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An analysis is presented for free vibration of a non-homogeneous visco-
elastic circular plate with linearly varying thickness in the radial direc-
tion subjected to a linear temperature distribution in that direction. The
governing differential equation of motion for free vibration is obtained by
the method of separation of variables. Rayleigh-Ritz’s method has been
applied. Deflection, time period and logarithmic decrement correspon-
ding to the first two modes of vibrations of a clamped non-homogeneous
visco-elastic circular plate for various values of non-homogeneity para-
meter, taper constant and thermal gradients are obtained and shown
graphically for the Voigt-Kelvin model.
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1. Introduction

In recent years, an interest towards the effect of temperature on vibration of
plates of variable thickness are often encountered in engineering applications.
Their use in machine design, nuclear reactor technology, naval structures and
acoustical components is quite common. The reason for these is that during
heating up periods, structures are exposed to high intensity heat fluxes and
material properties undergo significant changes; in particular the thermal effect
can not be taken as negligible.
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Many analyses show that plate vibrations are based on non-homogeneity
of materials. Non-homogeneity can be natural or artificial. Non-homogeneous
materials such as plywood, delta wood, fiber-reinforced plastic, etc. are used
in engineering design and technology to strengthen the construction. There
are some artificial non-homogeneous materials such as glass epoxy and boron
epoxy in steel alloys for making rods in nuclear reactors.

Consideration of visco-elastic behaviour of the plate material, together
with its variation in thickness, of structural components not only ensures re-
duction in the rate and size but also meets desirability for high strength in
various technological situations in the aerospace industry, ocean engineering
and electronic and optical equipment.

In a survey of the recent literature, the authors have found that no work
deals with vibration of non-homogeneous visco-elastic circular plates of va-
riable thickness subject to thermal gradient. Several authors (Li and Zhou,
2001, Tomar and Gupta, 1983, 1985; Tomar and Tewari, 1981) studied the
effect of thermal gradient on vibration of a homogeneous plate of variable
thickness. Singh and Saxena (1995) discussed the transverse vibration of qu-
arter of a circular plate with variable thickness. It is well known (Hoff, 1958)
that in the presence of thermal gradient, the elastic coefficient of homogeneous
materials becomes a function of space variables. Lal (2003) studied transver-
se vibrations of orthotropic non-uniform rectangular plates with continuously
varying density. Warade and Deshmukh (2004) discussed thermal deflection
of a thin clamped circular plate due to partially distributive heat supply. So-
botka (1971) discussed rheology of orthotropic visco-elastic plates. Gupta and
Khanna (2007) studied the effect of linearly varying thickness on vibration of
visco-elastic rectangular plates of variable thickness. Recently, Gupta and Ku-
mar (2008) analysed vibration of non-homogeneous visco-elastic rectangular
plates with linearly varying thickness.

The present work deals with vibration of clamped non-homogeneous visco-
elastic circular plates with linearly varying thickness in the radial direction
subjected to a linear temperature distribution in this direction for the Voigt-
Kelvin model. The non-homogeneity is assumed to arise due to linear variation
in density of the plate material in the radial direction. Rayleigh-Ritz’s method
has been applied to derive the frequency equation of the plate. The time period,
deflection and logarithmic decrement for the first two modes of vibrations are
calculated for various values of thermal constants, non-homogeneity parameter
and taper constant at different points of a clamped non-homogeneous visco-
elastic circular plate with linearly varying thickness.
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2. Equation of transverse motion

The axisymmetric motion of a circular plate of the radius a is governed by
the equation (Leissa, 1969)
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The resultant moments Mr and Mθ for a polar visco-elastic material of the
plate are
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and D̃ is the visco-elastic operator.
The deflection w can be sought in the form of product of two functions as

follows
w(r, θ, t) =W (r, θ)T (t) (2.4)

where W (r, θ) is the deflection function and T (t) is the time function.
Using equations (2.2) and (2.4) in (2.1), one gets
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d2T

dt2
+ p2D̃T = 0

where p2 is a constant.
These equations are expressions for transverse motion of a non-

homogeneous circular plate with variable thickness and a differential equation
of the time function for free vibration of the visco-elastic plate, respectively.

