KORELACJA CECH WYTRZYMAŁOŚCIOWYCH I WYTĘŻENIE MATERIAŁU

JANUSZ MURZEWSKI, ZBIGNIEW MENDERA (KRAKÓW)

1. Statystyczne określenie wytężenia

Rozpatrujemy materiał, który pod działaniem naprężenia może ulec zniszczeniu bądź to w formie uplastycznienia, bądź to pęknięcia. Materiał pozostaje niezniszczony, jeśli jednocześnie zachodzą następujące nierówności:

$$(1.1) \sigma_H < Q, \sigma_G < R,$$

gdzie σ_H jest to naprężenie zastępcze ze względu na uplastycznienie, a σ_G naprężenie zastępcze ze względu na pęknięcie. Naprężenie zastępcze rozumie się tak, jak w klasycznej teorii wytężenia; Q jest granicą plastyczności, a R granicą wytrzymałości rozdzielczej. Granice te są skorelowanymi zmiennymi losowymi.

Prawdopodobieństwo, że materiał pozostaje niezniszczony przy ustalonym stanie naprężenia, równa się prawdopodobieństwu spełnienia układu nierówności (1.1):

(1.2)
$$W = P(\sigma_H < Q, \sigma_G < R),$$

a prawdopodobieństwo zniszczenia:

(1.3)
$$w = 1 - W = F(Q^*, R^*)$$
 dla $Q^* = \sigma_H, R^* = \sigma_G$.

Prawdopodobieństwo w nazywamy wytężeniem materiału, a F(Q, R) jest dystrybuantą dwuwymiarowego rozkładu zmiennych losowych Q i R.

Probabilistyczną definicję wytężenia wprowadził pierwszy z autorów dla ośrodków mikro-niejednorodnych [7]. Oznaczając prawdopodobieństwo mikro-uplastycznienia symbolem \varkappa , a prawdopodobieństwo mikro-spękania symbolem λ i zakładając stochastyczną niezależność granic mikro-plastyczności i mikro-wytrzymałości, podał on wzór:

(1.4)
$$\mu = 1 - (1 - \varkappa)(1 - \lambda) = \varkappa - \varkappa \lambda + \lambda,$$

gdzie μ jest wytężeniem w sensie mikroskopowym, czyli miarą koncentracji mikro-elementów uszkodzonych w jednostce objętości.

Tenże autor w rozdziale zamieszczonym w monografii o konstrukcjach aluminiowych [4] interpretuje wzór (1.4) w sensie makroskopowym w zastosowaniu do złomu kruchego lub poślizgowego.

W obecnej pracy autorzy rozumieją wytężenie (1.3) również w sensie makroskopowym i jako przykładową bazę empiryczną przyjmują zbiór doświadczeń wykonanych na próbkach makroskopowych przez drugiego z autorów [2]. A więc wytężenie w dla ustalonego naprężenia i materiału równa się granicy, do której dąży częstość zniszczenia w normalnych próbach wytrzymałościowych. Różnica merytoryczna między wzorem (1.3) i (1.4) polega na tym, że dystrybuanta F(Q, R) dla skorelowanych Q i R nie da się napisać za pomocą prawdopodobieństw brzegowych \varkappa i λ , tak jak to ma miejsce we wzorze (1.4). Ponadto w pracy niniejszej zwrócona jest uwaga na rozbieżność pojęć wytężenia i wadliwości. Wprawdzie wadliwość partii materiału można określić tym samym wzorem (1.3) co wytężenie, ale wtedy przez Q^* , R^* należy rozumieć nie naprężenie zastępcze, a minimalne gwarantowane wartości granicy plastyczności i wytrzymałości:

(1.5)
$$Q^* = Q_{\min}, \quad R^* = R_{\min}.$$

Jeśli brakiem nazwiemy materiał o cechach nie spełniających układu nierówności, analogicznych do (1.1),

 $(1.6) Q > Q_{\min}, \quad R > R_{\min},$

to wadliwość w, określona wzorami (1.3) i (1.5), jest prawdopodobieństwem wypuszczenia braku pod warunkiem, że nie ma kontroli jakości.

