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Analytical solutions to a boundary-value problem of heat conduction
for friction pairs consisting of the half-space sliding (braking at uniform
retardation) on a surface of the strip deposited on a semi-infinite foun-
dation and the strip sliding on a surface of the homogenous half-space,
are obtained. For materials of the frictional system: cast iron – metal
ceramics-steel and metal ceramics-cast iron, evolutions and distributions
on depth from the surface of friction for temperatures are studied.
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1. Introduction

Heating problems of friction can be examined through stationary, quasi-
stationary and nonstationary statements. We may assume thermal contact
as a stationary one in some cases: when the slip velocity is low and the resul-
tant convection have no impact on temperature and heat fluxes. Another case
occurs when the process of heat conduction for given external conditions lasts
long enough, so that the influence of initial conditions can be ignored. Quasi-
stationary thermal contact takes place under the condition of sufficiently long
duration of friction between bodies in relative motion, whereas nonstationa-
ry thermal contact is either conditioned by a nonstationary distribution of
the contact pressure or by time-dependent slip velocity as well as by the fact
that the development of heating process is considered from some initial time
(Matysiak and Yevtushenko, 2001).

The thermal processes during braking are nonstationary and of short dura-
tion. A criterion for evaluation of the frictional thermal strength of materials
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applied in the contacting pairs, in which the principal role plays the tempera-
ture of friction was proposed by Chichinadze (1967).

Ceramic-metal frictional materials are now extensively used in brake sys-
tems (Balakin and Sergienko, 1999; Daehn and Breslin, 2006). This is expla-
ined by their high thermal stability and wear resistance (Buckman, 1998; Blau,
2001). A friction patch of brakes is designed as a thin cermet strip based either
on iron or copper. In the process of braking, this patch is pressed to the coun-
terbody (brake drum, disk, rim of the wheel, etc.). As a result of the friction
action on the contact surface, the kinetic energy transforms into heat. Ele-
ments of brakes are heated and, hence, the conditions of operation of the
friction patches become less favourable: their wear intensifies and the friction
coefficient decreases, which may lead to emergency situations (Fazekas, 1953;
Ho et al., 1974). Thus, the problem of calculation of temperature is one of the
most important problems in the design of brakes (Yun-Bo et al., 2002).

The one-dimensional models correspond to cases when the heat flux can
be assumed as normal to the contact surface (Peclet’s number must be large).
The verification of many analytical solutions with the experimental data which
refers to the work of braking devices, shows that the one-dimensional models
may be considered as a sufficiently good approximation for computation of
brake systems with heat generation taken into account (Fazekas, 1953; Qi and
Day, 2007).

Solutions to the problems of heat conduction in a composite solid consisting
of two or three infinite slabs between parallel plane boundaries, when the
interfaces are subjected to a thermal flux which decreases linearly with time
were studied by Newcomb (1959a,b). Analytical and numerical solutions of the
one-dimensional thermal problem of friction during braking were obtained for
the case of contact between two half-spaces (Yevtushenko et al., 1999). The
corresponding solutions for two or three plane-parallel strips with different
properties were analysed by Pyryev and Yevtushenko (2000).

In the present paper, we construct solutions to heat conduction problems
with frictional heating during braking at uniform retardation for a friction
pair consisting of the half-space sliding on a surface of the strip deposited on
a semi-infinite foundation and the system consisting of the plane-parallel strip
and the half-space. These solutions allow one to determine the temperature
of friction elements from the initial time of braking to the moment, when the
cooling of the solids is completed. The corresponding problems at uniform
sliding were studied by Yevtushenko and Kuciej (2009a,b).
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2. The half-space – strip – foundation system

Protective strips such as evaporated coatings and films are used for the im-
provement of wear-contact characteristics of friction elements. Therefore, the
problem of contact interaction of two half-spaces is considered, where one of
them is homogeneous and the other is a semi-infinite foundation with the sur-
face covered by a strip of thickness d (Fig. 1). The perfect heat contact and
the constant pressures p0 between the strip and the foundation take place.
The homogeneous upper half-space slides with the velocity

V (t) = V0
(

1− t
ts

)

H(ts − t) t  0 (2.1)

where V0 is the initial velocity, t – time, ts – time braking, H(·) – Heaviside’s
step function) in the direction of the y-axis on the strip surface. Due to friction,
heat is generated on the contact plane z = 0. It is assumed that the sum of
intensities of the frictional heat fluxes directed into each component of the
friction pair is equal with the specific friction power

q(t) = q0q
∗(t) t  0 (2.2)

where, taking equation (2.1) into account, we have

q0 = fV0p0 q∗(t) =
(

1− t
ts

)

H(ts − t) t  0 (2.3)

where f is the frictional coefficient, p0 – pressure.