3. Analysis of equation of motion

Assuming a steady temperature field in the radial direction for a circular plate
as

τ = τ0
(
1−
r

a

)
(3.1)
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where τ denotes the temperature excess above the reference temperature at
any point at the distance r/a from the centre of the circular plate of the ra-
dius a and τ0 denotes the temperature excess above the reference temperature
at r = 0.
The temperature dependence of the modulus of elasticity for most struc-

tural materials is given as (Nowacki, 1962)

E(τ) = E0(1− γτ) (3.2)

where E0 is the value of Young’s modulus at the reference temperature, i.e.
τ = 0 and γ is the slope of variation of E with τ . The module variation, in
view of expressions (3.1) and (3.2), becomes

E(r) = E0
[
1− α

(
1−
r

a

)]
(3.3)

where α = γτ0 (0 ¬ α < 1) is a parameter known as thermal gradient.
The expression for the maximum strain energy Vmax and maximum kinetic

energy Tmax in the plate, when it vibrates with the mode shape W (r, θ), are
given as (Leissa, 1969)
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It is assumed that the thickness and non-homogeneity varies in the r-
direction only, consequently the thickness h, non-homogeneity ρ and flexural
rigidity D of the plate become a function of r only.
Assume the mode shape as (Ramaiah and Kumar, 1973)

W (r, θ) =W1(r)cosθ (3.5)

taking W1(r) = rW 1(r) as the integration contains a negative power of r and
introduce non-dimensional quantities
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r
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(3.6)
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Now let us assume the thickness and non-homogeneity of the plate to be

h(R) = h0(1− βR) ρ(R) = ρ0(1− α3R) (3.7)

where h0 = h|R=0 and ρ0 = ρ|R=0.

Using equations (3.5), (3.6) and (3.7) in equations (3.4), one gets
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4. Solutions and frequency equation

Rayleigh-Ritz technique requires that the maximum strain energy must be
equal to the maximum kinetic energy. It is, therefore, necessary for the problem
under consideration that

δ(Vmax − Tmax) = 0 (4.1)

for arbitrary variation of W satisfying relevant geometric boundary conditions.

For a circular plate clamped at the edges r = a, i.e. R = 1, the boundary
conditions are

W =
dW

dR
= 0 at R = 1 (4.2)

and the corresponding two terms of deflection function is taken as

W (R) = C1(1−R)
2 + C2(1−R)

3 (4.3)

where C1 and C2 are undetermined coefficients.

Now using equations (3.8) in equation (4.1), one has

δ(V1 − p
2ℓT1) = 0 (4.4)
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where
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Equation (4.4) involves the unknowns C1 and C2 arising due to substitution
of W (R) from (4.3). These unknowns are to be determined from equation
(4.4), for which

∂

∂Cn
(V1 − p

2ℓT1) = 0 n = 1, 2 (4.7)

Equation (4.7) simplifies to the form

bn1C1 + bn2C2 = 0 n = 1, 2 (4.8)

where bn1, bn2 (n = 1, 2) involve the parametric constant and frequency para-
meter.
For a non-trivial solution, the determinant of the coefficient of equation

(4.8) must be zero. Thus, one gets the frequency equation as
∣∣∣∣∣
b11 b12
b21 b22

∣∣∣∣∣ = 0 (4.9)

where
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2
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Here F1, F2, F3 are functions of α, β and B1, B2, B3 are functions of α3.
Frequency equation (4.9) is a quadratic one with respect to p2 from which

two values of p2 can be found.
Choosing C1 = 1, one obtains C2 = −F4/F5 where F4 = 2(F1 + p

2B1),
F5 = F2 + p

2B2, therefore

W (R) = (1−R)2 −
F4
F5
(1−R)3 (4.10)
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5. Time function of vibration of non-homogeneous visco-elastic

plate

The time function of free vibration of the visco-elastic plate is defined by
general ordinary differential equation (2.5)2. Its form depends on the visco-
elastic operator D̃. For Kelvin’s model, one has Gupta and Kumar (2008) and
Sobotka (1978)

D̃ ≡ 1 +
η

G

d

dt
(5.1)

Taking the temperature dependence of shear modulus G and visco-elastic
coefficient η in the same form as that of Young’s modulus, one has

G(R) = G0[1− α1(1−R)] η(R) = η0[1− α2(1−R)] (5.2)

where G0 is the shear modulus and η0 is the visco-elastic constant at some
reference temperature, i.e. at τ = 0.
Using equations (5.1) and (5.2) in equation (2.5)2, one obtains
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Equation (5.3) is a differential equation of the second order for the time func-
tion T . Solving equation (5.3), one gets
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Thus, the deflection w(r, θ, t) may be expressed as

w(r, θ, t) =W (R)e−
p
2
qt

2

(
cos st+

p2q

2s
sin st

)
cos θ (5.7)

The time period of vibration of the plate is given by

K =
2π

p
(5.8)

where p is the frequency given by equation (4.9).
The logarithmic decrement of vibration is given by

Λ = ln
w2
w1

(5.9)

where w1 is the deflection at any point of the plate at the time period K = K1,
and w2 is the deflection at the same point at the time period succeeding K1.

