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Different models of two coupled homogeneous DNA chain vibrations are pro-
posed in the literature. By using as the basic approach to the DNA mathe-
matical modelling published by N. Kovaleva, L. Manevich in 2005 and 2007,
we consider a linearized model to obtain main chain subsystems of the do-
uble DNA helix. Analytical expressions of the circular eigen frequencies for
the homogeneous model of the double DNA chain helix are obtained. The
corresponding vibration eigen modes and possibilities of the appearance of
resonant regimes as well as dynamical absorption under external excitations
are considered. Two sets of normal eigen coordinates of the double DNA cha-
in helix for separation of the system into two uncoupled chains are identified.
This may correspond to the base pair order in complementary chains of the
DNA double helix in a living cell.
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1. Introduction

DNA is a biological polymer which can exist in different forms (A, B, Z, E, . . . )
but only B form can be found in live organisms. Chemically, DNA consists of
two long polymers of simple units called nucleotides, with backbones made of
sugars and phosphate groups joined by ester bonds. To each sugar one of four
types of molecules called bases is attached. Two bases on opposite strands are
linked via hydrogen bonds holding the two strands of DNA together. It is the
sequence of these four bases along the backbone that encodes information the
mechanical properties of DNA are closely related to its molecular structure
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and sequence, particularly the weakness of hydrogen bonds and electronic
interactions that hold the strands of DNA together compared to the strength
of bonds within each strand. Every process which binds or reads DNA is able
to use or modify the mechanical properties of DNA for purposes of recognition,
packaging and modification. It is important to note that, the DNA found in
many cells can be macroscopic in length – a few centimeters long for each
human chromosome. Consequently, cells must compact or ”package” DNA to
carry it within them (Bryant et al., 2003; Gore et al., 2006; Volkenstein, 1975).
Knowledge of the elastic properties of DNA is required to understand the

structural dynamics of cellular processes such as replication and transcription.
Binding of proteins and other ligands induces a strong deformation of the

DNA structure.
The aim of our work was to model the DNA dynamics (vibrations of DNA

chains) as a biological system in specific boundary conditions that are possible
to occur in a life system during regular function of a DNA molecule.

2. Mechanical properties of DNA determined experimentally

Experimental evidence suggests that DNA mechanical properties, in particu-
lar intrinsic curvature and flexibility, have a role in many relevant biological
processes.
For small distortions, DNA overwinds under tension (Gore et al., 2006).

Lowering of the temperature does increase the DNA curvature. Curved DNA
sequences migrate more slowly on polyacrylamide gels than their non-curved
counterparts possessing the same length. The anomaly in gel mobility is rela-
ted to the extent of DNA curvature (Tsai and Luo, 2000). The DNA double
helix is much more resistant to twisting deformations than bending deforma-
tions, almost all of the supercoiling pressure is normally relieved by writhing
(Arsuaga et al., 2002). The twist angle of the helix has been shown to depend
on sequence when the molecule is in solution, both by the effects on super-
coiling parameters when short segments of the known sequence are inserted
into closed circular DNA (Peck and Wang, 1981; Tung and Harvey, 1984) and
by the nuclease digestion patterns of DNA adsorbed on surfaces (Behe et al.,
1981; Tung and Harvey, 1984).
As a biomolecule, DNA also has electronic properties. When DNA is placed

in vacuum it shares characteristics with semiconductors. In a solution, DNA
transfers electrons via a different mechanism (Westerhoff and Merz Jr., 2006).
Under low tension, DNA behaves like an isotropic flexible rod. At higher ten-
sions, the behaviour of over- and underwound molecules is different. In each
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Fig. 1. Model of DNA duble helix from www.wikipedia.org

case, DNA undergoes a structural change before the twist density necessary
for buckling is reached (Bryant et al., 2003).

Mg2+ can induce or enhance curvature in DNA fragments and helps sta-
bilize several types of DNA structures (Brukner et al., 1994). The fraction of
bent molecules seen by EM or SFM was higher in the presence of cationic me-
tals. DNA length varied in solution with different ionic forces. It is significantly
longer in solution with a lower ionic force (Frontali et al., 1979).

