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The paper presents a new neuro-wavelet damage detection technique for
structural health monitoring. The proposed method combines the abi-
lity of the continuous wavelet transform to detect abnormalities in the
structure dynamic parameters with the artificial neural network possi-
bility of learning, remembering and recognition. The effectiveness of the
method is verified on experimental mode shapes of a beam, plate and
shell structures. The results of the study show that the neural network
trained on the data from a simple structure can effectively improve the
search of the location of the same type of damage in complex structures.
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1. Introduction

All structures raised by humans wear out and undergo self-destruction in the
course of time. Fatigue, corrosion, dynamic phenomena, overloading and envi-
ronmental conditions can cause their degradation. In order to improve the
reliability and safety of structures, various damage detection techniques and
health monitoring systems have been intensively studied over the last few de-
cades. A simple, quick and nondestructive structural diagnostic system that
could facilitate traditional diagnostic procedures is of great importance for
solving many problems with maintenance of engineering structures.
A relatively recent area of research in damage detection and localization

is based on the continuous wavelet transform (CWT). This technique can be
performed on mode shapes or static deflections of structure elements. An im-
portant feature of the wavelet transform is the ability to characterize the local
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irregularity introduced by a defect and to react to subtle changes of the struc-
ture response. Most of the reported research, e.g., Douka et al. (2003), Hong
et al. (2002) is limited to crack identification by wavelets in beams. Only a few
studies (Wang and Deng, 1996; Douka et al., 2004; Chang and Chen, 2004)
are devoted to damage detection in plate structures based on numerically de-
termined data. The experimental researches on plate damage detection were
presented by Rucka and Wilde (2005). The experimental mode shapes of the
cantilever plate were determined by the acceleration measurement in one po-
int and impact excitation in 66 points. The relative depth of the introduced
rectangular defect was 19%. The location of the damage was determined by
the one-dimensional Gaussian wavelet with 4 vanishing moments. The formu-
lation of the two-dimensional continuous wavelet transform for plate damage
detection was presented by Rucka and Wilde (2006a). Damage localization by
the Reverse Biorthogonal wavelet on the experimental mode shapes of a plate
with four fixed supports was proposed. In the presented research, the location
of the peak in the response indicated the damage location in the structure. Ho-
wever, in the case of the experimental data contaminated by noise, the precise
identification of the wavelet peaks becomes possible only for serve damage. In
Fig. 1a the wavelet transform of the beam static deflection line (cf. Rucka and
Wilde, 2006b) for the crack of the relative depth of 50% is shown. In this case,
the localization of the damage is easy and precise. Although, the decision of
damage location in the case of the crack depth of 35% (Fig. 1b) cannot be
drawn without doubts.

Fig. 1. Experimental wavelet transform modulus of the beam deflection lines:
(a) visible defect position, (b) hidden defect position

Damage detection schemes can be enhanced by the use of the artificial
neural networks (ANN). In earlier studies, damage recognition and localization
based on the ANN were applied to different structures like ships (Zubaydi et
al., 2002) or helicopters (Cabell et al., 1998), crates of beverages (Zacharias
et al., 2004), joints in steel structures (Yun et al., 2001), bridges (Barai and
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Pandey, 1997; Yeung and Smith, 2005). From among many types of artificial
neural networks the backpropagation neural network is the most commonly
used to the analysis of civil engineering problems (Kuźniar and Waszczyszyn,
2002; Hoła and Schabowicz, 2005). In the previous studies, as inputs of ANN
were used: the ultrasonic signals (Liu et al., 2002; Okafor and Dutta, 2001),
broad-band spectral signals (Garg et al., 2004), natural frequencies (Sahin
and Shenoi, 2003; Waszczyszyn and Ziemiański, 2001; Zapico et al., 2003) or
vibration responses (Barai and Pandey, 1997; Kao and Hung, 2003; Yam et
al., 2003). Sanz et al. (2007) as well as Yam et al. (2003) applied wavelet
transforms of vibration signals as inputs to ANN.
In this study, the wavelet transforms of static deflection lines as well as the

wavelet transforms of vibration mode shapes are used to the search of damage
localization. The artificial neural network is trained and tested on a simple
cantilever beam with a rectangular notch on static deflection lines. Then the
method is validated on the experimentally determined first three mode shapes
of the beam, plate and shell with damage of similar type. The possibility of
enhancing the very simple peak-picking method by an artificial neural network
is studied.