W dalszym ciągu pracy przedstawione będą konsekwencje wynikające z różnego interpretowania wartości granicznych Q^* i R^* w przypadku wytężenia i wadliwości.

2. Rozkład losowych cech wytrzymalościowych

Funkcje rozkładu cech wytrzymałościowych są przedmiotem wielu prac teoretycznych i doświadczalnych [1, 9 i 11]. Najczęściej jednak rozkłady tych cech analizuje się z osobna nie przypuszczając istnienia stochastycznej zależności.

Mając przede wszystkim na uwadze stal konstrukcyjną przyjmujemy normalny łączny rozkład prawdopodobieństw granicy plastyczności Q i wytrzymałości R o gęstości prawdopodobieństw jak następuje:

$$(2.1) \quad f(Q, R) =$$

$$=\frac{1}{2\pi\mu_{Q}\mu_{R}}\sqrt{1-r_{QR}^{2}}\exp\left\{-\frac{1}{2(1-r_{QR}^{2})}\left[\frac{(Q-\overline{Q})^{2}}{\mu_{Q}^{2}}-2r_{QR}\frac{\overline{Q}-Q}{\mu_{Q}}\frac{R-\overline{R}}{\mu_{R}}+\frac{(R-\overline{R})^{2}}{\mu_{R}^{2}}\right]\right\},$$

gdzie \overline{Q} , \overline{R} oznaczają wartości średnie, μ_Q , μ_R odchylenia standardowe, $r_{QR} = \cos(Q, R)/\mu_Q \mu_R$ współczynnik korelacji.

Odpowiednie rozkłady brzegowe przedstawia rys. 1.

Przy takich założeniach abstrahujemy od tego, że cechy wytrzymałościowe są funkcją stochastyczną punktu ośrodka. Ogranicza to nasze rozważania do elementów konstrukcyjnych o wymiarach mniej więcej tego rzędu, co badane doświadczalnie próbki, i naprężonych równomiernie, choć niekoniecznie jednoosiowo. W ten sposób eliminujemy tzw. efekty skali.

W celu jaśniejszego przedstawienia sprawy i możliwości zilustrowania wywodów realnymi wykresami wyspecyfikowano przykładowe parametry rozkładu prawdopodobieństw.

Analizę statystyczną przeprowadzono na podstawie doświadczeń rozciągania 874 próbek losowo wyciętych z arkuszy blach o grubości 6 mm stali niskostopowej, manganowo-krzemowej 18G2A [2].

Stal ta zyskuje coraz większe znaczenie w zastosowaniach do niektórych rodzajów konstrukcji stalowych, mianowicie tam, gdzie może być wykorzystana jej podwyższona wytrzymałość.

Próby rozciągania przeprowadzono przy kontrolowanych naprężeniach. Wyniki doświadczeń zestawiono w tablicy 1 podając jednocześnie zależność stochastyczną między granicą plastyczności Q i granicą wytrzymałości R.

Rvs.	1
~~,~,	-

Tablica 1. Rozkład empiryczny wartości Q i R stali 18G2A n_{ij}

kG/mm ²					i						
Q_i kG/mm ²	48–50	50–52	52-54	54-56	56-58	58–60	60–62	62–64	64–66	66–68	ni
30-32	2		•								2
32-34	2	2									4
34-36	2	12	4	1							19
36-38	ļ	30	51	17	1	1					100
38-40		10	74	57	14	1	1				157
40-42		1	16	90	81	26	10				224
42-44			3	23	62	70	20	2			180
44-46				5	15	20	56	13	1		110
46-48					5	8	9	29	4	1	56
48-50								1	9	11	21
50-52										1	1
n_j	6	55	148	193	178	126	96	45	14	13	874

