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1. Introduction

The plane and axi-symmetric transient temperature field and thermal stres-
ses in brake systems were analysed by Ling (1973), Burton (1980), Barber et
al. (1985), Barber and Comminou (1989) and other authors. The temperatu-
res and stresses from a solution to a one-dimensional contact problem with
transient frictional heat generation were studied by Fasekas (1953), Ho et al.
(1974), Chichinadze et al. (1979), Olesiak et al. (1997).
The heating on a friction surface during braking leads to a temperature

shock that generates surface cracks (Mackin et al., 2002; Yamabe et al., 2003).
Cleavage of the material in the process of thermal cracking results from ten-
sile stresses which occur when the friction elements are heated by the moving
heat flow. When the stresses exceed the tensile strength of the material, then
cracks arise on the contact surface. Low thermal conductivity of friction pad
materials is the reason why considerable thermal stresses are generated in a
thin subsurface layer during braking. As a result, destruction of the friction
surface can take place both during heating at braking, and during cooling after
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a stop. An analysis of surface temperatures and stresses in the frictional ele-
ments, using microscopic examination and the finite elements method, showed
that the dominant stresses in these components are thermal stresses (Kennedy
and Karpe, 1982). The mathematical model of thermal splitting of homoge-
neous and piece-wise homogeneous bodies during laser or frictional heating of
their surfaces by a heat flow of known intensity was proposed in articles by
Yevtushenko et al. (2007), Yevtushenko and Kuciej (2006).

The solutions to two heat conduction problems with frictional heating du-
ring braking with a uniform retardation were obtained in a paper by Yevtu-
shenko and Kuciej (2010) for both a tribosystem consisting of a half-space
sliding on a surface of a strip deposited on a semi-infinite foundation (three-
element system) and for a two-element system consisting of a plane-parallel
strip and a half-space. Using the non-stationary temperature field obtained
by Yevtushenko and Kuciej (2010), we find the solution to distributions of
quasi-static thermal stresses. The solution determines the thermal stresses in
the tribosystems, both in the heating phase during braking and in the cooling
phase after a stop.

The numerical results are obtained for a metal-ceramic pad and a cast-iron
disc. The metal-ceramic frictional materials are now extensively used in brake
systems because of their high thermal stability and wear resistance (Blau,
2001; Daehn and Breslin, 2006).

We note that the contact surfaces of the friction elements are generally
rough and the heat contact is imperfect. In this paper, we consider the li-
miting case of perfect contact between these surfaces, when temperatures on
the surface of contact are equal. The wear of the surfaces in contact is negli-
gible.

2. Three-element tribosystem

2.1. Temperature

The problem of contact interaction of two semi-infinite bodies is under
consideration. One of them is a homogeneous half-space (the disc) and the
other is a half-space (the foundation), with a surface covered by a strip of
thickness d (the pad) (Fig. 1). It is supposed that a constant pressure p0
between the strip and the foundation takes place. The upper half-space slides
with the velocity



Two calculation schemes for determination... 607

V (t) = V0
(

1− t
ts

)

H(ts − t) t  0 (2.1)

in the direction of the y-axis on the strip surface, where V0 is the initial velo-
city of sliding, t is time, ts is braking time; H(·) is Heaviside’s step function.
Due to friction the heat is generated on the contact plane z = 0. It is assu-
med that the sum of intensities of the frictional heat fluxes directed into each
component of the friction pair is equal to the specific friction power

q(t) = q0q
∗(t) t  0 (2.2)

where, taking equation (2.1) into account, we have

q0 = fV0p0 q∗(t) =
(

1− t
ts

)

H(ts − t) t  0 (2.3)

f is the coefficient of friction.

Fig. 1. Scheme of the problem

On such assumptions, the corresponding boundary-value problem of heat
conduction can be written as:
— for τ > 0

∂2T ∗(ζ, τ)

∂ζ2
=
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— for τ  0

T ∗(0−, τ) = T ∗(0+, τ)
∂T ∗

∂ζ

∣

∣

∣

∣

ζ=0−
−K∗t

∂T ∗

∂ζ

∣

∣

∣

∣

ζ=0+
= q∗(τ)

