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In the paper, the static sensitivity of complex structures with respect to random design para-
meters is presented. Using the adjoint system method, based on the mean-point second-order
perturbation method, the first two probabilistic moments of time-independent sensitivity are
formulated with means and cross-covariances of random design parameters as the input data.
It enables one to obtain the second-order accuracy of the solution. The presented formu-
lations are illustrated by a number of numerical examples. The influence of finite element
mesh density for the obtained results is discussed using the analysis of the spatial bar dome.
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1. Introduction

Since the beginning of mankind, humans have had aspirations to overcome their weaknesses and
limitations. It is the element of our nature, which became the basis of development in all fields
of life. In the civil engineering there are amazing objects that crossed existing barriers of height,
span and slenderness. These types of structures can not be computed by analytical methods
because of complexity of the system. Hence, the Finite Element Method (FEM) has become the
basis of contemporary structure analysis (Bathe, 1982; Zienkiewicz and Taylor, 1991; Kincayd
and Cheney, 2002). It is an approximate method which allows one to obtain highly precise results
with a properly dense FEM mesh.
A significant element of correct design is to model an object to reflect reality as closely as

possible while taking into account many factors including connections, materials, external loads,
etc. (see Leet et al., 2010). Engineers’ aim is to create programs for optimal design of new or
strengthen the existing structures. It involves findings the best solutions bearing in mind many
different aspects such as the maximum load, allowable displacement, cost, time and possibility
of execution, etc. (Niczyj, 2003; Choi and Kim, 2010). A very important case is to find an
answer to the question of how the changing of design parameters affects the structural response.
It is a subject of study of sensitivity analysis that can be found in (Haug et al., 1986; Mroz
and Haftka, 1986; Hien and Kleiber, 1989; Drewko and Hien, 2005; Ding et al., 2012; Mroz and
Bojczuk, 2012; Choi and Kim, 2013). This type of computations by using deterministic variables
has been extensively discussed in the literature. However, it has been proved that in systems
with many degrees of freedom (MDOF), even small uncertainties in structural parameters or
external loads may have a significant impact on the work and load capacity of the system.
The stochastic analysis (Adomian, 1983; Hisada and Nakagiri, 1981; Spanos and Ghanem, 1989;
Ghanem and Spanos, 1991; Kleiber and Hien, 1992; Li and Chen, 2009) includes randomness in
the described factors, and for complex systems it needs to be considered by numerical methods
because analytical solutions are in many cases impossible.
There are three main trends in the analysis with random variables: perturbation approach

(Greene et al., 2011; Liu et al., 2013), Monte Carlo simulation (Fishman, 1995; Rubinstein
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and Kroese, 2008), and Neumann’s expansion (Liu et al., 1986). The goal of this paper is a
numerical nonstatistical analysis of statics and time-independent sensitivity for MDOF systems
by random parameters. Starting from the stochastic version of the equilibrium equation, using
the mean-point second-order perturbation method, the equations for the first two probabilistic
moments of the sensitivity gradients with respect to the design parameters are derived, where
the means and cross-covariances of random variables are treated as the input data. Thereby, not
only the deterministic values of static response sensitivity are obtained but also the accuracy of
the received results as expected values and cross-covariances. These formulations are illustrated
by numerical examples.

2. Formulation of the stochastic sensitivity for statics in the finite element

context

The objective of structural sensitivity analysis is to consider the impact of design variable changes
on the system response. In this paper, the design variable vector is denoted by b = {ba},
a = 1, 2, . . . , A. It can be cross-sectional areas of structural elements, thickness of a shell or
plate, mass density, Young’s modulus etc., while displacements, stresses or natural frequencies
in main nodes can be treated as structural response measures.
The result of deterministic computation is only one variable at a given point, while the

stochastic analysis determines also the accuracy of the obtained value. During the second process,
the system is described by random variables. The time-independent random variable vector is
assumed in the form h = {hr}, r = 1, 2, . . . , r̂ and defined by means hr = E[hr] and cross-
-covariances Cov (hr, hs), r, s = 1, 2, . . . , r̂. From the definition, given by Kleiber and Hien
(1992), the first probabilistic moment of the random variable is expressed by