Parametry rozkładu prawdopodobieństw oszacowano na podstawie rozkładu empirycznego jak następuje:

wartości średnie

(2.2)
$$\overline{Q} \approx \frac{1}{n} \sum_{i=1}^{k} n_i Q_i = 41,50 \text{ kG/mm}^2,$$
$$\overline{R} \approx \frac{1}{n} \sum_{j=1}^{l} n_j R_j = 56,77 \text{ kG/mm}^2;$$

odchylenia średnie

$$\mu_{Q} \approx \sqrt{\frac{1}{n} \sum_{i=1}^{k} n_{i} Q_{i}^{2} - \overline{Q}^{2}} = 3,226 \text{ kG/mm}^{2},$$

$$\mu_R \approx \sqrt{\frac{1}{n} \sum_{j=1}^l n_j R_j^2 - \overline{R}^2} = 3,584 \text{ kG/mm}^2,$$

. :

współczynnik korelacji

(2.4)
$$r_{QR} = \frac{\operatorname{cov}(Q, R)}{\mu_Q \mu_R} \approx \frac{\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} Q_{ij} R_{ij} - \overline{Q} \overline{R}}{\mu_Q \mu_R} = 0,809$$

Dystrybuanta rozkładu normalnego wyraża się wzorem symbolicznym

(2.5)
$$F(Q^*, R^*) = \int_{-\infty}^{Q^*} \int_{-\infty}^{R^*} f(Q, R) dQ dR,$$

i jej wartości oblicza się dla ustalonych Q^* , R^* za pomocą tablic dwuwymiarowego rozkładu normalnego [10].

3. Warunki plastyczności i wytrzymalości

Zagadnienie najtrafniejszego wyboru hipotezy wytężeniowej, a więc warunku plastyczności i warunku wytrzymałości, jest w zasadzie zagadnieniem odrębnym [5 i 6].

Dla prostoty przyjmiemy klasyczne hipotezy. Jako pierwszą, najlepszą naszym zdaniem kombinację, przyjmiemy warunek plastyczności Hubera-Misesa-Hencky'ego (σ_H) i warunek wytrzymałości Galileusza (σ_G). Naprężenia zastępcze wyrażają się następującymi wzorami:

$$\sigma_{H} = \sqrt{\frac{1}{2}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}},$$

(3.1)

$$\sigma_G = \sigma_1, \quad \sigma_1 \geqslant \sigma_2 \geqslant \sigma_3.$$

Równanie

(3.2)
$$w(\sigma_H, \sigma_G) = F(\sigma_H, \sigma_G) = \text{const}$$

określa powierzchnię równych wytężeń, która pokrywa się z powierzchnią graniczną naprężeń dla poziomu wytężenia w według definicji probabilistycznej [7].

Powierzchnię graniczną naprężeń wyrazimy analitycznie przy użyciu układu walcowych niezmienników naprężenia $\sigma_A, \sigma_D, \omega_\sigma$.

Walcowym układem niezmienników względnie współrzędnych w przestrzeni naprężeń nazywa się następującą transformację naprężeń głównych:

(3.3)

$$\sigma_{A} = \sqrt{\frac{1}{3}} (\sigma_{1} + \sigma_{2} + \sigma_{3}),$$

$$\sigma_{D} = \sqrt{\frac{1}{3}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}},$$

$$\omega_{\sigma} = \arcsin \frac{\sigma_{2} - \sigma_{3}}{\sqrt{2}\sigma_{D}} = \operatorname{arctg} \frac{\sigma_{2} - \sigma_{3}}{\sqrt{3}\sigma_{1} - \sigma_{A}}.$$

(2.3)

Zapis analityczny warunku plastyczności i warunku wytrzymałości we współrzędnych walcowych jest następujący:

(3.4)
$$\sigma_{H} = \sqrt{\frac{3}{2}} \sigma_{D}, \quad \sigma_{G} = \sqrt{\frac{1}{3}} \sigma_{A} + \sqrt{\frac{2}{3}} \sigma_{D} \cos \omega_{\sigma},$$

a interpretację geometryczną podaje rys. 2.