2. Damage detection strategy of the neuro-wavelet system

The practical application of the neuro-wavelet (NW) system for a real engine-
ering structure is practically impossible since the training of the NW system
requires data of the structure with a large number of damage combinations.
On existing structures in use, there is very limited space for extensive static
or dynamic tests, not to mention the possibility of imposing damage in a large
number of locations. Therefore, the notion of derivation of the NW system on
very simple tests is hereafter presented.
It is proposed that the data from the static experiments on a simple crac-

ked cantilever beam facilitated by the numerical data obtained from updated
FEM models is sufficient to define the NW system for monitoring the complex
structures. It is expected that the NW system can detect damage regardless
of the structure geometry and the type of the measurements. It is assumed
that the defect geometry is the same in all considered structures.

The wavelet transform moduli computed from the measurement signals are
used as inputs to the neural network system. The advantage of the wavelet
transform over the Fourier transforms or measurement records is the ability
to extract the selected information from the various types of signals. Thus,
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it is possible to combine, for example, the data from static experiments with
the data from dynamic tests. The disadvantage of wavelets is the problem
with selection of the most appropriate waveform and its number of vanishing
moments. The choice of the best wavelet function usually requires trial and
error simulations.
The proposed NW system is intended to have the ability of recognizing two

levels of damage detection precision, namely, the presence of damage and its
position. The search of damage presence and prediction of damage position is
considered independently. If the NW system gives the information that there
is no damage in the structure, the results on damage location are neglected.
Based on the Authors’ experience, various experimental data transformed by
wavelets contains information with different intensity. For example, the mode
shapes extracted from the ambient vibrations (Wilde et al., 2006) might not be
sufficiently precise to indicate the damage location, but are good for drawing
the conclusion on damage presence.
The cantilever beam of plexiglass with the rectangular cross-section is con-

sidered as the simple testing structure. The data for the NW system training
are obtained form the static tests conducted on the beam with a defect. In this
paper, a rectangular notch obtained by a cut by a high precision saw is conside-
red as the defect. The static deflection lines for different damage configuration
were determined by a photogrametric method (cf. Rucka and Wilde, 2006b).
The NW system training data also consist of the numerical static deflection
lines of the beam. Although the experiments on the cantilever beam are very
simple, it is still complicated to test all possible defects positions and defect
depths. Therefore, the results from the experimentally verified FEM model of
the cracked beam are employed. In the training data the ”noise free” as well as
the deflection lines with added noise are used. Next the NW system is verified
on the experimental mode shapes of the beam, plate and shell structures.
The neural part of the NW system is a simple two hidden layer artificial

neural network (Fig. 2). The procedure of damage prediction in the complex
structure consists of the following stages:

1. Find the mode shapes of the monitored structures.

2. Calculate the wavelet transform moduli of the mode shapes.

3. Feed the CWT moduli to the NW system.

4. Evaluate the output regarding defect presence (0 means there is no de-
fect, 1 means defect exists).

5. Evaluate output regarding defect localization (0 means there is no defect,
xi denotes the defect position).
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Fig. 2. Outline of the neuro-wavelet damage detection system

3. Continuous wavelet transform in damage detection

For a given one-dimensional signal f(x), the continuous wavelet transform
(CWT) can be obtained by integration of the product of the signal function
with the complex conjugate ψ∗(x) of the wavelet functions. Considering the de-
flection line or mode shape of the structures as a one-dimensional signal f(x),
the continuous wavelet transform can be defined as (e.g. Mallat, 1998)

Wf(u, s) =
1√
s

+∞
∫

−∞

f(x)ψ∗
(x− u

s

)

dx (3.1)

Wf(u, s) is called the wavelet coefficient for the wavelet ψu,s(x) and it me-
asures the variation of the signal in the vicinity of the position u whose size is
proportional to the scale s. In detection of signal singularities, the vanishing
moments play an important role. A wavelet has n vanishing moments if it
carries out the following condition

+∞
∫

−∞

xkψ(x) dx = 0 k = 0, 1, 2, . . . , n− 1 (3.2)

A wavelet with n vanishing moments can be rewritten as the n-th order deri-
vative of a smoothing function θ(x). The resulting wavelet transform can be
expressed as a multiscale differential operator
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Wf(u, s) = sn
dn

dun
(f(x)∗θs(x))(u) θs(x) =

1√
s
θ
(−x
s

)

(3.3)

where f(x) ∗ θs(x) denotes convolution of functions and can be interpreted as
an average of f(x) over a domain proportional to the scale s. Thus wavelet
transform is the n-th derivative of the signal f(x) smoothed by the function
θs(x) at the scale s. The singularities are detected by finding the abscissa
where the maxima of the wavelet transform modulus |Wf(u, s)| converge at
fine scales (Mallat, 1998).