6. Results and discussion

The deflection w, time period K and logarithmic decrement Λ are computed
for a non-homogeneous clamped visco-elastic circular plate with linearly va-
rying thickness for different values of taper constant β, thermal constants α,
α1, α2 and non-homogeneity constant α3 and different points for the first two
modes of vibrations. The results are shown in Figs. 1-6.
For numerical computation, the following material parameters are used

(Nagaya, 1977): E0 = 7.08 · 10
10 n/m2, G0 = 2.682 · 10

10 n/m2, η0 = 1.4612 ·
106 n.s/m2, ρ0 = 2.8 · 10

3 kg/m3, ν = 0.345.
The thickness of the plate at the center is taken as h0 = 0.01m.
Figure 1 shows that the time period K of the first two modes of vibration

decreases with an increase in the non-homogeneity parameter α3, and whe-
never the taper constant β and thermal constant α increase then the time
period increases for the first two modes of vibrations.
Figures 2 and 3 show that the deflection w starts from the maximum value

to decrease to zero for the first mode of vibration, but for the second mode of
vibration the deflection starts from the minimum value to grow and decrease
again to finally become zero for a fixed value of θ and increasing R for the
initial time 0K and 5K and uniform thickness.
Figures 4 and 5 show that when the taper constant β increases, the deflec-

tion for the first mode of vibration firstly increases to maximum then decreases
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Fig. 1. Variation of time period with non- homogeneity constant of visco-elastic non-
homogeneous circular plate with linearly varying thickness

Fig. 2. Transverse deflection w vs. R of visco-elastic non-homogeneous circular
plate with linearly varying thickness at initial time 0K

Fig. 3. Transverse deflection w vs. R of visco-elastic non-homogeneous circular
plate with linearly varying thickness at initial time 5K
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and finally becomes zero, but for the second mode of vibration the deflection
starts from the minimum value to increase and then decrease again finally
reaching zero for a fixed value of θ and increasing R for the initial time 0K
and 5K.

Fig. 4. Transverse deflection w vs. R of visco-elastic non-homogeneous circular
plate with linearly varying thickness at initial time 0K

Fig. 5. Transverse deflection w vs. R of visco-elastic non-homogeneous circular
plate with linearly varying thickness at initial time 5K

Figure 6 shows that the logarithmic decrement Λ decreases with an incre-
ase in R but it remains the same for a fixed value of R and different values of θ.
It can be seen in Fig. 6 that as the non-homogeneity parameter α3 increases,
the logarithmic decrement Λ decreases for the first two modes of vibration.



Vibration of non-homogeneous visco-elastic circular plate... 265

Fig. 6. Logarithmic decrement Λ vs. R of visco-elastic non-homogeneous circular
plate with linearly varying thickness
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Drgania niejednorodnej lepko-sprężystej płyty kołowej o liniowo zmiennej

grubości i ustalonym polu temperatury

Streszczenie

W pracy przedstawiono analizę drgań swobodnych niejednorodnej lepko-
sprężystej płyty kołowej o liniowo zmiennej grubości w kierunku promieniowym i pod-
danej polu temperatury o liniowym rozkładzie w tym kierunku. Konstytutywne rów-
nanie różniczkowe ruchu dla drgań swobodnych otrzymano poprzez separację zmien-
nych. Zastosowano metodę Rayleigha-Ritza. W wyniku analizy wyznaczono ugięcie
płyty, okres drgań i logarytmiczny dekrement tłumienia dwóch pierwszych postaci
drgań dla warunków brzegowych odpowiadających zamocowaniu niejednorodnej pły-
ty na brzegu. Wyniki przedstawiono graficznie w funkcji parametru niejednorodności,
stałej zawężania grubości oraz zmiennego gradientu temperatury przy wykorzystaniu
modelu reologicznego Kelvina-Voigta opisującego właściwości materiału płyty.
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