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The paper presents changes of modal parameters such as natural frequencies, damping ratios
and energy transfer ratios (ETR) following damage of the connection of a steel-concrete
composite beam. Sensitivity analysis of the parameters is conducted both for numerical
simulation and experimental results. The energy transfer ratio ETR is determined: i) for
the whole beam – as a global parameter which can be used for damage detection, ii) for
segments of the beam – as a local parameter which can be used for damage localisation.
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1. Introduction

Steel-concrete composite beams are often used in the bridge engineering as main carrying gir-
ders. Safety of bridge structures, both during constructional work and particularly during their
use, is of major importance. Therefore, continuous monitoring of the structure condition is an
increasingly common practice with a view to damage diagnosis in early stages for substantial
reduction of the cost of necessary repairs. Monitoring systems are often based on non-destructive
damage detection methods. They enable damage detection in places inaccessible during visual
inspection, e.g. in shear connectors of steel-concrete composite bridges (Liu and de Roeck, 2009;
Li et al., 2014a,b; Dilena and Morassi, 2004, 2009).
Non-destructive methods are often based on measurements of vibration of the structure.

Vibrations that are excited by a changing load are recorded and modal characteristics of the
structure are analysed. When damage appears, stiffness, damping and sometimes mass of the
structure change, causing changes in frequency response functions. This is reflected in changes
of modal parameters, including natural frequencies, mode shapes and damping parameters.
Methods based on analysis of such changes can provide an effective tool to damage diagnosis.
One of them, which deserves an in-depth analysis, is based on changes of the energy transfer
ratio (ETR). Since the method is used for non-proportionally damped structures, it has gained
little recognition as most studies assume analysed structures to be proportionally damped.
The energy transfer ratio was defined by Liang and Lee (1991). It defines the ratio of energy

which is transferred between different mode shapes. Based on an experimental research con-
ducted on a model of a composite bridge, the authors demonstrated that ETR was much more
sensitive to damage than the natural frequency or damping ratio. Their study revealed that
modal energy was transferred not only between mode shapes but also between their fragments.
It means that ETR can be determined both globally, for the whole construction, and locally, for
its segments, which can be used for damage localisation. Similar studies conducted on composite
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bridge models were also carried out by Kong et al. (1996), Liang et al. (1997), Wang and Zong
(2002, 2003).

The present paper is a continuation of two earlier studies published by Wróblewski et al.
(2011, 2013) which demonstrated a method of how ETR changes could be used for damage
detection and localisation in steel-concrete composite beams. The results obtained in numerical
analysis confirmed that ETR was more sensitive to changes in steel-concrete beam structure
than the natural frequency or damping ratio. However, it should be pointed out that the studies
were based on numerical damage simulation only. The present paper assesses changes of modal
parameters both based on numerical simulation results and experimental data. ETR is discussed
and tested as a damage detection tool, i.e. as a global parameter determined for the whole beam
and as a local parameter determined for segments of the beam, which can be useful for damage
localisation.

2. Experimental research

The analysed composite beam measures 3200mm in length and consists of IPE 160 made of
S235JRG2 steel, connected to a concrete slab made of C30/37 concrete. The connection between
the concrete and steel is made using headed steel studs, 10mm in diameter and 50mm in height.
The studs are placed in pairs every 150mm. The cross-section of the beam and stud distribution
along the beam are shown in Fig. 1.

Fig. 1. Composite beam: (a) cross-section, (b) distribution of connectors

Experiments have been conducted for a free-free beam. They were carried out by suspending
the tested beam on a steel frame by means of four elastic steel cables. The places where the
cables were attached to the concrete slab overlapped with the nodes of the fundamental flexural
mode shape of vibration of the beam.

An impulse test with a modal hammer was conducted to excite vibration of the structure. The
system response was measured in three orthogonal directions using piezoelectric accelerometers.
LMS SCADAS III, a multi-channel analyser, was used to measure the signal. It was connected
to a workstation, fitted with LMS Test.Lab software.

A grid of 52 measurement points were defined on the beam. In these points, accelerations
were measured. Two additional points, 53 and 54, were situated at one end of the beam. To
excite flexural vibration of the beam, force impulse was applied at point 53 perpendicularly to



Experimental validation of the use of energy transfer ratio... 243

the slab (−Y direction). To excite axial vibration of the beam, a force impulse was delivered at
point 54, on the slab edge (+X direction). A grid of measurement points and the directions of
the force impulse are presented in Fig. 2.