Fig. 1. Scheme of the contact system

On such assumptions, the corresponding boundary-value problem of heat
conduction can be written in the dimensionless form
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∂2T ∗t (ζ, τ)

∂ζ2
=
1

k∗t

∂T ∗t (ζ, τ)

∂τ
0 < ζ <∞ τ > 0

∂2T ∗s (ζ, τ)

∂ζ2
=
∂T ∗s (ζ, τ)

∂τ
−1 < ζ < 0 τ > 0

∂2T ∗f (ζ, τ)

∂ζ2
=
1

k∗f

∂T ∗f (ζ, τ)

∂τ
−∞ < ζ < −1 τ > 0

(2.4)

∂T ∗s
∂ζ

∣

∣

ζ=0−
−K∗t

∂T ∗t
∂ζ

∣

∣

ζ=0+
= q∗(τ) (2.5)

T ∗s (0, τ) = T
∗

t (0, τ)
∂T ∗s
∂ζ

∣

∣

ζ=−1+
= K∗f

∂T ∗f

∂ζ

∣

∣

ζ=−1−
(2.6)

T ∗s (−1, τ) = T ∗f (−1, τ) T ∗t,f (ζ, τ)→ 0 |ζ| → ∞ (2.7)

T ∗t (ζ, 0) = 0 0 ¬ ζ <∞
T ∗s (ζ, 0) = 0 −1 ¬ ζ ¬ 0
T ∗f (ζ, 0) = 0 −∞ < ζ ¬ −1

(2.8)

where

q∗(τ) =
(

1− τ
τs

)

H(τs − τ) τ  0 (2.9)

and

K∗f =
Kf

Ks
K∗t =

Kt

Ks
k∗f =

kf

ks

k∗t =
kt

ks
ζ =
z

d
τ =
kst

d2

T ∗t =
Tt

T0
T ∗s =

Ts

T0
T ∗f =

Tf

T0
T0 =

qd

K

(2.10)

where K is the coefficient of heat conduction, k – coefficient of thermal dif-
fusivity, T – temperature, z – spatial coordinate. Moreover, all values and
parameters concerned with the top half-space, strip and foundation will have
bottom indexes t, s and f , respectively.

Taking the form of function q∗(τ) (2.9) and the linearity of boundary-
value problem (2.4)-(2.8) in to account, the dimensionless temperature at any
moment of time τ at the distance |ζ| <∞ from the surface of friction may be
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presented as the superposition (Yevtushenko and Matysiak, 2005; Yevtushenko
and Kuciej, 2006) (τ  0)

T ∗(ζ, τ) = [T (0)∗(ζ, τ)− T (1)∗(ζ, τ)]H(τ) + T (1)∗(ζ, τ − τs)H(τ − τs) (2.11)

where the upper indexes k = 0, 1 correspond to solutions to the problem under
consideration for the heat flux intensities

q(k)∗(τ) =
( τ

τs

)k
τ > 0, k = 0, 1 (2.12)

The solutions to the boundary-value problem of heat conduction (2.4)-(2.8)
with heat flux intensities (2.12) are obtained by using the integral Laplace
transform with respect to the dimensionless time τ in the form (k = 0, 1,
n = 0, 1, 2, . . ., τ  0)

T
(k)∗
t (ζ, τ) =

2
√
τ

1 + εt

( τ

τs

)k ∞∑

n=0

ΛnT
(k)∗
t,n (ζ, τ) 0 ¬ ζ <∞

T
(k)∗
t,n = F

(k)
[(

2n +
ζ
√

k∗t

) 1

2
√
τ

]

+ λfF
(k)
[(

2n+ 2 +
ζ
√

k∗t

) 1

2
√
τ

]