Ślady przecięcia powierzchni granicznej z pękiem płaszczyzn przechodzących przez oś σ_A dla różnych kątów ω_σ dają proste σ_B dla warunku plastyczności i proste σ_G dla warunku wytrzymałości.

Wprowadzamy parametr t:

$$(3.5) t = \frac{\sigma_L}{\sigma_L}$$

i przyporządkowujemy każdej prostej drodze obciążenia wychodzącej z punktu początkowego $\sigma_A = 0$, $\sigma_D = 0$ określoną wartość tego parametru. A zatem przy ustalonym kącie ω_{σ} mamy również linię prostą na płaszczyźnie naprężeń zastępczych σ_H , σ_G . Jej równanie uzyskujemy ze wzoru (3.4):

(3.6)
$$\sigma_G = \left(\frac{\sqrt{2}}{3t} + \frac{2}{3}\cos\omega_\sigma\right)\sigma_H$$

co obrazuje rys. 3.

Analogicznie, przy założeniu innych warunków wytrzymałościowych można zbudować inne warianty powierzchni granicznych w przestrzeni naprężeń głównych i pęku prostych na płaszczyźnie naprężeń zastępczych.

Rys. 3

Na przykład dla kombinacji warunku plastyczności Treski-Guesta i warunku wytrzymałości St Venanta:

(3.7)
$$\sigma_T = \sigma_1 - \sigma_3, \quad \sigma_V = \sigma_1 - \nu(\sigma_2 + \sigma_3)$$

otrzymuje się proste proporcjonalnego obciążenia na płaszczyźnie naprężeń zastępczych wg wzoru:

(3.8)
$$\sigma_{\nu} = \left[\frac{1-2\nu}{\sqrt{2}t} + (1+\nu)\cos\omega_{\sigma}\right] \frac{\sigma_{T}}{\frac{3}{2}\cos\omega_{\sigma} + \frac{\sqrt{3}}{2}\sin\omega_{\sigma}}$$

Warunek analogiczny do (3.2):

(3.9) $w(\sigma_T, \sigma_V) = \text{const}$

określa odpowiednią powierzchnię graniczną w przestrzeni naprężeń, co obrazuje rys. 4.

4. Ustalenie poziomu wytężenia

Wykresy w = const na rys. 2, 3, 4 wykonane są dla ustalonego konkretnego poziomu wytężenia w = 2,22 % (tabl. 2).

Różnice krzywoliniowych wykresów granicznych w stosunku do linii łamanych wynikających z deterministycznych «zjednoczonych» hipotez byłyby inne dla niższych lub wyższych poziomów wytężenia.

Wartość 2,22 % obliczono przyjmując, że dla jednoosiowego stanu naprężenia argument dystrybuanty wynosi 35 kG/mm², a zatem:

(4.1)
$$w = P(Q < k^*, R < k^*) = 1 - \int_{k^*}^{\infty} \int_{k^*}^{\infty} f(Q, R) dQ dR = 0,0222$$

dla $k^* = 35 \text{ kG/mm}^2 \text{ i } f(Q, R) \text{ wg wzorów (2.1), (2.2), (2.3), (2.4).}$

Przyjęta wartość k^* jest nieco mniejsza niż normatywna minimalna granica plastyczności $Q_{\min} = 36 \text{ kG/mm}^2$ dla stali 18G2A i grubości 4–16 mm, ale większa niż tzw. naprężenie graniczne $K = 30 \text{ kG/mm}^2$ (dla metody obliczeń uwzględniającej współczynniki przeciążenia) i większa niż naprężenie dopuszczalne $k = 25 \text{ kG/mm}^2$ (określone z zastosowaniem pełnego współczynnika bezpieczeństwa). Wartość k^* ma znaczenie przykładowe. Racjonalne, obiektywne jej wyznaczenie wymagałoby sprecyzowania przeznaczenia konstrukcji i kosztu awarii oraz zastosowania metod optymalizacyjnych teorii bezpieczeństwa [8].