The selection of an appropriate type of wavelet and the choice of its number
of vanishing moments is essential for effective use of the wavelet analysis.
The use of wavelets that create the maximum number of wavelet coefficients
that are close to zero is proposed. For the first mode shape of a cantilever or
simply supported beam, wavelets with 4 vanishing moments should be used.
For structural responses that are similar to a polynomial of higher order than 4,
the use of wavelets with a higher number of vanishing moments is necessary.
In this paper, the Gaussian wavelets gaus4 and gaus6 having four and six
vanishing moments, respectively, have been chosen as the best candidates to
damage detection with the one-dimensional continuous wavelet transform. The
advantage of the Gaussian wavelets was discussed by Gentile and Messina
(2003), Mallat (1998) as well as Rucka and Wilde (2006b, 2007).

In the case of the plate mode shape, i.e. two-dimensional spatial signal
f(x, y), the two-dimensional wavelet transform of the function f(x, y) is given
by (Rucka and Wilde, 2006a)

W if(u, v, s) =
1

s

∞
∫

−∞

∞
∫

−∞

f(x, y)ψi
(x− u

s
,
y − v
s

)

dx dy =

(3.4)

=
1

s
f ∗ ψi

(−u
s
,
−v
s

)

= f ∗ ψis(u, v) i = 1, 2

where the horizontal wavelet ψ1(x, y) and the vertical one ψ2(x, y) are con-
structed with separable products of the scaling φ and wavelet function ψ

ψ1(x, y) = φ(x)ψ(y) ψ2(x, y) = ψ(x)φ(y) (3.5)

However, in this approach, the number of vanishing moments is the same in
both directions. In fact, the two-dimensional wavelet transform is not favoura-
ble for the more complicated plate mode shapes, which can be interpolated by
polynomials of different order in both directions. Therefore, instead of (3.4)
we use one-dimensional integrals
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W 1f(u, v, s) =
1√
s

∞
∫

−∞

f(x, y)ψ∗
(y − v

s

)

dy

(3.6)

W 2f(u, v, s) =
1√
s

∞
∫

−∞

f(x, y)ψ∗
(x− u

s

)

dx

Integration in (3.6)1 is performed for each column of the signal f(x, y) and
integration in (3.6)2 is performed for each row of the signal f(x, y). Coefficients
W 1f(u, v, s) and W 2f(u, v, s) are called horizontal and vertical, respectively,
and they are used to formulate the modulus of the wavelet transform at the
scale s

Mf(u, v, s) =
√

|W 1f(u, v, s)|2 + |W 2f(u, v, s)|2 (3.7)

Note that formula (3.6) indicates independent treatment of the horizontal and
vertical coefficients, and therefore, the choice of the number of vanishing mo-
ments has to satisfy Eq. (3.2) independently for each direction. In this paper,
three mode shapes of the plate fixed at four edges are considered. To analysis
of the first mode shape, gaus4 wavelet having four vanishing moments was
applied in both directions. Analysis of the second and third mode shapes was
conducted using gaus4 wavelet along the plate width, and gaus6 wavelet along
the plate length. The additional advantage of applying the two-dimensional
wavelet transform in terms of one dimensional integrals is the possibility of
using Gaussian wavelets, which do not have scaling functions φ(x).

4. Artificial neural network

4.1. Architecture and backpropagation algorithm

The used neural network (Fig. 3) consists of three layers – two hidden
layers and one output layer. This model includes an input vector z, weight