Fig. 2. Measurement point grid, points and directions of the force impulse

The Polymax algorithm, available in Test.Lab, was used to determine parameters of the
modal beammodel. The poles of the system were identified based on the analysis of a stabilisation
diagram. Only the measurement points on the beam mid plane (2, 4, 6, 8, . . . , 52) were used in
the analysis. This approach substantially made it easier to find flexural vibration modes which
were later analysed to detect and locate damage. It also enabled analysis of a two-dimensional
beam model.

Natural frequencies fi,exp obtained in experimental research and their corresponding modal
damping ratios ξi,exp for the first five flexural mode shapes are presented in Table 1.

Table 1. Modal parameters obtained during experimental research

i → 1flex 2flex 3flex 4flex 5flex

fi,exp [Hz] 74.68 172.72 273.01 373.40 472.03

ξi,exp [%] 0.15 0.30 0.41 0.39 0.34

In the successive stage of the experiment, connection damage was introduced into the be-
am. The damage was obtained by removing concrete around a pair of studs, which eliminated
the interaction between steel and concrete (Fig. 3). Dilena and Morassi (2003) used the same
approach to simulate damage.

Fig. 3. Damage of the connection
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Two degrees of damage, denoted by UZ1 and UZ2, were introduced into the beam. In damage
UZ1 concrete was removed around one pair of studs (Fig. 4a) while in damage UZ2 around two
pairs of studs (Fig. 4b).

Fig. 4. Damage localisation: (a) damage UZ1, (b) damage UZ2

3. Numerical analysis

The numerical model of the beam has been created using the Rigid Finite Element method
(Kruszewski et al., 1975, 1999; Wittbrodt et al., 2006). The central idea of the method is division
of a real system into rigid bodies which are called rigid finite elements (RFE), which are then
connected by means of spring-damping elements (SDE). For continuous parts of a structure, it
is customary to start creating a model with segmentation of a beam into equal or nearly equal
segments. This segmentation is also called a primary division, see Fig. 5a. A spring-damping
element SDE is placed in the centre of gravity of every segment. This SDE is supposed to
concentrate all spring and damping properties of a given segment. In Fig. 5b, SDE elements are
shown as ⊗ symbols. In the 2D model, each SDE is made up of three (two translational and one
rotational) independent spring-damping elements. The next step is to connect SDEs created in
the primary division by means of RFE. This is the so-called secondary division, see Fig. 5b.

While creating the model, the steel and concrete parts of the beam are treated separately.
Owing to this, the elasticity of the connection can be taken account of the simulations. The
connection between adjacent rigid finite elements (RFE) modelling the concrete slab is performed
in the classical way, i.e. using one SDE located in the axis of the slab. In the case of the steel
beam, another approach is proposed. One SDE is substituted with three separate SDEs placed
in the axes of the web and the flanges of the I-section. The SDEs modelling the connection
are located in the place where in the real beam a pair of steel studs would be found. Figure 5
presents the composite beam model.

To develop a mathematical model of a composite beam, it is necessary to know parame-
ters characterising the I-section, the concrete slab and the connection. Some parameters, e.g.
Young’s modulus of the steel, density of the materials, Poisson’s ratios, cross-sectional areas,
are determined on the basis of measurements and literature data. Other parameters necessary
to define the model are determined in two-stage parametric identification.

The first identification stage has been focused on determining the missing stiffness parame-
ters, i.e. Young’s modulus of the reinforced concrete slab Ec and stiffness of the connection Kv in
the vertical direction (perpendicular to the connection plane) and in the horizontal direction Kh
(parallel to the connection plane). The stiffness of the connection is influenced by spring proper-
ties of the steel studs, stiffness of concrete surrounding the studs and stiffness of the adjacent
section of the steel-concrete interface. The first identification criterion is the best fit of the first
five frequencies of flexural vibrations determined numerically to those found experimentally.
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Fig. 5. RFE model of the composite beam: (a) primary division, (b) secondary division

The second identification criterion is defined as the complete fit of the fundamental frequency
of axial vibration determined numerically and experimentally (it is due to strong correlation of
this frequency with Young’s modulus of the concrete slab Ec). Identification process has been
conducted with a MATLAB optimization toolbox, using fmincon function which finds a mi-
nimum of a constrained nonlinear multivariable function. The function can be used to find a
minimum with four different algorithms. Active-set and Interior-point were tested during the
analysis. Finally, the second algorithm was selected. The algorithm required determination of
the Hessian matrix, a matrix of second-order derivatives. The Hessian was determined using
BFGS, a variable metric method. The obtained fit of frequencies and the results of stiffness
parameter identification are presented in Table 2.