Istotną i ważną rzeczą, którą szczególnie chcemy podkreślić, jest, że wytężenie w = 2,22 % zostało obliczone wg (4.1) po podstawieniu we wzorze (1.3) równych wartości:

(4.2)
$$\sigma_H = \sigma_G = k^*,$$

co odpowiada punktowi położonemu na prostej nachylonej pod kątem 45° względem osi układu naprężeń zastępczych (rys. 3). Równość naprężeń zastępczych (4.2) jest tu konieczna, bo przy jednoosiowym stanie naprężenia wynika ona z definicji naprężenia zastępczego.

Natomiast jeślibyśmy określali wadliwość, to możemy ustalić dowolne proporcje Q_{\min} i R_{\min} i na ogół ustala się:

$$(4.3) Q_{\min} \neq R_{\min},$$

bowiem racjonalne podejście do sprawy ustalenia nominalnych wartości Q_{\min} i R_{\min} w świetle pracy [3] polega raczej na tym, by zrównać częstość występowania braków

Lp.	Stan naprężenia							σ _D	$\sigma_G = \left(\frac{\sqrt{2}}{3t} + \frac{2}{3}\cos\omega_\sigma\right)\sigma_H$			
	Określenie	Naprężenie główne			Współrzędne walcowe			$i = \frac{\sigma_A}{\sigma_A}$	Wzór ogólny	Wartość	Wartość	w(σ _H , σ _G)
			σ ₂	σ ₃	σΑ	σ_D	ωσ	<u>i</u>		σ_{II} (kG/mm ²)	$\sigma_G (kG/mm^2)$	
1.	Jednoosiowe rozciąganie	σ	0	0	$\sqrt{\frac{1}{3}}\sigma$	$1/\frac{2}{3}\sigma$	0°	$\sqrt{2}$	$\sigma_G = \sigma_H = k^*$	35,00	35,00	0,0222
2.	Dwuosiowe rozciąganie	σ	σ	0	$\frac{2}{\sqrt{3}}\sigma$	$\sqrt{\frac{2}{3}}\sigma$	60°	$\sqrt{\frac{1}{2}}$	$\sigma_G = \sigma_H$	35,00	35,00	0,0222
3.	Czyste ścinanie	σ	0	-σ	0	$\sqrt{2}\sigma$	30°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sigma_G = \sqrt{\frac{1}{3}} \sigma_H$	35,00	20,20	0,0222
4.	Jednoosiowe ściskanie	0	0	-σ	$-\sqrt{\frac{1}{3}}\sigma$	$\sqrt{\frac{2}{3}}\sigma$	60°	$-\sqrt{2}$	$\sigma_G = 0$	35,00	0	0,0222
5.	Dwuosiowe ściskanie	0	-σ	$-\sigma$	$\frac{2}{\sqrt{3}}\sigma$	$\sqrt{\frac{2}{3}}\sigma$	0°	$-\sqrt{\frac{1}{2}}$	$\sigma_G = 0$	35,00	0	0,0222
6.	Trójosiowe rozciąganie	σ	σ	σ	<u>√</u> 3σ	0	dowolne	0	$\sigma_G = \sqrt{\frac{1}{3}} \sigma_A$	0	49,57	0,0222
7.	Trójosiowe rozciąganie	σ	σ	$\frac{1}{2}\sigma$	$\frac{5}{2\sqrt{3}}\sigma$	$\sqrt{\frac{1}{6}\sigma}$	60°	$\frac{\sqrt{2}}{5}$	$\sigma_{\rm G}=2\sigma_{\rm H}$	24,75	49,50	0,0222
8.	Trójosiowe rozciąganie	σ	σ	$\frac{1}{4}\sigma$	$\frac{9}{4\sqrt{3}}\sigma$	$\frac{6}{4}$	60°	$\frac{\sqrt{2}}{3}$	$\sigma_G = 1, 5\sigma_H$	33,00	49,50	0,0222
9.	Trójosiowe rozciąganie	σ	$\frac{1}{2}\sigma$	$\frac{1}{2}\sigma$	$\frac{2}{\sqrt{3}}\sigma$	$\sqrt{\frac{1}{6}}\sigma$	0°	$\frac{1}{2}\sqrt{\frac{1}{2}}$	$\sigma_G = 2\sigma_H$	24,75	49,50	0,0222
10.	Trójosiowe rozciąganie	σ	$\frac{9}{16}\sigma$	$\frac{9}{16}\sigma$	1,23σ	0,36σ	0°	0,291	$\sigma_G = 2,287\sigma_H$	21,60	49,50	0,0222
11.	Trójosiowe rozciąganie	σ	$\frac{1}{4}\sigma$	$\frac{1}{4}\sigma$	$\frac{3}{2\sqrt{3}}\sigma$	$\frac{\sqrt{6}}{4}\sigma$	0°	$\frac{1}{\sqrt{2}}$	$\sigma_G = \frac{4}{3} \sigma_H$	35,00	46,70	0,0222
12.	Trójosiowe rozciąganie	σ	$\frac{1}{3}\sigma$	$\frac{1}{3}\sigma$	$\frac{5}{3\sqrt{3}}\sigma$	$\frac{2}{3}\sqrt{\frac{2}{3}}\sigma$	0°	$\frac{2}{5}\sqrt{2}$	$\sigma_G = 1,5\sigma_H$	33,00	49,50	0,0222
13.	Trójosiowe rozciąganie	σ	0,28σ	0,28σ	0,90σ	0,59σ	0	0,655	$\sigma_G = 1,387\sigma_H$	34,70	48,10	0,0222