Fig. 3. Architecture of the applied neural network
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vector w, bias b and output vector o. A hyperbolic tangent sigmoid function
was selected for the hidden layers and a linear transfer function was selected
for the output layer. The input of the neural network is a 401-elements vector
of wavelet coefficients. The first hidden layer has 100 neurons whereas the
second hidden layer has 20 neurons. These numbers were chosen by trial and
error simulations and the previous experiences. The outputs indicate both, the
presence and position of the structural defect.
The backpropagation algorithm is explained in details in many sources,

e.g. Bow (2002), Hu and Hwang (2002). The net function for the hidden layer
neurons and net function for the output layer neurons are given in the form

neth(p)m =
R
∑

r=1

whmrz
(p)
r + b

h
m net

o(p)
k =

M
∑

m=1

wokmi
(p)
m + b

o
k (4.1)

where R and M denote the number of neurons in the input and hidden layers,
respectively. The superscript p refers to the p-th input pattern and b is the

bias. The input from the m-th hidden layer neuron i
(p)
m to the output layer

neuron is given as a sigmoid function, whereas the output for the output layer

neurons o
(p)
k is given as an identity function. The error minimized by the

training algorithm is defined as

E(p) =
1

2

K
∑

k=1

(d
(p)
k − o

(p)
k )
2 (4.2)

where K denotes the number of neurons in the output layer and d
(p)
k is the

known target. The global error can be expressed as a sum of errors of all
patterns

E =
P
∑

p=1

E(p) (4.3)

The weight update equations for both output and hidden layers are given in
the form

wokm(t+ 1) = w
o
km(t)− η

∂E(p)

∂wokm
whmr(t+ 1) = w

h
mr(t)− η

∂E(p)

∂whmr
(4.4)

where t is the iteration step and η denotes the learning rate assumed as the
same on all neurons in all layers. In this study, the search for the optimal
weights is conducted by the scaled conjugate gradient algorithm developed by
Moller (1993). The optimization is performed along the conjugate direction,
which provides generally faster convergence than the direction of the gradient
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steepest descent. The step size is modified at each iteration. This algorithm
avoids the time consuming line-search per learning iteration.
To overcome the overfitting problem, the regularization was used. Overfit-

ting means that the error on the training data has a very small value but the
error is large on the new simulated data. The performance function, chosen as
the mean sum of squares of the network errors

mse =
2E

P
(4.5)

is modified by adding a term that consists of the mean of the sum of squares
of the network weights and biases (Demuth and Beale, 2003)

msereg = γmse = (1− γ)msw (4.6)

where γ is the performance ratio and msw can be written as

msw =
1

n

n
∑

j=1

w2j (4.7)

It is difficult to determine the optimum performance parameter since too large
parameter γ provides overfitting, whereas too small parameter provides no fit
in the training data. In the performed tests, the ratio γ was set to 0.5.
Additionally, the correlation coefficient R was used. The correlation co-

efficient R is a normalized measure of the strength of the linear relationship
between the target and predicted value

R =

∑P
i=1(oi − o)(di − d)

√

∑P
i=1(oi − o)2

√

∑P
i=1(di − d)2

(4.8)

where oi and di are the output and target values, and o and d denote mean
values. The perfectly correlated data result in a correlation coefficient equal
to 1, whereas no correlation results in R equal to 0.

4.2. Training of NW system

The NW system has been trained on the experimental, numerical and noise
corrupted numerical data. The training was conduced for the cantilever beam
(see Fig. 6a) of length L = 400mm, height H = 20mm and width B = 60mm
(Rucka and Wilde, 2006b). The beam had one notch of length Lr = 2mm
and depth a equal to 7, 10 and 13mm. In the numerical simulations, the
defect location L1, described by the distance from the clamped end, changed
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from 80mm to 320mm with step of 4mm, giving 61 different defect positions.
The numerical deflection lines were computed by SOFiSTiK and the noise
added to the data had Gaussian distribution with standard deviation changing
from 0.02% to 0.05% of the maximum amplitude of the deflection line. In the
experimental research, the notch position was L1 = 101mm. The experimental
static deflection lines were obtained in 81 points by the fast photogrammetric
technique based on digital photo and image processing (Rucka and Wilde,
2006b). The experimental program is described in Table 1. Beam case 4 from
Table 1 was used to the training process.

Table 1. Beam static deflection lines: experimental program

Case
No.

Dimensions of beam Size of defect
length L heigh H width B length Lr heigh a
[mm] [mm] [mm] [mm] [mm]

1

400 20 60

0 0
2 2 7
3 2 10
4 2 13

The wavelet transform modulus of the numerical and experimental deflec-
tion lines was calculated using gaus4 wavelet for scales 10, 20, 30 and 40. The
total number of input patterns was 748. The ANN was trained on the wave-
let transform moduli, which clearly indicated damage location, as well as the
wavelet transform moduli that did not explicitly point the damage position.