T ∗(−1, τ) = T ∗(−1, τ) ∂T ∗

∂ζ

∣

∣

∣

∣

ζ=−1+
= K∗f

∂T ∗

∂ζ

∣

∣

∣

∣

ζ=−1−

(2.5)

and
T ∗(ζ, τ)→ 0 |ζ| → ∞, τ  0
T ∗(ζ, 0) = 0 |ζ| <∞

(2.6)

where

q∗(τ) =
(

1− τ
τs

)

H(τs − τ) τ  0
(2.7)

ζ =
z

d
τ =
kst

d2
τs =

ksts
d2

T ∗ =
T

T0

T0 =
q0d

Ks
K∗t,f =

Kt,f
Ks

k∗t,f =
kt,f
ks

T is temperature, K, k are the thermal conductivity and diffusivity, respec-
tively. Here and henceforth, all values and the parameters concerning the top
half-space, strip and foundation will have lower indices t, s and f , respectively.
The solution to boundary-value problem (2.4)-(2.6) takes the form (Yevtu-

shenko and Kuciej, 2010), τ  0

T ∗(ζ, τ) = [T (0)∗(ζ, τ)− T (1)∗(ζ, τ)]H(τ) + T (1)∗(ζ, τ − τs)H(τ − τs) (2.8)

where

T (k)∗(ζ, τ) =
2
√
τ

1 + εt

( τ

τs

)k ∞∑

n=0

ΛnT (k)∗n (ζ, τ) k = 0, 1

T (k)∗n (ζ, τ) =















































F (k)
(2n
√

k∗t + ζ

2
√

k∗t τ

)

+ λfFk
[(2n+ 2)

√

k∗t + ζ

2
√

k∗t τ

]

0 ¬ ζ <∞

F (k)
(2n − ζ
2
√
τ

)

+ λfFk
(2n+ 2 + ζ

2
√
τ

)

−1 ¬ ζ ¬ 0

2

(1 + εf )
F (k)
[(2n+ 1)

√

k∗f − (1 + ζ)

2
√

k∗fτ

] −∞ < ζ ¬−1
n = 0, 1, 2, . . .

(2.9)

F (0)(x) =
1√
π
exp(−x2)− x erfc (x)

F (1)(x) = 3−1[2(1 + x2)F0(x)− x erfc (x)]
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and

Λ =

{

λ ≡ λtλf 0 ¬ λ < 1
|λ| −1 < λ < 0

(2.10)

λt =
1− εt
1 + εt

λf =
1− εf
1 + εf

εt =
K∗t
√

k∗t
εf =

K∗f
√

k∗f

(2.11)

erfc (x) = 1− erf (x), erf (x) is the Gauss error function.

2.2. Thermal stresses

Experimental and FEM examinations of the surface of frictional elements
of brakes proved that among the three normal components of the stress ten-
sor – lateral σx, longitudinal σy and in the direction of heating σz – the
σx component exerts the strongest influence on thermal cracking (Dostanko
et al., 2002; Choi and Lee, 2004). It results in the material cracking along
the direction of sliding (the heat flow motion). If the lateral component σx
is sufficiently greater than the tensile strength of materials, then the micro-
cracks oriented at various angles to the direction of cracking are created and
a divergence between the line of cracking and the direction of heat flow mo-
tion occurs. The normal component of the stress tensor σz has no essential
meaning in the one-dimensional problem.

On the base of these data, the dimensionless quasi-static lateral σ∗x =
σx/σ0 stress in the tribosystem induced by non-stationary temperature field
(2.8)-(2.11) can be determined from the equations which describe thermal
bending of a thick plate of the thickness c with free ends (Fig. 1) (Timoshenko
and Goodier, 1970; Yevtushenko and Matysiak, 2005)

σ∗(ζ, τ) = [σ(0)∗(ζ, τ)− σ(1)∗(ζ, τ)]H(τ) + σ(1)∗(ζ, τ − τs)H(τ − τs) (2.12)

|ζ| ¬ c∗, τ  0 and

σ(k)∗(ζ, τ) = ε(k)∗(ζ, τ)− T (k)∗(ζ, τ) k = 0, 1

ε(k)∗(ζ, τ) =
1

1 + εt

∞
∑

n=0

Λnε(k)∗n (ζ, τ) (2.13)

ε(k)∗n (ζ, τ) = Q
(k)
n (τ)−

ζ

c∗
R(k)n (τ)
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where

Q(k)n (τ) = 4I
(k)
n (τ)− 6J (k)n (τ)