E[hr] =

+∞∫

−∞

hrp(hr) dhr (2.1)

and the second

Cov (hr, hs) = E[(hr − hr)(hs − hs)] = αrαshrhsµ(hr, hs) (2.2)

where

µ(hr, hs) =

+∞∫

−∞

+∞∫

−∞

hrhsp(hr, hs)dhrdhs (2.3)

and

αr =

√
Var (hr)

hr
=
σ(hr)

hr
(2.4)

In Equations (2.1)-(2.4) p(hr), p(hr, hs), µ(hr, hs), Var (hr), σ(hr) and α denote the probability
density function, joint probability density function, adopted function of correlation, variance,
standard deviation and the coefficient of variation, respectively.
In this paper from this moment forth, the summation notation is included. In the following

equations, two repeated indices imply the sum, which results in greater transparency of presen-
tation. Let us consider a linear elastic complex structure with N degrees of freedom. The static
response of the system can be formulated then by the functional (Kleiber and Hien, 1992)

φ = G[qα(ba, hr), ba] α = 1, 2, . . . , N (2.5)
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where qα is determined as the time-independent vector of generalized coordinates. In the sto-
chastic analysis of systems with multi degrees of freedom (MDOF), the stiffness matrix Kαβ and
the nodal load vector Qα are explicit functions of both the design parameter and the random
variable vector. In the static case, the considered system is time-independent, therefore damping
and mass effects are omitted during computations. Consequently, the equilibrium equation is
written in the stochastic form as

Kαβ(ba, hr)qβ(ba, hr) = Qα(ba, hr) α, β = 1, 2, . . . , N (2.6)

A solution to Eq. (2.6) with respect to qβ (Eq. (2.7)) proves that the nodal displacement vector
is an implicit function of ba and hr

qβ(ba, hr) = K
−1
αβ (ba, hr)Qα(ba, hr) (2.7)

To evaluate the probabilistic distribution of the static structural response with respect to the
design parameters, we tend to obtain an absolute partial derivative of the functional φ with
respect to the design variable, i.e. dφ/dba. Assuming that the stiffness matrix and the nodal load
vector are twice continuously differentiable with respect to ba, the chain rule of differentiation
gives

dφ

dba
=
∂G

∂ba
+
∂G

∂qα

dqα
dba

α = 1, 2, . . . , N a = 1, 2, . . . , A (2.8)

According to Eq. (2.5), G is an explicit function of ba and qα, therefore, the partial derivati-
ves ∂G/∂ba and ∂G/∂qα are known. The goal of the procedure is to find the absolute partial
derivative of the general coordinate vector with respect to the design variable, i.e. dqα/dba. To
formulate the static sensitivity problem, the so-called adjoint system method is used (Kleiber
and Hien, 1992; Choi and Kim, 2010). The adjoint equation system is adopted in the form

Kαβλβ =
∂G

∂qα
α, β = 1, 2, . . . , N (2.9)

Seeing that the stiffness matrix Kαβ and the vector ∂G/∂qα are functions of the design and
random variable, the solution to Eq. (2.9) with respect to λβ written as

λβ(ba, hr) = K
−1
αβ (ba, hr)

∂G

∂qα
(ba, hr) (2.10)

demonstrates that the adjoint variable vector is an implicit function of ba and hr and it is
expressed as λ = {λα(ba, hr)}, α = 1, 2, . . . , N . Differentiating Eq. (2.6) with respect to the
design variable and then solving it to obtain the vector dqα/dba and putting it into Eq. (2.8)
leads to

dφ

dba
=
∂G

∂ba
+K−1αβ

∂G

∂qα

(∂Qα
∂ba
−
∂Kαβ
∂ba
qβ
)