To speed up the ANN learning process, the search of the weights and
biases has been divided into five stages. The weights and biases computed
in one stage have been used as the initial values for the following stage. In
Stage 1, the initial ANN parameters have been randomly selected and the
ANN training has been conducted only on the numerical data. Then, to obtain
ANN insensitive to noise, the experimental data have been fed (Stage 2) and
in Stage 3 all the input patterns have been used. The calculated weights and
biases have been slightly corrected on the experimental data (Stage 4) and
the final tuning has been done on the noisy numerical wavelet coefficients.
The training was stopped either when the error msereg achieved 10−3 or for a
maximum of 700 epochs. The proposed stages of the ANN selection process are
the result of the compromise between the search for the minimum calculation
time and the best ANN performance (highest correlation coefficient R).

The NW system performance for the best network, with the best recogni-
tion ability, is presented in Fig. 4. On the horizontal axis the actual values
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are introduced, whereas on the vertical axis they describe the neural network
predictions. It can be seen that all points lie very near the line called the best
linear fit. The correlation coefficient is 0.99989 and is very close to 1, which
indicates very good compatibility between the outputs and targets.

Fig. 4. Results of the training mode; (a) crack presence, (b) crack localization

4.3. Testing of NW system

The wavelet transform moduli, computed for the experimentally determi-
ned static deflection profiles (cases 1, 2 and 3 from Table 1), were tested in
the trained NW system. Additionally, the numerical patterns were tested. The
set of numerical data (noisy and noise-free) was prepared for different defect
positions. The distance L1 from the clamped end to the notch was changed
with sampling distance 4mm, from 82mm to 318mm giving 60 different de-
fect locations. The set of numerical data consisted of 488 patterns. Defect
localizations in the numerical data of the testing mode were different from the
defect localizations in the numerical data of the training mode. However, the
predicted values are in good agreement with the actual values. The correlation
coefficient reaches 0.99986.
The results of the testing mode are illustrated in Fig. 5. The detailed values

for the experimental data are contained in Table 2. It can be noted that the
wavelet transform is not able to recognize whether the defect exists or not, in
cases 1 and 2. The ANN prediction for the defect presence was −0.0018 for
the beam without notch, what means no defect. For beam case 2, the ANN
value for the defect existence was 0.9925, what is in agreement with the target
value equal to 1. For beam case 3, where the wavelet transform recognized the
notch presence, the ANN prediction also confirms this result with the value
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0.9976. The maximum error between the actual and predicted values of the
defect presence is 0.65%.

Fig. 5. Results of the testing mode for the beam deflection lines; (a) crack presence,
(b) crack localization

Table 2. Actual, recognized by wavelets and neurally predicted defect identi-
fication

Input
patterns

Patterns
descrip-
tion

Defect presence Defect centre position [mm]
Recog- Predic- Recog- Predic-

Actual nized by ted by Actual nized ny ted by
CWT ANN CWT ANN

case 1
gaus4
s=30

0 – −0.0018 0 – −0.1449
case 2 1 – 0.9935 101 – 124.6851
case 3 1 1 0.9976 101 101 109.7300

The NW system enabled to predict defect localization for the beam without
defect as well as for the beams with defect. The differences are from 8.64% to
23.15%. It can be concluded that the neural network can predict the defect
location even if the wavelet transform moduli are not legible (case 1 and 2).

5. Validation of neuro-wavelet system on experimental examples

5.1. Experimental investigations

Experimental tests have been performed on beam, plate and shell structu-
res (Fig. 6). The cantilever beam of length L, width B and height Hmm is
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made of polymethyl methacrylate (PMMA). The beam contains an open notch
of length Lrmm and depth amm at a distance L1 from the clamped end.
The depth of the defect is 35% of the beam height. The steel plate of length L,
width B and height H has a fixed support on each side. The plate contains a
rectangular defect of length Lr, width Br and depth a. The distance from the
defect left-down corner to the plate left-down corner in horizontal and vertical
directions are L1 and B1, respectively. The area of the flaw amounts to 2.4%
of the plate area and the depth of the flaw is 25% of the plate height. The
cylindrical shell of diameters D1 = 293mm and D2 = 300mm is made of
steel. The cylindrical shell is welded to a steel plate. The surface area of the
cylinder is given in Fig. 6c. The length of the surface is denoted by L, width
by B and height by H. The shell contains a rectangular defect of length Lr,
height Hr and depth a. The defect is situated from the inside of the cylinder.
The distance from the defect left-down corner to the shell left-down corner
in horizontal and vertical direction are L1 and H1, respectively. The area of
the flaw amounts to about 0.2% of surface area and the depth of the flaw is
about 30% of the shell thickness. Descriptions of structure geometry, defect
sizes and locations as well as experimentally determined material properties
are given in Table 3.