R(k)n (τ) = 6I
(k)
n (τ)− 12J (k)n (τ)

(2.14)

I(k)n (τ) =
1

c∗

c∗
∫

0

T (k)∗n (±ζ, τ) dζ

J (k)n (τ) =
1

c∗2

c∗
∫

0

ζT (k)∗n (±ζ, τ) dζ

n = 0, 1, 2, . . ., c∗ = c/d, σ0 = αtET0/(1 − ν), E is Young’s modulus, ν is
Poisson’s ratio, αt is linear thermal expansion coefficient. In equations (2.12),
(2.13)1 σ

(k)∗, k = 0, 1 denote the dimensionless stresses corresponding to the
dimensionless temperatures T (k)∗, k = 0, 1 (2.9)1. The upper sign (plus) in
equations (2.14)3,4 and further, we shall choose for the top half-space, and the
lower sign (minus) – for the strip.
From formulas (2.13)3 it follows that the dimensionless normal deforma-

tions ε(k)∗, k = 0, 1 are linearly dependent on the dimensionless distance ζ
from the surface of friction, and that the dimensionless stresses σ(k)∗, k = 0, 1
(2.13)1 are proportional to the difference of these deformations and the di-
mensionless temperature T (k)∗(ζ, τ).
By substituting in the right-hand side of formulas (2.14)3,4 the functions

T
(k)∗
n (ζ, τ), k = 0, 1 (2.9)2, and then integrating, we find

I(k)n (τ) =
4
√
κ τ

c∗

( τ

τs

)k

[L
(k)
2n (τ, κ, c

∗)± λfL(k)2n+2(τ, κ,±c∗)]
(2.15)

J (k)n (τ) =
4κτ

(c∗)2

( τ

τs

)k{

[2
√
τM
(k)
2n (τ, κ, c

∗)− 2nL(k)2n (τ, κ, c∗)] +

+λf [2
√
τM
(k)
2n+2(τ, κ,±c∗)− (2n+ 2)L

(k)
2n+2(τ, κ,±c∗)]

}

and

L(k)n (τ, κ, c
∗) = L(k)

(n
√
κ+ c∗

2
√
κτ

)

− L(k)
( n

2
√
τ

)

M (k)n (τ, κ, c
∗) =M (k)

(n
√
κ+ c∗

2
√
κτ

)

−M (k)
( n

2
√
τ

)

L(0)(x) ≡
x
∫

0

F (0)(s) ds =
1

4
+
x

2
√
π
exp(−x2)− 1 + 2x

2

4
erfc (x)
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M (0)(x) ≡
x
∫

0

sF (0)(s) ds =
1

6
√
π
− 1− 2x

2

6
√
π
exp(−x2)− x

3

3
erfc (x) (2.16)

L(1)(x) ≡
x
∫

0

F (1)(s) ds =
1

8
+
5x+ 2x2

12
√
π
exp(−x2)− 3 + 12x

2 + 4x4

24
erfc (x)

M (1)(x) ≡
x
∫

0

sF (1)(s) ds =
1

15
√
π
− 1− 4x

2 − 2x4
15
√
π

exp(−x2) +

−x
3(5 + 2x2)

15
erfc (x)

where the functions F (k)(x), k = 0, 1 have form (2.9)3,4 and the parameter
κ ≡ k∗t for the top half-space and κ ≡ 1 for the strip.

2.3. Numerical analysis

The numerical results have been computed for the commercial friction
pair ChNMKh cast iron disc (the upper half-space with Kt = 51Wm

−1K−1,
kt = 14 · 10−6m2s−1) and the metal-ceramics FMK-11 frictional element of
the pad (the strip with Ks = 34.3Wm

−1K−1, ks = 15.2 · 10−6m2s−1) on
30KhGSA steel foundation with Kf = 37.2Wm

−1K−1, kf = 10.3·10−6m2s−1
(Balakin and Sergienko, 1999). The friction conditions were (Chichinadze and
Braun, 1979): p0 = 1MPa, V0 = 30ms

