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The subject of the paper is a circular plate under radial compression.
The plate is made of metal foam. Properties of the plate vary across its
thickness. The middle plane of the plate is its symmetry plane. The field
of displacement of any cross section of the plate, nonlinear components
of the strain field and the stress field are defined. Basing on the Hamilton
principle, a system of differential equations of dynamic stability of the
plate is formulated. This basic system of equations is approximately
solved. The results of the studies are compared to the homogeneous
circular plate and shown in figures.
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1. Introduction

Contemporary structures are manufactured, among other things, of metal fo-
am. Banhart (2001) presented the manufacture, characterisation and applica-
tion of cellular metals and metal foams for structures. Carrera (2000, 2001,
2003) reviewed the broken-line hypothesis and generalized it to multi-layered
constructions. Carrera et al. (2008) described the static analysis of functional-
ly graded material plates subjected to transverse mechanical loadings. Wang
et al. (2000) discussed in details the shear deformable effect of beams and
plates and described some special theories of them. Magnucka-Blandzi (2006,
2008, 2009) carried out analytical investigations of strength, stability and free
vibrations of porous-cellular plates with consideration of a non-linear hypo-
thesis of deformation of flat cross section of the structures. Volmir (1972)
collected and presented problems of non-linear vibrations and dynamic sta-
bility of thin plates and shells. Moreover, the dynamic criterion of stability
was formulated. Kowal-Michalska (2006) described dynamic stability of plates
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including criterions of: Volmir, Budiansky-Hutchinson, Ari-Gur and Weller,
Petry and Fahlbush.

In Magnucka-Blandzi (2009), linear analysis of the plate was studied. Inste-
ad, this paper is concerned with non-linear analysis of the porous circular plate.
The paper is an improvement and continuation of the papers by Magnucka-
Blandzi (2006, 2008, 2009). The plate with radius R and thickness h carries
a radial compressive force N(t).

2. Physical model of the plate

An isotropic porous circular plate with the clamped edge under radial compres-
sion is studied. The plate with a simply supported edge can also be analysed
in a similar way. The plate is made of the metal foam. The plate is porous
inside and the material is of continuous mechanical properties varying in the
normal direction (Fig. 1). A degree of porosity and Young’s modulus vary thro-

Fig. 1. Schemes of the plate and deformation of its plane cross section

ugh the thickness of the plate. The minimal values are in the middle surface
of the plate. The maximal values occur at its top and bottom surfaces. For
such a case, the Kirchhoff and Mindlin plate theories do not correctly deter-
mine displacements of the plate cross-section. Wang et al. (2000) discussed
in details the effect of non-dilatational strain of middle layers on bending of
plates subject to various load cases. Magnucka-Blandzi and Magnucki (2007),
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Magnucka-Blandzi (2006, 2008, 2009) thoroughly described the non-linear hy-
pothesis of deformation of the plate cross section. The moduli of elasticity and
mass density are defined as follows

E(z) = E1[1− e0 cos(πζ)]

G(z) = G1[1− e0 cos(πζ)] (2.1)

̺(z) = ̺1[1− em cos(πζ)]

where
e0 – porosity coefficient of elasticity moduli, e0 = 1− E0/E1
em – dimensionless parameter of mass density, em = 1− ̺0/̺1
E0, E1 – Young’s modulus at z = 0 and z = ±h/2, respectively
G0, G1 – shear modulus for z = 0 and z = ±h/2, respectively
Gj – relationship between moduli of elasticity for j = 0, 1,,

Gj = Ej/[2(1 + ν)]

ν – Poisson’s ratio (constant for the entire plate)

̺0, ̺1 – mass densities for z = 0 and z = ±h/2, respectively
ζ – dimensionless coordinate, ζ = z/h

h – thickness of the plate.

Choi and Lakes (1995) presented mechanical properties for porous
materials. Basing on their results, the following relationship is defined:
em = 1 −

√
1− e0. Magnucka-Blandzi and Magnucki (2007), Magnucki et al.

(2006), Magnucki and Stasiewicz (2004a,b) proposed a non-linear hypothesis
of the cross-section deformation of the structure wall. Deformation of any pla-
ne cross section is shown in Fig. 1. Applying this hypothesis, the displacements
are assumed in the same form as in Magnucka-Blandzi (2009)

u(r, z, t) =
(2.2)

+− h
{
ζ
∂w

∂r
−
1

π
[ψ1(r, t) sin(πζ) + ψ2(r, t) sin(2πζ) cos

2(πζ)]
}

where ψ1(r, t), ψ2(r, t) are dimensionless functions of displacements. If
ψ1(r, t) = ψ2(r, t) = 0, the field of displacement u is the linear Kirchhoff-
Love hypothesis.
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The nonlinear geometric relationships, i.e. components of the strain are

εr =
∂u

∂r
+
1

2

(∂w
∂r

)2
=

= −h
{
ζ
∂2w

∂r2
−
1

π

[∂ψ1
∂r
sin(πζ) +

∂ψ2
∂r
sin(2πζ) cos2(πζ)

]}
+
1

2

(∂w
∂r

)2

εϕ =
u

r
= (2.3)

= −h
{1
r
ζ
∂w

∂r
−
1

π

[1
r
ψ1(r, t) sin(πζ) +

1

r
ψ2(r, t) sin(2πζ) cos

2(πζ)
]}

γrz =
∂u

∂z
+
∂w

∂r
= ψ1(r, t) cos(πζ) + ψ2(r, t)[cos(2πζ) + cos(4πζ)]

where εr is the normal strain along the r-axis, εϕ is the circular strain, and
γrz – the shear strain. Basing on Hooke’s law, the stresses were defined.