T (k)∗s (ζ, τ) = q
(k)∗(τ)

2
√
τ

1 + εt

∞
∑

n=0

ΛnT (k)∗s,n (ζ, τ) − 1 ¬ ζ ¬ 0

T (k)∗s,n (ζ, τ) = F
(k)
(2n− ζ
2
√
τ

)

+ λfF
(k)
(2n+ 2 + ζ

2
√
τ

)

(2.13)

T
(k)∗
f (ζ, τ) =

4
√
τ

(1 + εt)(1 + εf )

( τ

τs

)k ∞∑

n=0

ΛnT
(k)∗
f,n (ζ, τ) −∞ < ζ ¬ −1

T
(k)∗
f,n (ζ, τ) = F

(k)
[(

2n+ 1− 1 + ζ√
k∗f

) 1

2
√
τ

]

where

F (0)(ω) = ierfc (ω) F (1)(ω) = 3−1[2(1 + ω2)F (0)(ω)− ω erfc (ω)]

εt ≡
K∗t
√

k∗t
εf ≡

K∗f
√

k∗f
(2.14)

λt =
1− εt
1 + εt

λf =
1− εf
1 + εf

λ = λtλf Λn =

{

λn 0 ¬ λ < 1
(−1)n|λ|n −1 < λ ¬ 0
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and where ierfc (x) = π−1/2 exp(−x2) − x erfc (x), erfc (x) = 1 − erf (x),
erf (x) – Gauss error function.

In the case of identical physical properties of the strip and foundation
(Ks = Kf , ks = kf ), it follows from formulae (2.10) and (2.14) that K

∗

f = 1,
k∗f = 1, εf = 1, λf = 0, Λ = 0. Equations (2.13) at n = 0 give a solution to
the problem of heat generation at braking with uniform retardation for two
half-spaces (Yevtushenko et al., 1999), k = 0, 1

T
(k)∗
t (ζ, τ) =

2
√
τ

1 + εt

( τ

τs

)k
F (k)
( ζ

2
√

k∗t τ

)

0 ¬ ζ <∞

T
(k)∗
f (ζ, τ) =

2
√
τ

1 + εt

( τ

τs

)k
F (k)
(

− ζ
2
√
τ

)

−∞ < ζ ¬ 0
(2.15)

Substituting solutions (2.15) into the right-hand side of equation (2.11)
at ζ = 0, 0 ¬ τ ¬ τs, we obtain the known formula for calculation of the
dimensionless contact temperature (Fazekas, 1953)

T ∗t (0, τ) = T
∗

f (0, τ) = 2

√

k∗t τ

π

(

1− 2τ
3τs

)

0 ¬ τ ¬ τs (2.16)

The numerical results have been obtained for the commercial friction pair
ChNMKh cast iron disk (the upper surface) and metal-ceramics FMK-11 fric-
tional element of the patch (strip) on 30KhGSA steel base (foundation), for
which (Balakin and Serigienko, 1999):

ChNMKh: Kt = 51Wm
−1K−1, kt = 14 · 10−6m2s−1,

FMK-11: Ks = 34.3Wm
−1K−1, ks = 15.2 · 10−6m2s−1,

30KhGSA: Kf = 37.2Wm
−1K−1, kf = 10.3 · 10−6m2s−1.

The friction conditions are: p0 = 1MPa, f = 0.7, V0 = 30ms
−1,

ts = 3.44 s. The initial temperature is equal 20
◦C.

Isolines for the temperature constructed in the coordinate system (z, t)
are shown in Fig. 2. The maximum temperature Tmax = 740

◦C is reached on
the contact surface z = 0 at the moment t = tmax = 1.6 s, which is not much
lower than the half value of braking time ts = 3.44 s. This result corresponds
well with the experimental data Tmax = 760

◦C, published in a monograph by
Chichinadze et al. (1979).

The temperature distribution along the distance |z| from the contact sur-
face at the moment t = tmax = 1.6 s, when temperature reaches its maximum
value, at the stop moment t = ts = 3.44 s and at the moment after being
stopped t = 6 s, when the cooling of the tribosystem takes place, is shown in
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Fig. 2. Isolines of the temperature

Fig. 3. Temperature distribution along the distance |z| from the contact surface at
three time moments

Fig. 3. It can be noticed then that for t = tmax, the temperature decreases with
thickness linearly and could be calculated from the approximate dependence
T (z, tmax) ≈ 121.01z + 740.62, −d ¬ z ¬ 0. The effective heat penetration
depth, the depth where temperature decreases to 5% of its maximum value
on the contact surface, is equal nearly to 6.5mm in both directions from the
contact surface.