3. DNA models by Kovaleva and Manevich

A number of mechanical models of the DNA double helix have been proposed
till today. Different models focuse on different aspects of the DNA molecule
(biological, physical and chemical processes in which DNA is involved). They
show that in a double DNA helix, a localised excitation (breather) can exist,
which corresponds to predominant rotation of one chain and small perturba-
tion of the second chain using the coarse-grained model of the DNA double
helix. Each nucleotide is represented by three beads with interaction sites
corresponding to the phosphate group, group of sugar ring, and the base (Ko-
valeva et al., 2007).

Kovaleva et al. (2007) pointed out that solitons and breathers play a func-
tional role in DNA chains. In the model, the DNA backbone is reduced to a
polymeric structure and the base is covalently linked to the center of the su-
gar ring group, thus a DNA molecule with N nucleotides corresponds to 3N
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Fig. 2. (a) ”Toy mechanical” model of DNA. a, DNA is modeled as an elastic rod
(grey) wrapped helically by a stiff wire (red) (Gore et al., 2006); (b) model scheme
of a double helix on six coarse-grained particles (Kovaleva et al., 2007); (c) fragment
of the DNA double chain consisting of three AT base pairs. Longitudinal pitch of
the helix a = 3.4 Å, transverse pitch h = 16.15 Å (Kovaleva and Manevich, 2005)

interaction centers. Apart from its well-known role as the cellular storehouse
of information, DNA is now being used to construct rigid scaffolds in one,
two and three dimensions on the nanoscale. This field is termed Structural
DNA Nanotechnology. It seeks to use the base complementarily design prin-
ciple of DNA to create ordered superstructures from a set of DNA sequences
that selfassemble into regular, well-defined topologies on the nanoscale (An-
selmi et al., 2005). Starting from a coarse-grained off-lattice model of DNA
and using cylindrical coordinates, the authors derived simplified continuum
equations corresponding to vicinities of gap frequencies in the spectrum of
linearised equations of motion. It is shown that the obtained nonlinear con-
tinuum equations describing modulations of normal modes admit spatially
localised solitons which can be identified with breathers. The authors formu-
lated conditions of the breathers existence and estimated their characteristic
parameters. The relationship between the derived model and more simple but
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widely used models is discussed. The analytical results are compared with the
data of numerical study of discrete equations of motion (see Fig. 2b).
Kovaleva and Manevich (2005) presented the simplest model describing

opening of the DNA double helix. Corresponding differential equations are
solved analytically using multiple-scale expansions after transition to complex
variables. The obtained solution corresponds to localised torsional nonlinear
excitation – breather. Stability of the breather is also investigated.
In their work, Kovaleva and Manevich (2005) considered B form of the

DNA molecule, the fragment of which is presented in Fig. 1b. The lines in
the figure correspond to the skeleton of the double helix, black and grey rec-
tangles show the bases in pairs (AT and GC). Let us focus our attention on
rotational motions of the bases around the sugar phosphate chains in the plane
perpendicular to the helix axis.
The authors deal with the planar DNA model in which the chains of the

macromolecule form two parallel straight lines placed at a distance h from each
other, and the bases can make only rotary motions around their own chain,
being all the time perpendicular to it. The authors accepted as generalized
(independent) coordinates ϕk,1 the angular displacement of the k-th base of
the first chain, and as generalized (independent) coordinates ϕk,2 the angular
displacement of the k-th base of the second chain. Then, by using the accepted
generalized coordinates ϕk,1 and ϕk,2 for k-th bases of both chains in the DNA
model, the authors derived a system of differential equations describing DNA
model vibrations in the following forms

Jk,1ϕ̈k,1 −
Kk,1

2
[sin(ϕk+1,1 − ϕk,1)− sin(ϕk,1 − ϕk−1,1)] +

+Kαβrα(rα − rβ) sinϕk,1 +

−Kαβ
1

4

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2 sin(ϕk,1 − ϕk,2) = 0

(3.1)