Table 3. Beam, plate and shell mode shapes: experimental program

Type Dimensions of Size of defect Material Location of
of structure [mm] [mm] properties defect [mm]
struc-

L B H Lr Br a
E ν ρ

L1 B1ture [GPa] [–] [kg/m3]

beam 480 60 20 2 20 7 3.42 0.32 1187 120 –

plate 560 480 2 80 80 0.5 192 0.25 7430 200 200

shell 930 180 3.4 5 60 1 190 0.25 7850 285 60

The experimental setup of the beam and plate was presented by Rucka and
Wilde (2006a). In this paper, the experiments, including the shell structure,
are conduced with more advanced signal processing techniques and a noise ro-
bust method for the estimation of frequency response functions (FRFs). The
structures were subjected to a dynamic pulse load applied by the modal ham-
mer PCB 086C03 at selected points. In the case of the beam, 48 measurement
points were distributed along the length of the beam axis whereas in the ca-
se of the plate, 143 measurement points were distributed on its surface. The
measurement points on the shell were spread out along the central ring and
its number amounted to 62. To record the response of the structure one B&K
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Fig. 6. Experimental setup: (a) beam; (b) plate; (c) shell

accelerometer was used. It was kept in one position throughout the measure-
ments. The acceleration and force data were collected by the data acquisition
system Pulse type 3650C. Each acceleration and force measurement was re-
peated five times and the data were averaged in the frequency domain. The
H2(ω) estimator was applied to minimize the noise problem in the input si-
gnal from modal hammer. The imaginary part of the FRF estimator H2(ω)
for the beam, plate and shell, is presented in Fig. 7. The obtained FRFs al-
lowed precise identification of the first, second and third mode shapes for all
the considered structures.

The mode shapes for the beam, plate and shell were also computed by the
commercial FEM program SOFiSTiK. The beam mode shapes were computed
using a solid six-sided element of length 2mm. A square plane element of the
size 40×40mm was used to calculate plate mode shapes. The mode shapes of
the shell were computed using a plane element of SOFiSTiK of size 5× 5mm.
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Fig. 7. Imaginary part of FRF estimator H2(ω): (a) beam, 1© – f1exp = 23.375Hz,
f1num = 23.01Hz; 2© – f2exp = 157.5Hz, f2num = 149.91Hz; 3© – f3exp = 433.00Hz,

32num = 410.89Hz; (b) plate, 1© – f1exp = 64.875Hz, f1num = 65.10Hz;
2© – f2exp = 114.875Hz, f2num = 120.00Hz; 3© – f3exp = 195.25Hz,
32num = 207.09Hz; (c) shell, 1© – f1exp = 295.4Hz, f1num = 337.3Hz;

2© – f2exp = 575.8Hz, f2num = 614.6Hz; 3© – f3exp = 877.2Hz, 32num = 928.9Hz

Numerical frequencies are compared with the experimental ones in the plots
of FRFs (Fig. 7). The difference between the measured frequencies relative to
calculated frequencies ranges from 0.35% to 12.42%. The experimental and
numerical mode shapes are compared in Figs. 8, 9 and 10 for the beam, pla-
te and shell, respectively. Most visible differences between the experimental
and numerical modes come form the modelling of the boundary condition.
For example, the experimental modes of the beam show some rotation on the
support while the numerical model assumes an ideal cantilever beam. Never-
theless, the MAC values range from 0.7411 to 0.9998 indicating a very good
agreement.

5.2. Wavelet analysis of structural mode shapes

The continuous wavelet transforms are applied to structural mode shapes.
For analysis of beam mode shapes, one-dimensional CWT was used. The wa-
velet analysis of the first mode shape is performed using gaus4 wavelet having
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Fig. 8. Experimental and numerical beam mode shapes: (a) first, (b) second,
(c) third

Fig. 9. Experimental and numerical plate mode shapes: (a) first, (b) second, (c) third
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Fig. 10. Experimental and numerical shell mode shapes: (a) first, (b) second,
(c) third

4 vanishing moments, whereas the second and third mode shapes are analyzed
using gaus6 wavelet having 6 vanishing moments.