Tablica 2. Numeryczne wyliczenie granicznych tensorów naprężenia dla $w(\sigma_H, \sigma_G) = \text{const}$

[⁴²]

o zaniżonym Q lub R, a uzyskuje się to wtedy, gdy Q_{min} i R_{min} są kwantylami tego samego rzędu rozkładów brzegowych, czyli

(4.4)
$$Q_{\min} = Q - \lambda \mu_Q, \quad R_{\min} = \overline{R} - \lambda \mu_R,$$

gdzie $\lambda = \text{const}$ jest standaryzowanym odchyleniem granicznym, będącym funkcją wadliwości parametrycznej.

Na zakończenie poruszymy jeszcze kwestię związku wytężenia z bezpieczeństwem. Otóż uważamy, że nawet w najprostszym jednorodnym polu naprężeń, działającym w elemencie konstrukcyjnym, nie są to pojęcia ściśle z siebie wynikające. Bowiem ten sam element projektowany dla wielu powtarzalnych budowli, mających pracować w tych samych warunkach, narażony bywa w rzeczywistości na niekoniecznie takie same obciążenia. Trzeba więc zrezygnować z postulatu stałości naprężenia i analizować bezpieczeństwo traktując także obciążenia jako zmienną losową.

Literatura cytowana w tekście

- 1. А. М. ДЛИН, Математическая статистика в технике, Советская Наука, Москва 1958.
- 2. Z. MENDERA, Wytężenie spoiny czolowej w połączeniach stali konstrukcyjnej o podwyższonej wytrzymalości, Rozprawa doktorska, Politechnika Krakowska, Kraków 1964.
- 3. Z. MENDERA, Korelacja cech wytrzymalościowych stali i jej wpływ na wadliwość, Arch. Inżyn. Lądowej, 1966.
- 4. R. MROMLIŃSKI, Konstrukcje aluminiowe, Wyd. II, Arkady, Warszawa 1964.
- 5. J. MURZEWSKI, Z. MENDERA, Yield surface of steel determined by semi-empirical method, Bull. Acad. Polon. Sci., Série Sci., Techn., 7, 11 (1963).
- 6. J. MURZEWSKI, Z. MENDERA, Wytrzymałość stali i żeliwa w ogólnym stanie naprężenia, PAN i PZITB, Konstrukcje stalowe w budownictwie i mostownictwie, Księga pokonferencyjna, Arkary, Warszawa 1960, 243.
- 7. J. MURZEWSKI, A probabilistic theory of plastic and brittle behaviour of quasi-homogeneous materials, Arch. Mech. Stos., 2, 12 (1960), 203.
- 8. J. MURZEWSKI, Wprowadzenie do teorii bezpieczeństwa konstrukcji, PWN, Warszawa 1963.
- 9. J. Ryś, Zależność statystyczna R_r i a_5 od skladu chemicznego w stalach konstrukcyjnych węglowych wyższej jakości, Arch. Hutn., 2, 4 (1961), 147.
- 10. Н. В. СМИРНОВ, Л. Н. ВОЛШЕВ, Таблицы для вычисления функции двумерного нормального распределения, АН СССР, Москва 1962.
- 11. W. WIERZBICKI, Obiektywne metody oceny bezpieczeństwa konstrukcji budowlanych, PWN, Warszawa 1961.

Резюме

КОРРЕЛЯЦИЯ ПРОЧНОСТНЫХ СВОЙСТВ И НАПРЯЖЕННОСТЬ МАТЕРИАЛА