Jk,2ϕ̈k,2 −
Kk,2

2
[sin(ϕk+1,2 − ϕk,2)− sin(ϕk,2 − ϕk−1,2)] +

+Kαβrα(rα − rβ) sinϕk,2 +

+Kαβ
1

4

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2 sin(ϕk,1 − ϕk,2) = 0

where Jk,1 is the axial mass moment of inertia of the k-th base of the first
chain; Jk,2 is the axial mass moment of mass inertia of the k-th base of the
second chain, and the dot denotes differentiation with respect to time t. For
the base pair, the axial mass moments of inertia are equal to Jk,1 = mαr

2
α,

Jk,12 = mβr
2
β. The base mass mα, length rα, and the corresponding axial
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mass moment of inertia Jk,1 = mαr
2
α for all possible base pairs was assumed

as in Zhang et al. (1994). The fourth terms in the previous system of equations
describe interaction of the neighbouring bases along each of the macromolecule
chains. The parameter Kk,i (i = 1, 2) characterises the energy of interaction of
the k-th base with the (k+1)-th one along the i-th chain i = 1, 2. There are
different estimations of rigidity. For calculations, the most appropriate value
is close Kk,i = K = 6 · 10

3 kJ/mol.

4. Consideration of the basic DNA model – linearised
Kovaleva-Manevich’s DNA model

Let us investigate an oscillatory model of DNA, considered by Kovaleva and
Manevich (2005) and presented in the previous Section by a system of dif-
ferential equations (3.1) expressed by generalized (independent) coordinates
ϕk,1 and ϕk,2 for k-th bases of both chains in the DNA model.

For the beginning, it is necessary to consider the corresponding linearised
system of previous differential equations in the following form

Jk,1ϕ̈k,1 −
Kk,1

2
[(ϕk+1,1 − ϕk,1)− (ϕk,1 − ϕk−1,1)] +Kαβrα(rα − rβ)ϕk,1 +

−Kαβ
1

4

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2(ϕk,1 − ϕk,2) = 0

(4.1)

Jk,2ϕ̈k,2 −
Kk,2

2
[(ϕk+1,2 − ϕk,2)− (ϕk,2 − ϕk−1,2)] +Kαβrα(rα − rβ)ϕk,2 +

+Kαβ
1

4

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2(ϕk,1 − ϕk,2) = 0

or in that form

2Jk,1
Kk,1
ϕ̈k,1 − [(ϕk+1,1 − ϕk,1)− (ϕk,1 − ϕk−1,1)] +

2Kαβrα(rα − rβ)

Kk,1
ϕk,1 +

−

Kαβ

2Kk,1

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2(ϕk,1 − ϕk,2) = 0

(4.2)

2Jk,2
Kk,2
ϕ̈k,2 − [(ϕk+1,2 − ϕk,2)− (ϕk,2 − ϕk−1,2)] +

2Kαβrα(rα − rβ)

Kk,2
ϕk,2 +

+
Kαβ

2Kk,2

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2(ϕk,1 − ϕk,2) = 0
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For the case of homogeneous systems we can take into consideration that
Jk,1 = Jk,2 = J and Kk,1 = Kk,2 = K.

By changing the generalized coordinates ϕk,1 and ϕk,2 for k-th bases of
both chains in the DNA model into the following new ones ξk and ηk through
the relationships

ξk = ϕk,1 − ϕk,2 ηk = ϕk,1 + ϕk,2 (4.3)

The previous system of differential equations (4.2) acquires the following form

2J

K
ξ̈k − ξk+1 + 2ξk

[
1 +
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2
]
+

−ξk−1 = 0 (4.4)

2J

K
η̈k − ηk+1 + 2ηk

(
1 +
Kαβrα(rα − rβ)

K

)
− ηk−1 = 0

where k = 1, 2, . . . , n.