The wavelet transform modulus computed for the numerical and experi-
mental data are shown in Fig. 11. In the numerical simulations, the maximum
value of the modulus grows with the increase of the scale and clearly points
to the defect position at 121mm from the clamped end. However, the experi-
mental results have additional maxima lines resulting from the measurement
noise. Nevertheless, it is possible to locate the damage position, since the do-
minant maximum line increases monotonically and for larger scales achieves
the largest values. The position of the defect determined by wavelet analysis is
132mm in the case of the first mode shape and 129mm in the case of the se-
cond mode. The wavelet analysis of the third mode shape makes it impossible
to detect damage presence and its localization.

The plate analysis was conducted using two-dimensional wavelet analysis
expressed in terms of one-dimensional integrals. The presence of the defect is
detected by a sudden change in a spatial variation of the transformed response.
The wavelet transform moduli for the numerical and experimental data are
given in Fig. 12. The results are computed for scale s = 40. Analysis of the
first mode shape was conducted using gaus4 wavelet in both directions. Both
peaks in the wavelet transform modulus for the numerical and experimental
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Fig. 11. Wavelet transform modulus of the beam numerical and experimental mode
shapes: (a) first, (b) second, (c) third
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data are capable to indicate location of the defect. The real defect position is
x = 240mm and y = 240mm and it is in agreement with the recognition of
the defect position equal to x = 240mm and y = 243mm. Analysis of the
second and third mode shapes was performed using gaus4 wavelet along the
plate width, and gaus6 wavelet along the plate length. The numerical results
enable one to identify defect position, however in the case of the experimental
data the noise masks the defect position.

In the last example, the wavelet analysis is conducted on three mode sha-
pes of the cylindrical shell. Gaussian wavelet gaus6 is considered. The one-
dimensional CWT of the numerical and experimental mode shapes (Fig. 13) is
performed for scales s = 1-10. In the case of the numerical data, the maximum
modulus grows with the increase of the scale and clearly points to the damage
position at 288mm. The CWT results based on the experimental third mode
shape (Fig. 13c) have additional maxima lines resulting from the measurement
noise. Nevertheless, the constant slope of the maximum line clearly indicates
the damage location at 298mm. Wavelet transforms of the first and second
experimental mode shapes do not allow for detection of the defect position
(Figs. 13a and 13b).

5.3. Predictions of NW system

The NW damage identification ability has been tested on the experimental
beam, plate and shell mode shapes described in Section 5.1. In the case of the
beam and shell mode shapes, selected lines of the wavelet transform modulus
were used as inputs. The set of data for the beam consisted of 3 patterns.
For the beam first mode shape, the wavelet transform modulus computed for
scale s = 60 was used, whereas for the second and third modes, the wavelet
transform modulus computed for the scale s = 40 was applied. For the shell,
the set of input data consisted of 3 patterns, calculated for the scale s =
10. In the case of plate, the two-dimensional wavelet transform moduli were
converted into a one-dimensional input signal since lines at different locations
can be treated separately. In this simulation, only the lines passing through
the centre of the defect have been considered. The set of the experimental
input data consists of 6 patterns, i.e. 3 patterns along the length of the plate
and 3 patterns along the width of the plate. The results are plotted in Fig. 14.
It is visible that all patterns are in agreement with the actual values with the
correlation coefficient equal to 0.95247. The detailed values for all examples
are contained in Table 4.

The defect presence identification by the CWT was possible only for 5 of
12 input patterns. The NW system prediction was completely successfully for
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Fig. 12. Wavelet transform modulus of the plate numerical and experimental mode
shapes: (a) first, (b) second, (c) third
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Fig. 13. Wavelet transform modulus of the shell numerical and experimental mode
shapes: (a) first, (b) second, (c) third
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Fig. 14. Results of the NW system for the experimental beam, plate and shell mode
shapes; (a) crack presence, (b) crack localization

Table 4. Actual, recognized by wavelets and neurally predicted defect identi-
fication

Struc-
ture

Input
patterns

Patterns
description

Defect Defect centre
presence position [mm]

