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Buckling behavior of cylindrical shells subjected to combined pressure, torsion and axial
compression is presented by employing a symplectic method. Both symmetric and non-
-symmetric boundary conditions are considered. Hamiltonian canonical equations are esta-
blished by introducing four pairs of dual variables. Then, solution of fundamental equations
is converted into a symplectic eigenvalue problem. It is concluded that the influence of pres-
sure on buckling solutions is more significant than that due to compressive load, in particular
for a longer external pressured cylindrical shell. Besides, buckling loads and circumferential
wavenumbers can be reduced greatly by relaxed in-plane axial constraints.
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1. Introduction

In practical applications, thin-walled cylindrical shells are not usually subject to only one single
loading condition but very commonly they are subject to a combination of three basic types of
loads, i.e. torsional load, pressure and axial compressive load. Therefore, it is very meaningful to
understand the interactive buckling behavior of cylindrical shells under the combined action of
two or all of these loads. In the previous theoretical studies, various approximate methods were
developed to predict the buckling loads of cylindrical shells with special boundary conditions.
One common numerical approximation is to assume a suitable series expansion for the displace-
ment, and subsequently transform the basic problem into a system of linear equations like in the
Galerkin method. Kardomateas and Philobos (1996) presented benchmark solutions for instabi-
lity of a thick-walled cylindrical shell under combined axial compression and external pressure
by separating variables and transforming higher-order partial differential equations into ordinary
differential equations. Despite obtaining more accurate results, it is necessary to assume some
forms of admissible displacement expressions. The solution space is also incomplete. Another
feasible approximate approach is to apply perturbation techniques to deal with the buckling of
shells with more complex physical properties. Some other approaches include analytical studies
by Anastasiadis et al. (1994) and Shen and Xiang (2008). In addition to the analytical and per-
turbation methods, the rapidly developing computational hardware and software also offer great
opportunities to challenge the complex buckling problems. For example, Mao and Lu (2001) used
the finite difference method to study plastic buckling of a thin-walled cylindrical shell subjected
to combined action of general loads based on the J2 deformation theory. Tafreshi (2006) and
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Vaziri and Estekanchi (2006) investigated buckling and post-buckling cylindrical shells subjec-
ted to pressure and axial compression by means of the finite-element method. By employing the
semi-analytical finite-element method, Ley et al. (1994) studied buckling loads of ring-stiffened
anisotropic cylinders subjected to axial compression, torsion, and internal pressure.

Most of the solution methods cited above can be regarded as approximate or numerical me-
thods, and most of the studies considered only two loads. It is very rare that three types of loads
are considered. The classical analytical methods which apply a Lagrangian system involve only
one type of variables. In the systems, the basic equations are expressed in higher-order partial
differential equations and even after separating the variables, analytical solutions are rather
difficult to be derived. In view of these shortcomings, Zhong (2004) presented a symplectic ana-
lytical theory to establish a standardized solution procedure for some fundamental problems in
solid mechanics. Applying the Legendre transformation, higher-order Lagrange governing equ-
ations can be converted to lower-order Hamiltonian dual equations. Hence, analytical solutions
can be subsequently obtained by separating variables in the symplectic space. This symplectic
analytical method is not only rigorous, but it also establishes a rational solution procedure.
In this regard, Xu et al. (2006) investigated local buckling and axial stress waves propagation
(and reflection). They developed a Hamiltonian system for solving dynamic buckling of cylin-
drical shells. Recently, based on classical Donnell’s shell theory, the authors (2014) presented a
symplectic solving method for buckling of cylindrical shells under pressure.

The main objective of this paper is the bifurcation buckling of cylindrical shells subjected
to a combination of pressure, torsion and compressive loads. Various combinations of in-plane
and transverse boundary conditions at both shell edges are considered. Applying the symplectic
approach, the Hamiltonian governing equations are obtained through the Hamiltonian principle
of mixed energy. Then the buckling loads and buckling modes can be related to the symplectic
eigenvalues and eigenvectors, respectively. The parameters which influence the shell buckling are
analyzed and discussed using some numerical examples.