The first series of the previous system of equations is decoupled and in-
dependent with relations of the second series of the equations. Then we can
conclude that the new coordinates of ξk and ηk are main coordinates of DNA

chains and that we obtain two fictive decoupled single eigen chains of the DNA

liner model. This is the first fundamental conclusion as an important property

of the linear model of vibrations into double DNA helix.

Systems of differential equations (4.2) contain two separate subsystems of
differential equations expressed by the coordinates of ξk and ηk which are
main coordinates of the double DNA chain helix and separate the linear DNA
model into two independent chains. Then, it is possible to apply the trigono-
metric method (Rašković, 1965, 1985; Hedrih, 2006, 2008a,b) to both series of
equations (both subsystems) in the form (k = 1, 2, . . . , n)

ξk = Ak cos(ωt+ α) = C sin kϕ cos(ωt + α)
(4.5)

ηk = Ãk cos(ωt+ α) = D sin kϑ cos(ωt + α)

where

Ak = C sin kϕ Ãk = D sin kϑ (4.6)

are amplitudes of separate eigen chains of the model of the double DNA chain
helix, and ω circular eigen frequency of one vibration mode.

After introducing the proposed solutions into differential equations of pre-
vious separate subsystems (4.4), we obtain the following separate subsystems
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of algebraic equations with respect to the amplitudes Ak and Ãk

−Ak+1 + 2Ak
{[
1 +
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2
]
+

−

J

K
ω2
}
−Ak−1 = 0 (4.7)

−Ãk+1 + 2Ãk
(
1 +
Kαβrα(rα − rβ)

K
−

2J

K
ω2
)
− Ãk−1 = 0

After applying the following denotations

µ− κ =
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2

κ =
Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2 (4.8)

µ =
Kαβrα(rα − rβ)

K
u =
J

K
ω2

we obtain the following simple forms of subsystems (4.7)

−Ak+1 + 2Ak(1 + µ− κ− u)−Ak−1 = 0
(4.9)

−Ãk+1 + 2Ãk(1 + µ− u)− Ãk−1 = 0

After introducing proposed solutions (4.6), the trigonometric method is ap-
plied and we obtain two equations

C sin kϕ[−2 cosϕ+ 2(1 + µ− κ− u)] = 0
(4.10)

D sin kϑ[−2 cos ϑ+ 2(1 + µ− u)] = 0

From the previous system, we obtain the following eigen numbers for both
separate eigen chains of the model of the double DNA chain helix in the follo-
wing forms

u = 2 sin2
ϕ

2
+ (µ− κ) u = 2 sin2

ϑ

2
+ µ (4.11)

and the corresponding analytical expressions for circular eigen frequencies of
vibration modes of separate chains ω2

ω2s =
K

J

[
2 sin2

ϕs

2
+ (µ− κ)

]
ω2s =

K

J

[
2 sin2

ϑs

2
+ µ
]

(4.12)
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5. Boundary conditions of the double DNA chain helix

Now, it is necessary to consider some boundary conditions of the s-th double
DNA chain helix in accordance with possible real situations. For that reason,
we take into account two cases of the double DNA chain helix, in which the
ends of chains are either free or fixed. Then, we can write the following boun-
dary conditions for the double DNA chain helix:
— first case: both ends of the double DNA chain helix are free. In that situation
the first and n-th equations from the subsystems are in the form

A1(1 + µ− κ− 2u)−A2 = 0 −An−1 +An(1 + µ− κ− 2u) = 0 (5.1)

and

Ã1(1 + µ− κ− 2u)− Ã2 = 0 − Ãn−1 + Ãn(1 + µ− 2u) = 0 (5.2)

and after applying proposed solutions (4.6) we obtain that

ϕs =
sπ

n
ϑs =

sπ

n
s = 1, 2, . . . , n (5.3)