(2.11)

Substituting Eq. (2.10) into Eq. (2.11) we receive the equation for design sensitivity of the system
(Kleiber and Hien, 1992)

dφ

dba
=
∂G

∂ba
+ λα

(∂Qα
∂ba
−
∂Kαβ
∂ba
qβ
)

(2.12)

It should be noted that all terms in Eq. (2.12) are simultaneously functions of the design para-
meter and the random variable vectors. Now, all elements from Eqs. (2.6) and (2.9) are expanded
in power series around the means hr, in accordance with the following equation

(·) = (·)(h) +
[∂(·)
∂hr
δhr +

1

2

∂2(·)

∂hr∂hs
δhrδhs

]

h=h
r, s = 1, 2, . . . , r̂ (2.13)
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where δhr denotes the first variations hr about the means hr, and for any small parameter ǫ it
can be written as (Hien, 2003)

δhr = ǫ(hr − hr) (2.14)

while δhrδhs is called the second mixed variation of hr and hs about their means hr and hs

δhrδhs = ǫ
2(hr − hr)(hs − hs) (2.15)

All the functions of the random variable are expanded in Taylor series up to the second order
and substituted to Eqs. (2.6) and (2.9). After rearranging the equations and comparing terms
with the same order of ǫ, we receive the primary and adjoint systems of equations (compare,
Kleiber and Hien, 1992):
— one pair of systems of N equations of the zeroth-order

Kαβqβ = Qα Kαβλβ =
∂G

∂qα
(2.16)

— r̂ pairs of systems of N equations of the first-order

Kαβ
dqβ
dhr
=
∂Qα
∂hr
−
∂Kαβ
∂hr
qβ Kαβ

dλβ
dhr
=
∂2G

∂hr∂qα
−
∂Kαβ
∂hr
λβ (2.17)

— one pair of systems of N equations of the second-order

Kαβ
d2qβ
dhrdhs

∣∣∣∣
h=h

Cov (hr, hs) =
[ ∂2Qα
∂hr∂hs

−
∂2Kαβ
∂hr∂hs

qβ − 2
∂Kαβ
∂hr

dqβ
dhs

]

h=h
Cov (hr, hs)

Kαβ
d2λβ
dhrdhs

∣∣∣∣
h=h

Cov (hr, hs) =
[ ∂3G

∂hr∂hs∂qα
−
∂2Kαβ
∂hr∂hs

λβ − 2
∂Kαβ
∂hr

dλβ
dhs

]

h=h
Cov (hr, hs)

(2.18)

From the definition (Kleiber and Hien, 1992), the first probabilistic moment for the sensitivity
gradient is given by

E
[ dφ
dba

]
=

+∞∫

−∞

+∞∫

−∞

. . .

+∞∫

−∞︸ ︷︷ ︸
A−fold

dφ

dba
pA(b1, b2, . . . , bA) db1 db2 · · · dbA (2.19)

while the second probabilistic moment is expressed analogically as

Cov
( dφ
dba
,
dφ

dbb

)
= E
[( dφ
dba
− E
[ dφ
dba

])( dφ
dbb
− E
[ dφ
dbb

])]
(2.20)

The mean value of Eq. (2.12) may be written as

E
[ dφ
dba

]
= E
[∂G
∂ba

]
+ E
[
λα
∂Qα
∂ba

]
− E
[
λα
∂Kαβ
∂ba
qβ
]

(2.21)

Substituting Eq. (2.12) into Eq. (2.21) gives an expression for the second probabilistic moment
of the design sensitivity gradient in the form

Cov
( dφ
dba
,
dφ

dbb

)
= E
[(∂G
∂ba
+ λα

(∂Qα
∂ba
−
∂Kαβ
∂ba
qβ
)
− E
[ dφ
dba

])