374 A. Yevtushenko, M. Kuciej

The influence of strip thickness on the maximum temperature is significant
for the interval 0.01mm ¬ d ¬ 8mm (Fig. 4), whereas for values out of this
interval, the temperature can be calculated by solving the contact problem
with frictional heating during braking for two semi-infinite bodies (2.11) and
(2.15).

Fig. 4. Dependence of the maximum contact temperature Tmax = T (0, tmax) on the
strip thickness d

3. The plane-parallel strip – foundation system

The problem of contact interaction of the plane-parallel strip and the half-
space is now under consideration. The upper surface of the strip and the fo-
undation in infinity are subjected to the constant pressure p0. The strip slides
over the surface of the half-space along the y-axis of the Cartesian coordinate
system Oxyz with the centre at the plane of contact (Fig. 5). The velocity
of sliding V (2.1) decreases linearly with time t from the initial value V0 at
t = 0 down to zero at the stop time moment ts (2.1).
The transient dimensionless temperature fields in the strip and in the fo-

undation can be found from the solution to the heat conduction problem of
friction during braking (τ > 0)

∂2T ∗s (ζ, τ)

∂ζ2
=
∂T ∗s (ζ, τ)

∂τ
0 < ζ < 1

∂2T ∗f (ζ, τ)

∂ζ2
=
1

k∗

∂T ∗f (ζ, τ)

∂τ
−∞ < ζ < 0

(3.1)
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Fig. 5. Illustration of the problem

and (τ > 0)

K∗
∂T ∗f

∂ζ

∣

∣

ζ=0−
− ∂T

∗

s

∂ζ

∣

∣

ζ=0+
= q∗(τ) (3.2)

T ∗f (0, τ) = T
∗

s (0, τ) Ts(1, τ) = 0

T ∗f (ζ, τ)→ 0 ζ → −∞
T ∗s (ζ, 0) = 0 0 ¬ ζ ¬ 1
T ∗f (ζ, 0) = 0 −∞ < ζ ¬ 0

(3.3)

The dimensionless temperatures T
(k)∗
s,f (ζ, τ), k = 0, 1 in the strip and the

foundation for the intensities of heat fluxes q(k)∗(τ), k = 0, 1 (2.12) are found
in the form (τ  0, k = 0, 1, n = 0, 1, 2, . . .)

T (k)∗s (ζ, τ) =
2
√
τ

1 + ε

( τ

τs

)k ∞∑

n=0

ΛnT (k)∗s,n (ζ, τ) 0 ¬ ζ ¬ 1

T (k)∗s,n (ζ, τ) = F
(k)
(2n + ζ

2
√
τ

)

− F (k)
(2n+ 2− ζ
2
√
τ

)

(3.4)

T
(k)∗
f (ζ, τ) =

2
√
τ

1 + ε

( τ

τs

)k ∞∑

n=0

ΛnT
(k)∗
f,n (ζ, τ) −∞ < ζ ¬ 0

T
(k)∗
f,n (ζ, τ) = F

(k)
[(

2n− ζ√
k∗

) 1

2
√
τ

]

− F (k)
[(

2n + 2− ζ√
k∗

) 1

2
√
τ

]

Solutions (3.4) are obtained for zero temperature on the upper surface
ζ = 1 of the strip. If this surface is thermally insulated, then the corresponding
temperatures are found in form (3.4)1 and (3.4)3, in which (n = 0, 1, 2, . . .)