−1, f = 0.7, ts = 3.44 s. The initial
temperature was equal to 20◦C.
The isolines of the dimensionless normal stresses σ∗ (2.12) are presented

in Fig. 2. The distributions of stresses in the top half-space and the strip are
nearly identical. Such symmetry shows that the coefficients of thermal activity
of the materials εt = 1.55 and εf = 1.31 slightly differ from each other. It
is observed that in the time interval 0 < t ¬ 2 s the regions of compressive
stress occur near the surface of friction ζ = 0. Inside the strip and the top-half-
space tensile stresses are generated. Between the regions with compressive and
tensile stresses, there are two isolines of the zero level. The third line of zero
stresses, which ”descends” from the surface ζ = 0, appears when the heating
time is equal tc ≈ 2.2 s and it is shorter than the time of braking ts = 3.44 s.
It means that during the relaxation phase at t > ts, when there is no more
heating, the sign of stresses does not change and the region of tensile stresses
expands further from the heated surface – the line of zero stresses moves in
time parallel to the surface of friction.
The initiation of superficial cracks generation is accompanied with a mono-

tonic increase in tensile normal stresses. During heating of frictional elements
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Fig. 2. Isolines of the dimensionless lateral stress σ∗ in FMK-11 pad and cast iron
disc

while braking, it is the change of sign of superficial stresses that plays the
key role in forecasting the initiation and preventive maintenance of thermal
cracking (Yevtushenko et al., 2007; Yevtushenko and Kuciej, 2006). The time,
connected with the change of type of stresses from compressive to tensile, for
the FMK-11 pad and for the cast iron disc is equal tc ≈ 2.2 s (Fig. 3).

Fig. 3. Evolution of the dimensionless lateral stress σ∗ on the surface of friction

With the increase in the braking time ts, the time tc of change of the
sign of normal stresses increases almost linearly. Irrespective of the duration
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of braking, tc is almost identical for the strip (the tribosystem FMK-11) and
for the top half-space (cast iron) (Fig. 4).

Fig. 4. Time tc of the sign change of the lateral stress σx on the surface of friction
z = 0 versus duration ts of the braking for the strip thickness d = 5mm

With the increase of thickness d of the pad, the time tc of initiation of
tensile stresses on the contact surface increases (Fig. 5).

Fig. 5. Time tc of the sign change of the lateral stress σx on the surface of friction
z = 0 versus thickness d of the strip for a fixed value of the stop time ts = 3.44 s

3. Two-elements tribosystem

3.1. Temperature

The problem of contact interaction of a plane-parallel strip (the pad) and a
half-space (the disc) is under consideration. The upper surface of the strip and
the foundation are subjected in infinity to the constant pressure p0. The strip
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slides with velocity (2.1) over the surface of the half-space along the y-axis of
the Cartesian coordinate system Oxyz on the plane of contact (Fig. 6).

Fig. 6. Scheme of the problem

The transient dimensionless temperature fields in the strip and in the fo-
undation can be found from the solution to the heat conduction problem of
friction during braking:
— for τ > 0

∂2T ∗(ζ, τ)

∂ζ2
=



















∂T ∗(ζ, τ)

∂τ
0 < ζ < 1

1

k∗f

∂T ∗(ζ, τ)

∂τ
−∞ < ζ < 0

(3.1)

— for τ  0

T ∗(0−, τ) = T ∗(0+, τ) K∗f
∂T ∗

∂ζ

∣

∣
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− ∂T

∗

∂ζ

∣
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∣

ζ=0+
= q∗(τ)

T ∗(1, τ) = 0 T ∗(ζ, τ)→ 0 ζ → −∞
T ∗(ζ, 0) = 0 −∞ < ζ ¬ 1

(3.2)

where assumptions (2.7) are taken into account.
The solution to boundary-value problem (3.1) and (3.2) may be written

in form (2.8), where the dimensionless temperatures T (k)∗(ζ, τ), k = 0, 1 are
given by formulae (Yevtushenko and Kuciej, 2010)

T (k)∗(ζ, τ) =
2
√
τ

1 + εf

( τ

τs

)k ∞∑

n=0

ΛnT (k)∗n (ζ, τ)
−∞ < ζ ¬ 1
τ  0
k = 0, 1

(3.3)

T (k)∗n (ζ, τ) =



























F (k)
(2n+ ζ

2
√
τ
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− F (k)
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2
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τ

)

0 < ζ ¬ 1

F (k)
(2n
√

k∗f − ζ

2
√

k∗fτ

)

− F (k)
[(2n + 2)

√

k∗f − ζ

2
√

k∗f τ

]

−∞ <ζ¬ 0



Two calculation schemes for determination... 615

where the functions F (k)(x), k = 0, 1 have form (2.9)3,4 and the coefficient Λ
is given by Eq. (2.10) at λ = λf (2.11).