·
(∂G
∂bb
+ λγ

(∂Qγ
∂bb
−
∂Kγδ
∂bb
qδ
)
− E
[ dφ
dbb

])] (2.22)
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All functions of the random variables from Eqs. (2.21) and (2.22) are expanded in Taylor series
in accordance with Eq. (2.13) and are premultiplied. Excluding members in orders higher than
the second and averaging the other terms, leads to an expression of the mean values of the design
sensitivity gradient, cf. Hien and Kleiber (1991), Kleiber and Hien (1992)

E
[ dφ
dba

]
=
[ ∂G
∂ba
+ λαAαa

+
1

2

( ∂3G

∂hr∂hs∂ba
+
d2λα
dhrdhs

Aαa + 2
dλα
dhr
Bαsa + λαCαrsa

)
Cov (hr, hs)

]

h=h

(2.23)

where, for clarity purposes, the following equations are used

Aαa =
∂Qα
∂ba
−
∂Kαβ
∂ba
qβ

Bαra =
∂2Qα
∂hr∂ba

−
∂2Kαβ
∂hr∂ba

qβ −
∂Kαβ
∂ba

dqβ
dhr

Cαrsa =
∂3Qα

∂hr∂hs∂ba
−
∂3Kαβ
∂hr∂hs∂ba

qβ − 2
∂2Kαβ
∂hr∂ba

dqβ
dhs
−
∂Kαβ
∂ba

d2qβ
dhrdhs

(2.24)

The cross-covariances at dφ/dba and dφ/dbb are

Cov
( dφ
dba
,
dφ

dbb

)
=
[( ∂2G
∂hr∂ba

∂2G

∂hs∂bb
+ (AβbBαas +AαaBβbs)λα

dλβ
dhr

−
(∂G
∂ba
Cβrsb +

∂2G

∂hr∂ba
Bβrb +

∂3G

∂hr∂hs∂ba
Aβb
)
λβ

−
(∂G
∂bb
Cαrsa +

∂2G

∂hr∂bb
Bαra +

∂3G

∂hr∂hs∂bb
Aαa
)
λα

−
(
2
∂G

∂ba
Bαsb +

∂2G

∂hs∂ba
Aαb + 2

∂G

∂bb
Bαra +

∂2G

∂hs∂bb
Aαa
) λα
dhr

−
(∂G
∂bb
Aαa +

∂G

∂ba
Aαb
) d2λα
dhrdhs

+ λαλβBαarBβbs +AαaAβb
dλα
dhr

dλβ
dhs

)
Cov (hr, hs)

−
1

4

( ∂3G

∂ht∂hu∂bb
+ 2
dλβ
dht
Bβub +Aβb

d2λβ
dhtdhu

+ λβCβtub
)

·
( ∂3G

∂hr∂hs∂ba
+
d2λα
dhrdhs

Aαa + 2
dλα
dhr
Bαsa + λαCαrsa

)
Cov (hr, hs)Cov (ht, hu)

]

h=h

(2.25)

with r, s, t, u = 1, 2, . . . , r̂. Interestingly, Eq. (2.25) is obtained by including terms up to the
second order, not only to the first like in Hien and Kleiber (1991), Kleiber and Hien (1992). The
procedure of obtaining and averaging particular members of the first two probabilistic moments
of the static design sensitivity can be found in detail in Weber (2014), while this paper is confined
to present only the final version of these equations.
The equation for covariances at dφ/dba and dφ/dbb in Weber (2014) is obtained by using the

expressions for E[dφ/dba] and E[dφ/dbb] as the final products. To derive Eq. (2.25), the members
E[dφ/dba] and E[dφ/dbb] are determined by Eq. (2.23) and substituted into Eq. (2.22). After
ordering particular members, a more concise expression for the second probabilistic moment of
the static design sensitivity than that presented by Weber (2014) is received.