— second case: both ends of the double DNA chain helix are fixed

Ak = C sin kϕ A0 = An+1 = 0 Am+1 = C sin(n+ 1)ϕ = 0

Ãk = D sin kϑ Ã0 = Ãn+1 = 0 Ãm+1 = D sin(n+ 1)ϑ = 0

ϕs =
sπ

n+ 1
ϑs =

sπ

n+ 1
s = 1, 2, . . . , n

(5.4)
Then the analytical expressions for ω2s – circular eigen frequencies of the

vibration modes of separate chains in the double DNA chain helix are

ω2s =
K

J

[
2 sin2

ϕs

2
+
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2
]

(5.5)

ω2s =
K

J

[
2 sin2

ϑs

2
+
Kαβrα(rα − rβ)

K

]

— first case: both ends of the double DNA chain helix are free (see Fig. 3)

ω2s =
K

J

[
2 sin2

sπ

2n
+
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2
]

(5.6)

ω2s =
K

J

[
2 sin2

sπ

2n
+
Kαβrα(rα − rβ)

K

]
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Fig. 3. Double DNA chain helix in form of a multipendulum model with free ends

— second case: both ends of the double DNA chain helix are fixed (see Fig. 4)

ω2s =
K

J

[
2 sin2

sπ

2(n+ 1)
+
Kαβrα(rα − rβ)

K
−

Kαβ

2K

(
1−
ωαβ2

ωαβ1

)
(rα − rβ)

2
]

(5.7)

ω2s =
K

J

[
2 sin2

sπ

2(n+ 1)
+
Kαβrα(rα − rβ)

K

]

Fig. 4. Double DNA chain helix in form of a multipendulum system with fixed ends

6. Concluding remarks

At the end, we can conclude that the new coordinates of ξk and ηk composed
by generalized coordinates in as ξk = ϕk,1−ϕk,2 and ηk = ϕk,1+ϕk,2 are main
coordinates of the double DNA chain helix and that it is possible to obtain two
fictive decoupled and separated single eigen chains of the double DNA chain
helix linear model. This is the first fundamental conclusion as an important
property of the linear model of vibrations in the double DNA helix. Considered
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as a linear mechanical system, a DNA molecule as a double helix has its circular
eigen frequencies and that is its characteristic. Mathematically, it is possible
to decuple it into two chains with their own circular eigen frequencies which
are different. This may correspond to different chemical structure (the order of
base pairs) of the complementary chains of DNA. We are free to propose that
every specific set of the base pair order has its circular eigen frequencies, and
it changes when DNA chains are coupled in the system of double helix. DNA
as a double helix in a living cell can be considered as a nonlinear system, but
under certain conditions its behaviour can be described by linear dynamics.

Additionally, analytical expressions for the quadrate of ωs – circular eigen
frequencies of the vibration modes of separate chains of the homogeneous
double DNA chain helix are obtained. By using these results, it is easy to
consider these values as a series of resonant frequencies under external multi-
frequency excitations, and also as the reason for the appearance of dynamical
absorbtion phenomena as well as some explanation of real processes in the
homogeneous double DNA chain helix. Next considerations will be focused on
small nonlinearity in the double DNA chain helix vibrations and rare nonlinear
phenomena such as resonant jumps and energy interactions between nonlinear
modes.
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Postacie własne drgań podwójnego łańcucha helisy DNA

Streszczenie

W literaturze można spotkać opis różnych modeli sprzężonych drgań jednorod-
nego łańcucha DNA. W prezentowanej pracy rozważania oparto na zlinearyzowanym
modelu Kovalevej i Manevicha (2005, 2007) do wydzielenia głównych podukładów
łańcuchowych podwójnej helisy DNA. Uzyskano analityczne wyrażenia na częstości
własne jednorodnego modelu helisy i odpowiadające im postacie własne oraz po-
twierdzono możliwość wystąpienia rezonansów i dynamicznej absorpcji drgań przy
obecności wymuszeń zewnętrznym polem sił. Zidentyfikowano dwa zbiory współrzęd-
nych normalnych helisy DNA potrzebnych do separacji układu na dwa rozprzężone
łańcuchy. Niewykluczone, że mogą one odpowiadać rzędowi podstawowych komple-
mentarnych podwójnych łańcuchów DNA w żywej komórce.
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