If the upper surface ζ = 1 of the strip is thermally insulated, then the
corresponding solution may be represented by means of equations (2.8) and
(3.3)1, in which (Yevtushenko and Kuciej, 2010)

T (k)∗n (ζ, τ) =



























F (k)
(2n+ ζ

2
√
τ

)

+ F (k)
(2n+ 2− ζ
2
√
τ

)

0 < ζ ¬ 1

F (k)
(2n
√

k∗f − ζ

2
√

k∗f τ

)

+ F (k)
[ (2n+ 2)

√

k∗f − ζ

2
√

k∗fτ

]

−∞ < ζ ¬ 0

(3.4)

3.2. Thermal stresses

Similarly, like in the three-element problem, the quasi-static longitudinal
stress σx in the two-element tribosystem induced by the non-stationary tem-
perature field T ∗(ζ, τ), (2.8), (3.3) and (3.4) can be determined from the
equations (2.12)-(2.14) in which

I(k)n (τ) =
4
√
κτ

c∗

( τ

τs

)k

[L
(k)
2n (τ, κ, c

∗)± L(k)2n+2(τ, κ,∓c∗)]
(3.5)

J (k)n (τ) =
4κτ

(c∗)2

( τ

τs

)k{

[2
√
τM
(k)
2n (τ, κ, c

∗)− 2nL(k)2n (τ, κ, c∗)]−

−[2
√
τM
(k)
2n+2(τ, κ,∓c∗)− (2n + 2)L

(k)
2n+2(τ, κ,∓c∗)]

}

for zero temperature on the upper surface ζ = 1 of the strip and

I(k)n (τ) =
4
√
κτ

c∗

( τ

τs

)k

[L
(k)
2n (τ, κ, c

∗)∓ L(k)2n+2(τ, κ,∓c∗)]
(3.6)

J (k)n (τ) =
4κτ

(c∗)2

( τ

τs

)k{

[2
√
τM
(k)
2n (τ, κ, c

∗)− 2nL(k)2n (τ, κ, c∗)] +

+[2
√
τM
(k)
2n+2(τ, κ,∓c∗)− (2n + 2)L

(k)
2n+2(τ, κ,∓c∗)]

}

if this surface is thermally insulated. The functions L
(k)
n (τ, κ, c∗) and

M
(k)
n (τ, κ, c∗) in equations (3.5) and (3.6) are determined from formulae
(2.16).
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3.3. Numerical analysis

The numerical results have been obtained for the friction couple of cast iron
(the foundation) and FMK-11 metal-ceramics strip (the frictional element of
the pad). The material properties and friction conditions for calculations were
the same as in the previous section of the paper. All the results presented in
Figs. 7-9 were obtained for two limiting types of boundary conditions on the
upper surface z = d (ζ = 1) of the strip: at zero temperature and for thermal
insulation.

Fig. 7. Isolines of the dimensionless lateral stress σ∗ in FMK-11 pad and cast iron
disc; (a) zero temperature, (b) thermally insulated

The isolines of dimensionless lateral stresses σ∗ (2.12)-(2.14), (3.5) and
(3.6) are presented in Fig. 7. The distributions of these stresses in the FMK-
11 pad and the cast iron disc are nearly identical, when temperature on the
upper surface of the strip is equal to zero (Fig. 7a). It is possible to explain
such symmetry by the fact that the coefficients of thermal conductivity of the
material slightly differ from each other. It is observed that in the time interval
0 < t < 1.5 s, the regions of compressive stress occur near the surface of friction
ζ = 0 (Fig. 7a). During the same time, inside the pad and disc tensile stresses
are generated. Between the regions with compressive and tensile stresses, there
are two isolines with zero stresses. The third line of the zero level, which begins
from the surface ζ = 0, appears when the heating time is equal t ≡ tc ≈ 1.5 s
for the pad and tc ≈ 1.8 s for the disc. These values of time are lower than
the time of braking ts = 3.44 s. It means that during the cooling phase at
t > ts, when there is no more heating, the sign of stresses does not change
and the region of tensile stresses expands further from the heated surface –
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the line of zero stresses moves parallel to the surface of friction (Fig. 7a). A
different distribution of dimensionless lateral stress σ∗ is observed in the case
of thermal insulation of the upper surface of the strip (Fig. 7b). In the heating
phase within the time interval 0 < t < 2.8 s for the pad and 0 < t < 0.9 s
for the disc, compressive superficial stresses occur. In this case, the level of
tensile stresses in the disc is greater than in the case of zero temperature on
the upper surface of the strip.