3. Numerical examples – results and discussion

Deterministic and stochastic computations are executed by the finite element code POLSAP
(see, Hien and Kleiber, 1990), properly adapted for this type of analysis. At the beginning of
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numerical illustrations, let us consider a three-bar truss system. The analytical equations of
nodal displacements and their sensitivities with respect to cross-sectional areas of the elements,
were derived for the model by Choi and Kim (2010). The goal of this example is to obtain
not only the deterministic displacements of nodes, but also their expected values and standard
deviations by POLSAP and compare them with the results given by equations formulated by
Choi and Kim (2010).

Fig. 1. Three-bar truss system (a) presented in Choi and Kim (2010), (b) adopted in numerical
computation

To simplify the numerical model, the Choi and Kim system (2010) (see Fig. 1a) is rotated as
shown in Fig. 1b, and nodal loads are reduced to vertical and horizontal forces Fx = 18.33 kN
and Fy = 68.30 kN that correspond to forces F1 = F2 = 50 kN. All results shown in Tables 1
and 2 are given for the adopted global coordinate system xy presented in Fig. 1b. Therefore,
to compare the displacements and sensitivities, the values received by equations from literature
have to be transformed by using trigonometric functions with an angle of 30 degrees.

The input data of the material and elements are adopted for simplification as: Young’s
modulus E = 200GPa and cross-sectional areas of specific bars A1 = A2 = A3 = 5 cm

2. One bar
is assumed as one truss element in the numerical model. The cross-sectional areas of particular
elements are adopted as random design variables with the means E[Ar] = 5 cm

2, and correlation
function defined by the equation, cf. Kleiber and Hien (1992)

µ(Ar, As) = exp
(−|xr − xs|

λ

)
exp
(−|yr − ys|

λ

)
(3.1)

where xr, xs and yr, ys designates the x- and y-coordinates of the mid-points of the next two
elements in the model, respectively. The symbol λ denotes the decay factor depending on the
unit system used in numerical analysis. Its value is selected in order to receive no diagonal and
non-zero covariance matrix of the random variables. For this example, λ = 300 and the coefficient
of variation α = 0.1 are adopted as the input data. In the second moment perturbation method,
the random variables must fulfill the condition about small fluctuation and continuity at hr,
therefore, the selection of α-coefficient is a very important part of numerical computations, cf.
Weber (2014).
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The correlation function shows a dependence between the random variables. The bigger the
distance from one element to another, the smaller impact between them is observed. For the
members situated at a considerable distance from each other, the described dependence tends
to zero. Using Eq. (3.1), we obtain results equal to 1 on the main diagonal, and the values in
the range from 0 to 1 for other elements. Additionally, the bigger the difference between the
coordinates, the smaller results of the coefficient in the matrix, which satisfies the assumptions
for the correlation function.
The deterministic and expected values of displacements obtained by POLSAP are similar to

those given by Choi and Kim (2010) (see Table 1). The maximum difference between analytical
and deterministic results is about 0.3%, while that between deterministic and stochastic is 0.85%.

Table 1. Non-zero nodal static displacements for the three-bar truss system, [cm]

Node
number

Analytical
values

POLSAP
Coordinate Deterministic Expected

displacements values

1 x 0.073205 0.073416 0.073905

3 x −0.084108 −0.084146 −0.084863

3 y 0.145680 0.145868 0.147066

The functional of the structural response defined by Eq. (2.5) is accepted in numerical
analysis in the form

φ =
|qα|

qall
− 1 < 0 (3.2)

where qα, qall are the actual and allowable displacements in a selected node. To compare the
sensitivity results obtained from Choi and Kim (2010) and POLSAP, qall = 1.0 cm is assumed
for every node, otherwise the values given by the equations from literature should be divided by
the accepted qall.
In Table 2, displacement design sensitivities for selected nodes are presented. The maximum

difference between analytical and deterministic values is 0.43%. The deterministic and stochastic
results of static sensitivity vary in the range of 2.5-3.0%. The standard deviation is 19.4% of
expected values.