3. Mathematical model of the plate

3.1. Potential energy and work of the load

Equations of dynamic stability are formulated basing on Hamilton’s prin-
ciple

δ

t2∫

t1

(T − Uε +W ) dt = 0 (3.1)

where T denotes kinetic energy, which is approximately formulated. It only
includes deflections w(r, t) without tangent displacements u(r, t).

T = πh

R∫

0

1

2∫

−

1

2

r̺(ζ)
(∂w
∂t

)2
dζdr

Uε is the energy of elastic strain

Uε = πh

R∫

0

1/2∫

−1/2

r(σrεr + σϕεϕ + τrzγrz) dζdr

W is the work which follows from the compressive force

W = πN(t)

R∫

0

r
(∂w
∂r

)2
dr
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R is the radius of the plate, ̺ – mass density of the plate, t1, t2 – initial
and final times, N(t) – intensity of the compressive force. In the numerical
calculations, the intensity of compressive force is assumed as follows

N(t) = N0 sin
2
(1
2
θt
)

or

N(t) = N0
t

t0

where θ = π/t0, t0 – the initial time. These forces have unchanging direction,
whereas the first one is an impulsive compressive force and the second one
steadly increases.

3.2. Equations of stability

Taking into account principle (3.1), the system of three stability equations
of motion for the porous plate under compression is formulated in the following
form

(δw)
∂

∂r

{
r
∂

∂r

{1
r

∂

∂r

[
r
(
c0
∂w

∂r
− c1ψ1 − c2ψ2

)]}}
−
1

h2
c9
∂

∂r

[
r
(∂w
∂r

)3]
+

+ 4
1− ν2

E1h3

[
πN(t)

∂

∂r

(
r
∂w

∂r

)
+ c10̺1rh

∂2w

∂t2

]
= 0

(δψ1)
∂

∂r

{1
r

∂

∂r

[
r
(
c1
∂w

∂r
− c3ψ1 − c4ψ2

)]}
+
1− ν
h2
(c5ψ1 + c6ψ2) = 0 (3.2)

(δψ2)
∂

∂r

{1
r

∂

∂r

[
r
(
c2
∂w

∂r
− c4ψ1 − c7ψ2

)]}
+
1− ν
h2
(c6ψ1 + c8ψ2) = 0

where

c0 =
π3 − 6e0(π2 − 8)

3π2
c1 =

8− πe0
π2

c2 =
225π − 512e0
300π2

c3 = 2
3π − 4e0
3π2

c4 =
64− 15πe0
30π2

c5 =
3π − 8e0
3

c6 =
32− 15πe0
30

c7 =
1575π − 4096e0
2520π2

c8 = 2
315π − 832e0
315

c9 = 2(π − 2e0)

c10 =
π − 2em
3
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The boundary conditions for the plate with the clamped edge are

w(R, t) = 0 ψ1(0, t) = ψ2(0, t) = 0

∂w

∂r

∣∣∣
r=R
= 0

∂w

∂r

∣∣∣
r=0
= 0

(3.3)

where Mr =
∫ h/2
−h/2 zσr dz is the radial bending moment. The system of diffe-

rential equations (3.2) includes three unknown functions, which are assumed
in forms

ψ1(r, t) = −6ψa1
[( r
R

)
−
( r
R

)2]

ψ2(r, t) = −6ψa2
[( r
R

)
−
( r
R

)2]
(3.4)

w(r, t) = wa(t)
[
1− 3

( r
R

)2
+ 2
( r
R

)3]

These functions satisfy boundary conditions (3.3). Substituting them into sys-
tem (3.2) and using Galerkin’s method, one obtains a system of three equations
in the form

[
c0 −
4π(1 − ν2)R2

15E1h3
N(t)
]
wa(t)− c1Rψa1 − c2Rψa2 +

4

35
c9
1

h2
w3a(t) +

+c10̺1
12(1 − ν2)R4

105E1h2
d2wa
dt2
= 0

c1wa − c13Rψa1 − c12Rψa2 = 0 (3.5)

c2wa − c12Rψa1 − c11Rψa2 = 0

where
c11 = c7 + c8c14 c12 = c4 + c6c14

c13 = c3 + c5c14 c14 =
(1− ν)R2

15h2

From the second and third equations of system (3.5), ψa1 , ψa2 functions may
be calculated, namely