Table 2. Identification results of stiffness properties of the beam

i → 1flex 2flex 3flex 4flex 5flex 1ax

fi,exp [Hz] 74.68 172.72 273.01 373.40 472.03 585.94

fi,num [Hz] 74.93 170.91 275.55 375.06 469,05 585.94

∆i 0.34% −1.05% 0.93% 0.44% −0.63% 0.00%

Ec [N/m
2] 2.89 · 1010

Kh [N/m] 2.19 · 108

Kv [N/m] 1.44 · 108

At the second identification stage, the values of parameters defining damping properties, loss
factors for concrete Q−1c and connection Q

−1
con, have been identified. According to Rao (2004), the

loss factor for steel is Q−1s ∈ 〈2 · 10
−4, 6 · 10−4〉. Finally, the loss factor for steel was predefined

to be equal Q−1s = 4 · 10
−4. The identification process was based on fitting the amplitudes
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of the frequency response function (FRFs) obtained using RFE model with those obtained
during the experiment. For FRFs determined in the vertical direction (axis Y , impulse excitation
at point 53 : −Y ), the frequency range from 50Hz do 350Hz was fitted. The range includes
frequencies of the first three modes of flexural vibration. For FRFs determined in the horizontal
direction (axis X, impulse excitation at point 54 : +X), the frequency range including the
fundamental longitudinal vibration was considered. The following loss factors were determined in
the identification: Q−1c = 0.0100 and Q

−1
con = 0.0269. Figure 6 shows a comparison of illustrative

FRFs obtained experimentally with those calculated with the RFE model. The numbers of
points from a grid of measurement points used during the experiment and their corresponding
rigid finite elements numbers from the numerical model are given in Fig. 6. Location of RFE
No. 7 and RFE No. 17 corresponds exactly to the location of point No. 16 and point No. 40
which was placed on the bottom flange of the I-section during experiment (see Fig. 2).

Fig. 6. A comparison of FRFs (Y direction) obtained in the experimental research and those simulated
with the RFE model. The excitation force applied at point 53 : −Y

The comparison of the experimental and numerical mode shapes of vibration has been de-
termined using the Modal Assurance Criterion – MAC (Allemang and Brown, 1982)

MAC =
|QTnumQexp|

2

(QTnumQnum)(Q
T
expQexp)

(3.1)

where the vectors Qnum and Qexp denote respectively mode shapes determined numerically and
experimentally. The obtained values of MAC are presented in Table 3.

Table 3. Values of the coefficient MAC

i → 1flex 2flex 3flex 4flex 5flex

MAC i 0.97 0.92 0.88 0.82 0.72

According to literature reports (Uhl, 1997), the fit of a numerical model and an experiment
occurs when the MAC is above 0.8. As can be seen from Table 3, the condition is not satisfied
for the fifth mode shape. Therefore, the fifth mode shape is not included in further analysis.

Numerical simulation of damage in the connection, which included damage introduced in
experiments into the real beam, has been conducted for the developed model. Damage in the
connection was simulated by changing the spring properties of SDEs that modelled the connec-
tion: the stiffness coefficients of the respective SDEs were preset to equal zero Kh = Kv = 0.
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4. Analysis results

The sensitivity analysis of modal parameters following damage introduced into the beam has
begun with examination of changes in the fundamental modal parameters, such as natural
frequency and damping ratio. Then, the energy transfer ratio (ETR) was analysed. ETR was
determined globally, for the whole beam, and locally, for some parts of the beam.

4.1. Vibration frequency and damping ratio

The changes of natural vibrations and damping ratio after damage introduction both for the
calculated and experimental data are presented in Tables 4 and 5, respectively.