Table 2. Displacement design sensitivity - bar cross-sectional areas as random design variables,
[1/cm2]

Node
number

Displa- Obtained values POLSAP
cement based on Choi Deterministic Expected Standard
direction and Kim (2010) values values deviations

cross-sectional area of el. no. 2 as design variable

1 x −1.46410E-2 −1.46831E-2 −1.50737E-2 2.92693E-3
3 y −4.64102E-3 −4.66079E-3 −4.77790E-3 9.27750E-4

cross-sectional area of el. no. 3 as design variable

3 x −1.41421E-2 −1.41423E-2 −1.45617E-2 2.82752E-3
3 y −2.44949E-2 −2.45133E-2 −2.52209E-2 4.89726E-3

The second numerical example is a spatial dome presented in Fig. 2 (compare Weber and
Hien, 2010; Weber, 2014). The geometrical dimensions included in the analysis are: base diameter
1000 cm and height 500 cm. Each bar in the structure is modelled as a one beam element with the
following characteristics: Young’s modulus E = 200GPa, mass density 7.85KNs2/m4, Poisson’s
ratio ν = 0.3 and cross-section area A = 20 cm2. Nodes 1, 3, 5, 7 and 9 are supported by pins.
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For the static and sensitivity analysis, only one vertical force is taken into account
Fz = 1000 kN. For clarity purposes, the dead weight of the structure is omitted during compu-
tations. As it is well known, this type of bar structures loaded only in nodes is usually modelled
as a truss system. However, the goal of this presentation is to show the influence of complexi-
ty of the finite element mesh on static sensitivity results. Therefore, in this system, the rigid
connections between bars are assumed. A comparison of the results obtained for the truss and
beam model of this structure can be found in Weber (2014).

Fig. 2. Spatial dome (a) front, (b) bird eye – view

In static and sensitivity computations, the cross-sectional areas of elements are adopted
as random design variables with the mean values A = 20 cm2. The correlation function and
functional response of the system are assumed as in Eqs. (3.1) and (3.2). The decay factor
λ = 200 and the coefficient of variation α = 0.1 are used in numerical computations.
The largest vertical deflection occurs at the top of the dome, which is predictable because of

the point of force application. The deterministic and expected values of the nodal displacements
in different directions vary by about 1%, which is acceptable.
The considered system is symmetric in terms of geometry, supported conditions and external

load. Numerical computations give the same results in corresponding nodes, which confirms that
the model input to the program is correct. However, for clarity purposes, Table 3 presents the
values of displacements only for selected nodes.

Table 3. Selected nodal static displacements for the spatial dome, [cm]

Node
Coordinate

Deterministic Expected Difference
number displacements values [%]

31 z −2.049777 −2.070121 0.99

29 x −0.260314 −0.262972 1.02

30 x −0.162236 −0.163888 1.02

20 y −0.144629 −0.145915 0.89

19 y −0.100229 −0.101091 0.86

Both deterministic and stochastic analysis of static sensitivity study the vulnerability of
various node displacements with respect to cross-sectional areas of different elements. The value
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of qall is chosen separately for every node and movement direction, according to Eq. (3.2). The
most significant results of static displacement sensitivity for selected nodes, with the cross-
sectional areas of elements as the random design variables, are given in Table 4. The differences
between deterministic and expected values are about 2.5-3%, while the standard deviations are
equal to 20% of expected values. In both examples, all computations have been conducted in
centimeters and kilonewtons as basic units.

