross-section plane (i.e., v(2), w(2)) are equal to approx. 2% of the longitu-
dinal displacements (i.e., u(2)) at most (Kołakowski and Kowal-Michalska,
2010). The displacements u(2) are practically constant for the cross-section for
x = const . Thus, this mode can be called the ’pure’ axial extension mode.
For the axial mode, the displacements are equal to the thickness t1 (that is to

say, u
(2)
max
∼= u(2) = t1).

Values of the natural frequencies ωr of free vibrations corresponding to
the two modes under analysis for different column lengths ℓ are presented in
Table 1, too. Vibration frequencies were determined taking into account all
components of the inertia forces (Kowal-Michalska, 2007; Teter and Kołakow-
ski, 2003) (i.e. in-plane ρu,tt, ρv,tt and out-of-plane ρw,tt). The same index
symbols have been adopted as for the static problems.

Table 1. Critical stresses σr and natural frequencies ωr of the channel

ℓ
σ1 σ2 ω1 ω2
[MPa] [MPa] [s−1] [s−1]

10000 10.69 80212 11.595 1624.8

7500 19.00 80212 20.609 2166.4

5000 42.69 80211 46.332 3250.4

2500 167.88 80211 183.73 6498.6
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3.2. Interactive buckling in the first order approximation

Static coupling buckling

Detailed results of the static interactive buckling analysis are presented in
Table 2 for the channel. The following two variants of the imperfections are
assumed:

1. ζ∗1 = |ℓ/(1000t1)|, ζ
∗

2 = 0,

2. ζ∗1 = |1.0|, ζ
∗

2 = 0.

In each case, the sign of the imperfection ζ∗1 has been selected in the
most unfavorable way, that is to say, as to obtain the lowest theoretical load-
carrying capability σS for the given level of imperfection when the interaction
of buckling modes is accounted for.
In Table 2, the ratio of the theoretical load carrying capacity to the global

flexural critical stress σs/σ1 for the assumed variants of imperfections is given.
A comparison of the results presented in Table 2 allows us to state that

when the axial mode is accounted for in the interaction, then the theoretical
load carrying-capacity σs is considerably decreased. A decrease in the load-
carrying capacity σs/σ1 does not exceed 40%.

Table 2. Theoretical static load carrying capacity σs/σ1

Imperfection σs/σ1
variant ℓ = 10000 ℓ = 7500 ℓ = 5000 ℓ = 2500

1 0.6369 0.6852 0.7455 0.8238

2 0.8495 0.8495 0.8492 0.8452

It follows from this comparison that the consideration of the axial mode in
the interaction is necessary as it results in a visible decrease in the theoretical
load-carrying capacity in the first order approximation.
The nonlinear coefficient of system of equations (2.3), namely a211, exerts

the main influence on the decrease in the load σs. The key role in the inte-
raction of the buckling mode is played by the coefficient a211, i.e., the term
a211ζ2ζ

2
1 of the third order in the expression for potential energy (Kołakowski

and Kowal-Michalska, 2010). It is related to the term σ(2)L2(U
(1)) (following

the notation of papers by Kowal-Michalska (2007), Schokker et al. (1996),
Sridharan and Benito (1984)). This term arises by the product stress σ(2) as-
sociated with the axial mode with the term representing the midsurface strain
L2(U

(1)) and integrating the same over the structure. The longitudinal displa-
cements u(2) of the axial mode are of the same order as the displacements w(1)
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for the global flexural mode due to the assumed conditions for the mode nor-

malization (i.e., u
(2)
max = w

(1)
max). In the theory of thin plates, we always have

w(i) ≫ u(j) for i 6= j, apart from the interaction of the mode with the axial
mode analyzed in this study. It makes the coefficient a211 play such a key role
for the first order approximation.

Dynamic response

Further on, an analysis of dynamic interactive buckling (i.e. dynamic re-
sponse) of the channel under consideration was conducted. Identically as in the
static analysis, an interaction of the same modes was considered. A detailed
analysis was conducted for: a rectangular pulse load σ(t) = σD for 0 ¬ t ¬ T1
and σ(t) = 0 for T < t. This case corresponds to the pulse duration equal to
the period of the fundamental flexural free vibration T1 = 2π/ω1.

In Table 3, values of the critical dynamic load factors DLF cr = σ
BH
D /σ1

for various column lengths ℓ and for two imperfection variants under analysis
are given, where σBHD denotes the critical value of dynamic stress determined
from the Budiansky-Hutchinson criterion (Budiansky and Hutchinson, 1966;
Hutchinson and Budiansky, 1966).

The values of critical dynamic load factors DLF cr = σ
BH
D /σ1 presented in

Table 3 correspond with some accuracy to the maximum values of deflections
ζrmax within the applicability of the assumed theory (i.e. the total maximum
deflection of the column is at least sixty times as high as the cross-section wall
thickness) (Kowal-Michalska, 2007), and not to asymptotic values ((Budiansky
and Hutchinson, 1966; Hutchinson and Budiansky, 1966). The main limitation
that results from the adopted theory is the assumption of a linear dependence
between the curvatures and second order derivatives of the displacement.

Table 3. Critical dynamic load factors DLF cr = σ
BH
D /σ1

Imperfection DLF cr = σ
BH
D /σ1

variant ℓ = 10000 ℓ = 7500 ℓ = 5000 ℓ = 2500

1 0.669 0.746 0.850 1.045

2 1.199 1.148 1.138 1.095

For the cases of column dimensions under analysis, the obtained values of
DLF cr are higher than the respective values of theoretical static load carrying
capacity σs/σ1. For the second variant of imperfections DLF cr > 1, whereas
for the first variant DLF cr < 1 for the column length 10000 ¬ ℓ ¬ 5000 and
DLF cr > 1 for ℓ = 2500, correspondingly.
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4. Conclusion

In the study, special attention has been focused on the coupled buckling of the
Euler global mode of buckling with the axial mode in the first nonlinear ap-
proximation of the perturbation method. In the world literature, it is probably
the first study, to the author knowledge, devoted to the dynamic interaction of
buckling with the axial mode. This problem may be of great significance and
it requires further investigations. According to the author’s opinion, a further
analysis of the interactive buckling ought to include an interaction of the axial
mode with global and local modes. Therefore, the interactive buckling should
be further analyzed and comprehensively and thoroughly discussed.
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Statyczne i dynamiczne interakcyjne wyboczenie cienkościennego

ceownika uwzględniające osiową postać wzdłużną

Streszczenie

W prezentowanej pracy omówiono wpływ osiowej wzdłużnej postaci na statyczne
i dynamiczne interakcyjne wyboczenie cienkościennego ceownika z niedokładnościa-
mi poddanego równomiernemu ściskaniu przy uwzględnieniu zjawiska shear-lag oraz
dystorsyjnej deformacji. Przyjęto płytowy model ceownika. Konstrukcja jest przegu-
bowo podparta na obu końcach. Równania ruchu płyt składowych otrzymano z zasady
Hamiltona, biorąc pod uwagę wszystkie składowe sił bezwładności. Dynamiczne za-
gadnienie modalnego interakcyjnego wyboczenia w ramach pierwszego rzędu nielinio-
wej aproksymacji rozwiązano metodą macierzy przeniesienia i metodą ortogonalizacji
Godunova.
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