T (k)∗s,n (ζ, τ) = F
(k)
(2n + ζ

2
√
τ

)

+ F (k)
(2n+ 2− ζ
2
√
τ

)

(3.5)

T
(k)∗
f,n (ζ, τ) = F

(k)
[(

2n− ζ√
k∗

) 1

2
√
τ

]

+ F (k)
[(

2n + 2− ζ√
k∗

) 1

2
√
τ

]
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The numerical results have been obtained for the friction couple ChNMKh
cast iron (foundation) and FMK-11 metal-ceramics (the strip, the frictional
element of the patch) and the friction conditions of the previous problem.
All the results presented in Figs. 6-8 were obtained for two limiting types

of the boundary conditions on the upper surface z = d (ζ = 1) of the strip:
at zero temperature (dashed curves) and for thermal insulation (continuous
curves).

Fig. 6. Isolines of the temperature T [◦C] at ts = 3.44 s

For the known braking time ts = 3.44 s, the maximum temperatures
Tmax = 593

◦C and Tmax = 797
◦C are reached on the contact surface z = 0 at

the time moment tmax = 1.6 s in the case of zero temperature on the upper
surface of the strip (Fig. 6a), and tmax = 2.6 s when this surface is thermally
insulated (Fig. 6b). The evolution of temperature on the contact surface z = 0
(ζ = 0) is shown in Fig. 7, provided that the braking starts, the temperature
increases quickly, then it reaches its maximum and begins to decrease. The
largest value of temperature on this surface is reached in the case of the ther-
mally insulated upper surface of the FMK-11 strip. In the case of maintaing
zero temperature on the upper surface of the strip, the temperature on the fric-
tion surface, having obtained it is maximum value Tmax = 593

◦C, decreases
quickly and reaches the initial value 20◦C after 4.1 s.
Such a decreases in the temperature in the case of the thermally insulated

upper surface of the strip is of different nature. Having reached the maximum
value Tmax = 797

◦C, the temperature decreases much more slowly and the
time for obtaining the initial temperature value is much longer, and is greater
than 20 s.
In the case of thermal insulation of the upper surface of the strip, the

increase in thickness of the strip leads to a decrease of the maximum tempe-
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Fig. 7. Evolution of the contact temperature at ts = 3.44 s

Fig. 8. Dependence of the maximum temperature Tmax on the strip thickness d

rature (Fig. 8). At the same time, when temperature of the upper surface of
the strip is kept at zero, the maximum temperature increases with the growth
of thickness of the strip. The boundary conditions on the upper surface of the
strip have no influence on the maximum temperature, when the strip is thicker
than 10mm.

4. Conclusions

The presented solution describes a model of the heat generation process during
the single-braking mode in a multi-disk brake. As distinct from other solutions,
ours determines the temperature in each element of the tribosystem, both in
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the heating phase at braking and in the cooling phase, when the brake is re-
leased. Moreover, the temperature evolution and distribution in relation to
thickness of each material of the friction pair: cast iron disc + FMK-11 metal
ceramic patch on the steel foundation, were examined. The maximum tem-
perature value Tmax = 740

◦C, obtained as a result of numerical calculations,
corresponds pleasingly with the respective value found in the monograph by
Chichinadze et al. (1979).
The analytical solution to the transient heat problem of friction during

braking for the plane-parallel strip sliding over the semi-infinity foundation has
been obtained too. The temperature field for the friction pair FMK-11 (strip)
and ChNMKh (foundation) has been studied. The influence of the boundary
conditions on the upper surface of the friction element (strip) and the thickness
of this element on the distribution of temperature has been investigated. The
thickness of the strip at which the solution to the corresponding problem
of friction heating during braking for two half-spaces can be applicable is
established.
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Dwa zagadnienia przewodnictwa ciepła z uwzględnieniem nagrzewania

tarciowego podczas hamowania

Streszczenie

W pracy otrzymano analityczne rozwiązania początkowo-brzegowych zagadnień
przewodnictwa ciepła dla dwóch układów par tarciowych: 1) półprzestrzeń – warstwa
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– półprzestrzeń, 2) warstwa – półprzestrzeń. Założono, że prędkość ślizgania się ele-
mentów tarciowych w rozpatrywanych układach zmniejsza się liniowo z czasem, od
wartości początkowej do zera. Dla właściwości materiałowych: żeliwo – metalocera-
mika – stal oraz metaloceramika – stal, zbadano rozkład oraz ewolucję temperatury
w powyższych układach. Zbadano wpływ grubości warstwy na wartość maksymalnej
temperatury na powierzchni kontaktu. Wyniki przedstawiono w formie wykresów.
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