Table 4. Changes of natural frequencies following beam damage

Beam state → UZ0 UZ1 UZ2

i ↓ fi,num [Hz] fi,num [Hz] ∆i [%] fi,num [Hz] ∆i [%]

N
u
m
er
ic
al

an
al
y
si
s 1flex 74.93 74.53 −0.53 73.96 −1.29

2flex 170.91 170.23 −0.40 168.89 −1.18

3flex 275.55 272.87 −0.97 265.71 −3.57

4flex 375.06 369.74 −1.42 363.58 −3.06

i ↓ fi,exp [Hz] fi,exp [Hz] ∆i [%] fi,exp [Hz] ∆i [%]

E
x
p
er
im
en
t 1flex 74.68 73.97 −0.95 73.29 −1.86

2flex 172.72 170.22 −1.45 167.63 −2.95

3flex 273.01 267.45 −2.04 259.91 −4.80

4flex 373.40 365.50 −2.12 357.81 −4.18

As can be seen in Table 4, high consistency of natural frequency changes determined experi-
mentally and numerically has been achieved. Somewhat larger changes of the parameter, follo-
wing damage introduction, were recorded in experimental measurements. In each analysed case,
an increase of damage extent caused a decrease in the natural frequency, which was directly
associated with a stiffness loss of the beam.

Table 5. Changes of the damping ratio following beam damage

Beam state → UZ0 UZ1 UZ2

i ↓ ξi,num [%] ξi,num [%] ∆i [%] ξi,num [%] ∆i [%]

N
u
m
er
ic
al

an
al
y
si
s 1flex 0.26 0.28 9.62 0.33 27.04

2flex 0.41 0.42 4.74 0.51 26.47

3flex 0.51 0.57 12.98 0.86 68.67

4flex 0.61 0.68 11.47 0.78 27.02

i ↓ ξi,exp [%] ξi,exp [%] ∆i [%] ξi,exp [%] ∆i [%]

E
x
p
er
im
en
t 1flex 0.15 0.16 4.79 0.16 4.99

2flex 0.30 0.28 −5.56 0.29 −1.86

3flex 0.41 0.44 9.28 0.44 8.27

4flex 0.39 0.44 12.86 0.45 15.66

Changes in the damping ratio determined experimentally and numerically do not show the
level of similarity as in the frequency. The ratio is more sensitive than natural frequencies to
damage introduction, which is particularly true for numerical simulation results. There is a
tendency for the damping ratio to increase as damage extent increases.
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4.2. Energy transfer ratio ETR

The sensitivity analysis of the energy transfer ratio ETR for damage introduced into the
steel-concrete composite beam has been conducted in two stages. First, the results of numerical
simulations of damage produced with the rigid finite element model were analysed. Then, the
sensitivity analysis of ETR based on experimental results was conducted.
The equilibrium of a vibrating system with n degrees of freedom, including the effect of

damping, can be given by a system of differential equations

MẌ+CẊ+KX = F (4.1)

where:M, C, K – are mass, damping and stiffness matrices, Ẍ, Ẋ, X – vectors of acceleration,
velocity and displacement, F – the external force vector.
When considering free damped vibrations, the above equation can be written as

Ÿ +CẎ +KY = 0 (4.2)

where: Y =M0.5X, C =M−0.5CM−0.5, K =M−0.5KM−0.5.
For the system defined with Eq. (4.2), there is a set of modal parameters, i.e. natural fre-

quencies ωi, modal damping ratios ξi and the mode shapes Pi, where i = 1, . . . , n. For the
generalized stiffness matrix K, there are eigenvectors Qi, for which in proportionally damped
systems it is true that Qi = Pi. In non-proportionally damped systems, for which Qi 6= Pi, it
is true that (Liang and Lee, 1991)

ζi = Im

(

1

2ωi

Q
T
i CPi

Q
T
i Pi

)

(4.3)

where ζi denotes the energy transfer ratio ETR. The component (Q
T
i CPi)/(Q

T
i Pi) is defined

as the generalized Rayleigh quotient.
A more comprehensive discussion of ETR can be found in reports by Liang and Lee (1991)

and by Wang and Zong (2002).

4.2.1. Numerical analysis

Table 6 presents changes in the global ETR determined in numerical simulation of the beam
damage.

Table 6. Changes of global ETR following beam damage

Beam state → UZ0 UZ1 UZ2

N
u
m
er
ic
al

an
al
y
si
s

i ↓ ζi,num · 10
2 [%] ζi,num · 10

2 [%] ∆i [%] ζi,num · 10
2 [%] ∆i [%]

1flex 2.9 3.7 27 5.5 89

2flex 4.3 5.0 16 12.3 187

3flex 4.9 7.6 56 28.9 495

4flex 5.4 7.4 38 12.5 132

The analysis of the data demonstrates that the value of ETR increases with an increase in
the degree of damage in the connection of the beam. ETR can be said to be substantially more
sensitive to this type of damage than both the natural frequency and damping ratio. The largest
change of ETR occurred in the third mode shape, for UZ2 damage, when it amounted to 495%.
As mentioned above, the local ETR was determined for parts of the beam. It is to be

emphasised that the division into parts was conducted individually for each mode shape, so that
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each analysed part covered the area of a substantial curvature while at the same time avoiding
nodes of the mode shape. The analysis started from the second mode shape.
Figure 7 shows changes of the locally determined ETR following damage introduction. The

figure also presents the calculated mode shapes for the undamaged beam – the horizontal axis
shows the localisation of damaged stud connectors.