ψa1 = ψ̃a1
wa
R

ψa2 = ψ̃a2
wa
R

(3.6)

where

ψ̃a1 =
c1c11 − c2c12
c13c11 − c212

ψ̃a2 =
c2c13 − c1c12
c13c11 − c212
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Substitution of functions (3.6) into the first equation of system (3.5) yields the
second order nonlinear differential equation of motion in the following form

d2wa
dt2
+

c9
c10(1− ν2)

E1
̺1R4

w3a(t) +
7πNcr
3c10̺1hR2

(
1−

Nt
Ncr

)
wa(t) = 0 (3.7)

where

Ncr =
15E1h

3

4π(1 − ν2)R2
(c0 − c1ψ̃a1 − c2ψ̃a2)

is the intensity of the critical force (Ncr [N/mm]). Galerkin’s method allo-
wed one to reduce this problem of a continuous structure, circular plate, to a
discrete problem with a single degree of freedom.

In a particular case, the static equilibrium path follows from equation (3.7)
in the form

N(t) =
15

4π(1 − ν2)

[
c0 − c1ψ̃a1 − c2ψ̃a2 +

4

35
c9
(wa
h

)2]E1h3

R2

4. Numerical calculations

Some examples will be given below for a family of plates with height
h = 10mm, radius R = 1500mm, Young’s modulus E1 = 7100MPa and
mass density ̺1 = 2.7 · 10−7 kg/mm3. The influence of porosity coefficient of
elasticity moduli and the influence of compressive force on the amplitude of
displacement is studied. Two kinds of radial compressive forces are assumed.
Their plots are shown in Fig. 2. These two loads are in forms

N (1)(t) = N0
t

t0
N (2)(t) = N0 sin

2
(1
2
θt
)

where θ = π/t0.

In the first example, the intensity of compressive force is linear and assumed
in form N(t) = N0t/t0, where N0 = Ncr, t0 = 3 (the initial time). Static and
dynamic equilibrium paths are presented in Fig. 3 for the homogeneous plate
(e0 = 0) and for the non-homogeneous plate (e0 = 0.8).

In the second example, only the homogeneous plate is considered. The
intensity of compressive force is assumed as a pulsating compressive force
in form N(t) = N0 sin

2(θt/2), where θ = π/t0, t0 = 3 and N0 = kNcr
(k = 1.2, 1.5, 1.8). Static and dynamic equilibrium paths are presented in
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Fig. 2. Radial intensity of compressive forces

Fig. 3. Amplitudes of deflections for homogeneous and non-homogeneous plates

Fig. 4. Amplitudes of deflections for the homogeneous plate

Fig. 4. The influence of the pulsating compressive force on the amplitude of
displacement is shown.

In the last example, homogeneous and non-homogeneous plates are com-
pared. In Fig. 5, the plots of equilibrium paths are shown. The pulsating com-
pressive force is the same as previously, but N0 = 1.8Ncr.

It could be noticed that in the post-buckling state vibrations of the plates
around the static equilibrium paths for homogeneous and non-homogeneous
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Fig. 5. Amplitudes of deflections for homogeneous and non-homogeneous plates

plates appear as well. The above results of numerical analysis issue from the
simplified circular plate model. Despite of this simplification, the behaviour of
the plate under dynamic loads could be useful in practice.

5. Conclusions

• The metal foam circular plate is a generalization of sandwich or multi-
layer plates.

• Correct hypotheses of plane cross sections for homogeneous plates are
useless in the case of a porous-cellular plate as elastic constants vary
considerably along its depth.

• The non-linear hypothesis of deformation of the flat cross section of the
plate is optional to hypothesis presented byWang et al. (2000) or Carrera
(2001, 2003) and Carrera et al. (2008) and it includes:

– linear hypothesis for homogeneous plates

– shear deformable effect.

• The mathematical model of dynamic stability of the metal foam circular
plate could be reduced to a single differential equation of motion.

• The dynamic equilibrium path is the solution to differential equation of
motion (3.7).

• In a particular case, the static equilibrium path follows from equation of
motion (3.7).
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Analiza nieliniowa stateczności dynamicznej płyty kołowej wykonanej

z piany metalowej

Streszczenie

Przedmiotem pracy jest płyta kołowa obciążona promieniowo. Płyta wykonana
jest z piany metalowej. Właściwości mechaniczne płyty są zmienne na jej grubości.
Płaszczyzna środkowa płyty jest jej płaszczyzną symetrii. Zdefiniowano pole prze-
mieszczeń dla dowolnego przekroju poprzecznego płyty, nieliniowe odkształcenia oraz
naprężenia. Układ równań różniczkowych stateczności dynamicznej płyty zdefinio-
wano na podstawie zasady Hamiltona. Układ ten rozwiązano w sposób przybliżony.
Wyniki badań numerycznych tej płyty porównano z odpowiednimi wielkościami dla
płyty jednorodnej i przedstawiono na rysunkach.
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