In the case of thermal insulation of the upper surface of the strip, the
magnitude of surface tensile stresses in the cast iron disc is much greater
than in the case of zero temperature on this surface (Fig. 8). The time tc,
connected with the change of the type of stresses from compressive to tensile,
is the greatest for the FMK-11 pad, and the least – for the cast iron disc.

Fig. 8. Evolution of the dimensionless lateral stress σ∗ on the contact surface;
(a) zero temperature, (b) thermally insulated

With an increase in the braking time ts, the time tc of change of the sign
of lateral stress increases (Fig. 9). Whereas the upper surface of the strip is
maintained at zero temperature (is thermally insulated) at a fixed time of
braking, the time of change of the sign of normal stress for the FMK-11 pad is
less (greater) than the same time for the cast-iron disc (Fig. 9a). The greatest
difference between the times of occurrence of tensile stresses on the friction
surface is observed in the case of the thermal insulation of the upper surface
of the strip (Fig. 9b).
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Fig. 9. Time tc of the sign change of the lateral stress σx on the surface of friction
z = 0 versus duration ts of the braking; (a) zero temperature, (b) thermally

insulated

4. Conclusions

Two calculation models for determination of thermal stresses during braking
have been proposed. The first model consists of three elements: a disc (half-
space), pad (strip) and a steel slice (half-space). The second one includes only
two elements: the pad (strip) and the disc (half-space). The three-element
model allows one to consider the influence of physical properties of the steel
slice material, on which the frictional element (pad) is put, on the distribu-
tion of thermal stresses. In the two-element scheme, the influence of cooling
(boundary conditions) on the free top surface of the pad is taken into account.

The quasi-static thermal stresses have been obtained by the Timoshenko
approximate model of thermal bending of a thick plate with no fixed edges.
Thus, the one-dimensional transient temperature field, which we received ear-
lier, for both tribosystems was used. Unlike other solutions, this one determines
thermal stresses in each element of the brake, both in the heating phase at
braking and in the cooling phase, when the brake is stopped. Numerical cal-
culations were carried out for the cast iron disc and the metal ceramic pad on
the steel slice.

Analysis of the evolution of thermal stresses in the frictional elements du-
ring braking proves that when it is heated, considerable lateral compressive
stresses occur near the contact surface. The value of these stresses decreases
with an increase of time, and after some time tc, the sign changes – which
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means that tensile stresses take place. The moment when it happens increases
monotonously with the braking time ts.

The influence of boundary conditions on the upper surface of the pad on
the distribution of lateral thermal stresses has been investigated, too. It has
been established that in the case when the initial temperature is supported on
the top surface of the pad during braking, the evolution of these stresses on
the contact surface is approximate as in the case of the three-element model.
Significant values of tensile stresses in the disc appear when the top surface
of the pad is thermally isolated. In this case, initiation of superficial cracks
in the disc seems to be most possible. The possible initiation of these cracks
during braking can be described as a series of the following steps:

• due to local intensive frictional heating near the contact surface, a field
of normal stresses is formed;

• after the beginning of braking, at the time instant tc, tensile normal
stresses occur near the subsurface region;

• when the stresses exceed the tensile strength of the material, the surface
may crack;

• development of the crack into the material is limited by regions of com-
pressive stress which occur near the contact surface.
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Dwa schematy obliczeń do opisania naprężeń termicznych wywołanych

nagrzewaniem tarciowym podczas hamowania

Streszczenie

W pracy przeanalizowano rozkład naprężeń termicznych w trzy- (tar-
cza/nakładka/zacisk) oraz dwu- (tarcza/nakładka) elementowych układach nagrze-
wanych tarciowo podczas hamowania. Dla materiałów tarciowych: żeliwo/metalo-
ceramika/stal oraz żeliwo/metalo-ceramika, zbadano ewolucję oraz rozkład normal-
nych naprężeń termicznych.
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