Fig. 7. Changes of local ETR ζi,num with mode shapes and damage area: (a) 2nd mode shape,
(b) 3rd mode shape, (c) 4th mode shape

The changes of the locally determined ETR distinctly show the area of damage. The minimum
sensitivity was observed for UZ1 damage, where the maximum change was 181%. Much larger
changes occurred for UZ2 damage, with the order of magnitude ranging from several hundreds
to even several thousands percent. The highest sensitivity was observed for the third mode shape
when ETR change was 1836%.

4.2.2. Experimental analysis

To determine ETR based on experimental data, it is necessary to know the damping matrix C.
The matrices determined for the RFE model for successive states of the beam, UZ0, UZ1 and
UZ2, were used in the analysis.
Table 7 shows changes of global ETR determined with the experimental data. The results

include changes that occurred for the second, third and fourth mode shape, i.e. those which were
going to be analysed in damage localisation.
The ETR changes determined with the experimental data occurred in the range of 13%-

-268%. Compared to numerical analysis results, the changes are smaller. However, it is to be
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Table 7. Changes of the global ETR following beam damage

Beam state → UZ0 UZ1 UZ2
E
x
p
er
im
en
t i ↓ ζi,num · 10

2 [%] ζi,num · 10
2 [%] ∆i [%] ζi,num · 10

2 [%] ∆i [%]

2flex 20.5 50.8 147 75.4 268

3flex 26.8 7.2 73 68.6 156

4flex 30.6 8.0 74 34.5 13

emphasised that the numerical analysis was not affected by distortions which did take place
during real measurements. The presence of uncontrolled distortions and measurement noise
may affect the results. However, despite this fact, changes of ETR, compared to frequency and
damping ratio changes, are much larger. It demonstrates that ETR is more sensitive to the
damage introduced into the beam.

Changes of local ETR following the connection damage are presented in a graphical form
in Fig. 8. Figure 8 also shows experimentally the determined mode shapes for the undamaged
beam – the horizontal axis shows the localisation of damaged stud connectors.

Fig. 8. Changes of local ETR ζi,exp with mode shapes and damaged areas: (a) 2nd mode shape,
(b) 3rd mode shape, (c) 4th mode shape

The analysis of graphs presented in Fig. 8 can identify locations where damage occurred. Very
good results were obtained for the second and fourth mode shapes. A comparison of Figs. 8 and 7
reveals that changes determined with the experimental data are smaller than those obtained in
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numerical simulation. As mentioned above, this is due to the influence of external factors and
measurement noise.

More comprehensive data on the experimental research, the model and the numerical analysis
can be found elsewhere (Jarosińska, 2014).

5. Conclusions

The paper presents results of sensitivity analysis conducted for natural frequencies, damping
ratio and energy transfer ratio following damage introduced into the connection of a steel-
concrete composite beam. Both numerical analysis results and experimental research confirmed
that ETR is more sensitive to the beam damage than the vibration frequency and damping
ratio. Interestingly, it is possible to effectively localise the damage introduced into the beam,
based on the analysis of changes of the locally determined ETR. It must be stressed, however,
that the determination of ETR requires experimental measurements to be conducted with high
precision since the method is based on changes in composite mode shapes.

Diagnostics of structures is a multistage process. Firstly, the damage must be detected using
modal parameters determined globally for the whole structure: vibration frequency, modal dam-
ping coefficient, global ETR, etc. Secondly, the detected damage is localised using locally deter-
mined parameters, e.g. PMAC (Heylen and Janter, 1990), CDF (Wahab and de Roeck, 1999) or
local ETR which has been used in the paper. Effectiveness of any method may be dependent on
external factors and measurement apparatus. The best way to detect and precisely localise the
damage is to use several methods at the same time. Evaluation of changes in modal parameters,
including global and local ETR, when accompanied by other methods, may be a successful tool
for detecting and localising damage in steel-concrete composite structures.

The problem of damage detection and localisation in composite beams is going to be conti-
nued in further research. Future investigations will be extended to include other types of damage
and localisation techniques.
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