A
ct
u
al Recog. Predic-

A
ct
u
al Recog. Predic-

by ted by by ted by
CWT ANN CWT ANN

mode 1 gaus4, s = 60 1 1 0.9892 121 132 143.9611
beam mode 2 gaus6, s = 40 1 1 0.9931 121 129 130.5971

mode 3 gaus6, s = 40 1 – 0.7371 121 – 118.4275

plate
(along
x)

mode 1 gaus4, s = 40 1 1 0.9983 240 240 243.0938
mode 2 gaus6, s = 40 1 – 1.0043 240 – 311.3410
mode 3 gaus6, s = 40 1 – 0.9994 240 – 246.5563

plate
(along
y)

mode 1 gaus4, s = 40 1 1 0.9998 240 243 244.9450
mode 2 gaus4, s = 40 1 – 0.9993 240 – 243.3374
mode 3 gaus4, s = 40 1 – 0.9127 240 – 247.6269

mode 1 gaus6, s = 10 1 – 0.9978 287.5 – 325.7603
shell mode 2 gaus6, s = 10 1 – 0.9987 287.5 – 303.4104

mode 3 gaus6, s = 10 1 1 0.9981 287.5 298 280.7378

10 patterns (with difference ranging from 0.02% to 1.08%) and quite success-
fully for 2 patterns (with difference 8.73% and 26.27%). The NW system could
identify the damage presence in all the considered cases with the average error
of 3.17%.
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The identification of defect position by the CWT was also possible only
for 5 of 12 input patterns. The errors of the CWT based peak-picking method
reach from 0% to 9.09%. The NW was able to predict defect localization for
all cases, including cases, in which it was impossible to locate the defect by
the CWT. The NW prediction was successful for 9 patterns (with difference
ranging from 1.29% to 7.93%) and satisfactory for 3 patterns (with differences
13.31%, 18.98% and 29.73%). The NW system could indicate damage location
in all the considered cases with the average error of 7.55%.

6. Conclusions

In this paper, the neuro-wavelet damage detection method for defect identifi-
cation is presented. The technique is studied on experimental mode shapes of
beam, plate and shell structures. The search for the defect location, conducted
by picking the largest wavelet transform modulus, is enhanced by the artifi-
cial neural network. A simple, backpropagation neural network was trained
on static deflection lines of the cantilever beam. Although, the network was
taught on the static data, it could effectively localize the damage of the same
type in more complex structures, like plate or shell.
The results of the wavelet damage detection and analysis of the neural

network simulations lead to the following conclusions:

• The wavelet damage detection method might be suitable for detecting
relatively small damage (with damage area being 0.2% of the total shell
area). In more complex structures, the sensitivity of higher modes to
small defects might be high (the shell highest considered mode appeared
the best for damage detection).

• The NW system can predict damage location with relatively good pre-
cision even for the cases with no visible peaks in the wavelet transforms.

• The NW system for a complex engineering object can be trained on data
obtained on a simple structure. In such a case, it is easy to conduct an
experiment and numerical simulations to collect the ANN training data.

• The reliability of the NW system prediction can be improved by applica-
tion of a more advanced ANN architecture and the use of a large number
of training patterns corresponding to the cases encountered in the real
structures.

• The artificial neural network solutions belong to the class of the so-called
soft computing and the ANN can predict defects only with a certain pro-
bability. Hence, the application of the ANN provides sometimes worse
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identification of defect positions than the identification of defect locali-
zations by CWT. Nevertheless, the ANN predictions are relatively good
in the cases when it is impossible to locate the defect by analysis of the
wavelet transforms of mode shapes.

• The system supporting the decision making process on damage location
should not rely solely on the neural network. The ANN gives only a
probable damage location while the peak-picking method, if applicable,
provides reliable results. The system should combine the results obtained
by both methods.
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Wykrywanie uszkodzeń w konstrukcjach belkowych, płytowych

i powłokowych przy użyciu systemu neuro-wavelet

Streszczenie

Niniejsza praca poświęcona jest technice diagnostyki konstrukcji bazującej na
transformacie falkowej oraz sztucznych sieciach neuronowych (tzw. system neuro-
wavelet). Zastosowanie analizy falkowej pozwala na lokalizację uszkodzeń wymaga-
jącą minimalnej ilości danych wejściowych. W tym celu niezbędna jest tylko odpo-
wiedź konstrukcji pomierzona w wielu punktach. Poprawę efektywności lokalizacji
zniszczeń uzyskano poprzez użycie sztucznej sieci neuronowej. Nauczona sieć neuro-
nowa poprawnie rozpoznaje miejsce położenia uszkodzeń, nawet w przypadkach, gdy
określenie położenia uszkodzenia nie było możliwe bezpośrednio z obliczonych współ-
czynników falkowych. Zaproponowana metoda została sprawdzona eksperymentalnie
na przykładach konstrukcji belkowych, płytowych i powłokowych.
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