Table 4. Displacement design sensitivity – bar cross-sectional areas as random design variables,
[1/cm2]

Node
number

Displ.
direct.

qall
[cm]

Design Deterministic
values

Expected
values

Standard
deviationsel. number

31 z 2.5 72 −1.94449E-3 −2.00421E-3 3.88446E-4
10 z 1.0 29 −2.18042E-3 −2.23223E-3 3.78821E-4

29 x 1.0 71 9.89193E-3 1.01891E-2 1.97174E-3
30 x 1.0 72 6.14086E-3 6.32574E-3 1.22490E-3

20 y 1.0 32 −3.17786E-3 −3.25960E-3 5.7216E-4
19 y 1.0 40 −3.59847E-3 −3.69325E-3 6.59437E-4

Considering various examples of the static displacement sensitivity allows one to spot a
pattern. In most instances, a point displacement is the most sensitive with respect to, e.g., the
cross-sectional areas of elements in the immediate vicinity of the considered point. However, in
some cases there are certain derogations of the pattern when a displacement of a node turns out
to be the most sensitive with respect to the cross-section of an element not lying directly by the
examined node. Then sensitivity analysis allows one to find the key element of the considered
displacement. This computation changes our view of the importance of individual structural
members in the system and thereby should have a significant role in modern design.
To show the influence of finite element mesh complexity on the results of stochastic static

sensitivity, the second model of the spatial dome is created, where one bar is divided into
four beam elements, cf. Fig. 3. It yields a system consisting of 320 members. Thereby, we can
determine not only which element but also which part of it generates the displacement at a
specific point the most sensitive with respect to the cross-section area. This may be useful while
examining the model in terms of the predicted path of failure or structure strengthening.

Fig. 3. Selected element number

The comparison of results received for the first and second numerical models are summarized
in Table 5. It is clear that the sensitivity values obtained for the 320 element scheme is about
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four times less than for the 80 element one. It seems to be natural, because we examine the
sensitivity with respect to the cross-sectional areas of the elements four times shorter than at
the beginning. Careful analysis presented by Weber (2014) gives the following dependence: the
higher the number of finite elements in the mesh, the smaller impact of changes in cross-section
areas of elements on the nodal displacements.

Table 5. Displacement design sensitivity - bar cross-sectional areas as random design variables,
[1/cm2]

Node
number

Displ.
direct.

qall
[cm]

Design Deterministic
values

Expected
values

Standard
deviationsel. number

31 z 2.5 72a −5.18116E-4 −5.34095E-4 1.04516E-4
72b −4.71989E-4 −4.86661E-4 9.51452E-5
72c −4.62112E-4 −4.76374E-4 9.25389E-5
72d −4.88431E-4 −5.03158E-4 9.66361E-5

29 x 1.0 71a 2.41918E-3 2.49298E-3 4.87353E-4
71b 2.50572E-3 2.58152E-3 5.02619E-4
71c 2.51620E-3 2.59250E-3 5.05291E-4
71d 2.45059E-3 2.52538E-3 4.94002E-4

4. Concluding remarks

In the stochastic static sensitivity analysis by using the second order perturbation method, the
same member, for example the cross-section area of an element, is both the design and random
variable. It is significant in terms of the cost of numerical computations. It allows us to obtain
complex results in the form of deterministic and expected values, and standard deviations. On
the basis of the presented formulation, using the first two perturbation moments of random
variables as the input data, we obtain the means and cross-covariances of the static design
sensitivity with the second order accuracy. We receive results with the same precision as those
in the Monte Carlo simulation, but by considering an r̂ order system of equations no r̂3.

It is known that even small uncertainties in design parameters may have a large influence
on results of displacements and internal forces, therefore this type of analysis seems to be very
important in the design. Sensitivity analysis sometimes can provide a completely new insight
into the work of a structure and the meaning of particular members in the considered system.
It allows one to find the most sensitive point that determines the stability of the entire system.

In this paper, only design sensitivity with random parameters for the static case is presented.
It seems that dynamic computations need to be an integral part of analysis of complex structures.
Only by using both static and dynamic stochastic design sensitivity, we can determine the
optimal solution for a system while taking into account all relevant aspects. Therefore, the
dynamic sensitivity by deterministic and random parameters will be the subject of further work.
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