Для конструкционной стали предполагается двумерное, нормальное распределение предела текучести Q и предела прочности R, f(Q, R) и определяются все пять параметров этого распределения, а именно: средние значения \overline{Q} и \overline{R} , среднее отклонение μ_Q и μ_R , а также коэффициент корреляции r_{QR} — с использованием статистического анализа. Статистический анализ проводился на основе результатов испытаний на растяжение 874 образцов, случайно вырезанных из листов низколегированной, марганцево-кремниевой стали толциной 6 мм.

Полученные результаты дают возможность определить предел разрушения при одноосном напряженном состоянии, понимаемый как объединение (в смысле теории вероятности) предела пластичности Q и предела прочности R для заданного уравня натуги.

Натуга понимается как вероятность и может быть выражена при помощи двумерных функций распределения предела текучести и предела прочности, на основе формулы (4.1).

Понятие предела разрушения обобщается на случай сложного напряженного состояния. Это приводит к граничным поверхностям, построенным для заданного уровня натуги 2,22% и для комбинации условий пластичности и прочности Губера-Мизеса-Генки и Галилея, а затем Треска и Сен-Венана.

Далее, уточняется взаимосвязь понятия натуги в вероятностном смысле и понятия прочности употребляемого при статистическом контроле качества.

Summary

THE CORRELATION OF STRENGTH PROPERTIES AND MATERIAL UNSERVICEABILITY

Two dimensional normal distribution of yield limit Q, and cleavage limit R, f(Q, R), has been assumed for structural steel, A set of five parameters of the distribution has been found by means of statistical analysis, namely:

mean values \overline{Q} and \overline{R} , mean deflection μ_Q and μ_R as well as the correlation coefficient r_{QR} .

The statistical analysis was carried out on the basis of 874 test specimens cut out from low alloy manganese silicon steel sheet 6 mm thick.

The results allow to define a failure limit in uniaxial stress meant as an alternative of yield limit Q and cleavage limit R (in probabilistic meaning) for given unserviceability level.

The unserviceability is considered as probability and may be expressed with the help of the cumulative function of the two-dimensional yield limit and cleavage distribution by the formula (4.1). The definition of the failure limit is generalized for three-axial stress states and limit surfaces are derived for the given unserviceability level 2.22% and for the combination of either Huber-Mises-Hencky and Galileo or Tresca and St. Venant yield and fracture conditions.

Further a relation between unserviceability in probabilistic meaning and defectiveness as applied in statistical control of quality has been defined.