2. Fundamental problem and Hamiltonian system

A cylindrical shell with radius R, length l, thickness t, Young’s modulus E and Poisson’s ratio ν,
as shown in Fig. 1, which is acted by a combination of loads including pressure P (positive for
an external pressure), torque T and compressive load N is considered. A circular cylindrical
coordinate with the x-axis along the shell axis is adopted, and u, v, w denote the corresponding
displacements along with the x-direction, θ-direction and r-direction, respectively.

Fig. 1. Geometric parameters of a cylindrical shell subjected to combined loads
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The constitutive relations are expressed as (Yamaki, 1984)
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where D = Et3/[12(1−ν2)] andK = Et/(1−ν2). Introducing a stress function φ, the membrane
forces can be expressed as
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Based on Donnell’s shell theory and neglecting the pre-buckling bending effect, the internal
forces of the buckling state can be obtained as N0x = N/(2πR), N

0
θ = −pR and N0xθ = T/(2πR).

From the variational principle, the Lagrange density function can be expressed in terms of elastic
potential energy and work due to the external load, as
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According to the variational equation δ
∫∫

L dS = 0, the compatibility condition and equ-
ilibrium equation can be obtained in the Lagrange system. For simplicity, the following dimen-
sionless terms are defined as X = x/R, U = u/R, V = v/R, W = w/R, Φ = φ/(Et3), L = l/R,
H = t/R, α = 12(1 − ν2), β = αH2, Ncr = N0xR2/D, Tcr = T 0xθR2/D and Pcr = N0θ /D. An
over-dot denotes differentiation with respect to θ, i.e. Ẇ = ∂W/∂θ, in which the θ-coordinate
is taken as a time-equivalent coordinate and ∂XW = ∂W/∂X. Introducing two additional va-
riables, ξ = −Ẇ and ϕ = −Φ̇, the dimensionless Lagrange density function can be expressed
as

L = −αW∂2XΦ−
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2−TcrẆ∂XW−
Pcr
2
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Applying Legendre’s transformation, a vector q = [W, ξ, Φ, ϕ]T is introduced and the cor-
responding dual vector, defined as p = [p1, p2, p3, p4]

T, can be derived from p = δL/δq̇. The
elements of p = [p1, p2, p3, p4]

T represent the equivalent transverse shear force, bending moment,
shear stress and normal stress, in the Hamiltonian system, respectively. Then, the Hamiltonian
density function is given by H(q,p) = pTq̇− L(q,p) and the Hamiltonian canonical equations
are
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where
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Defining a state vector ψ = [qT,pT]T, Eq. (2.5) can be simplified as

ψ̇ = Hψ (2.6)

where H is the Hamiltonian operator matrix (Zhong, 2004).

3. Symplectic eigenvalue problem

In a symplectic system, the solution to Eq. (2.6) can be derived by separating the variables, i.e.
ψ(X, θ) = η(X)χ(θ). Hence, Eq. (2.6) can be simplified to

χ(θ) = eµθ Hη(X) = µη(X) (3.1)

where η = [q′1, q
′
2, q
′
3, q
′
4, p
′
1, p
′
2, p
′
3, p
′
4] and µ represent the symplectic eigenvector and eigenvalue,

respectively. For a shell of revolution, the continuity condition requires ψ(X, 0) = ψ(X, 2π) and
the eigenvalues are µn = ni (n = 0,±1,±2, . . .). Substituting it into Eq. (3.1), the symplectic
eigenvalue equation can be expressed as

Hηn = niηn (3.2)

The characteristic polynomial of Eq. (3.2) is

λ8 + aλ6 + bλ5 + cλ4 + dλ3 + eλ2 + fλ+ g = 0 (3.3)

where a = −4n2 + Ncr, b = 2nTcri, c = 6n4 − 2n2Ncr − n2Pcr + α2/β, d = −4n3Tcri,
e = −4n6 + n4Ncr + 2n4Pcr, f = 2n5Tcri and g = n8 − n6Pcr. Solving Eq. (3.3) in the complex
domain, the n-th order eigenvector of Eq. (3.2) is given by
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where ck = [c1k, c2k, . . . , c8k]
T (k = 1, 2, . . . , 8) is a vector which consists of eight unknown

constants which can be determined from the boundary conditions. The eight characteristic roots
of Eq. (3.3) are λk (k = 1, 2, . . . , 8). Thus, the buckling solution can be expanded as
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where an and bn are the undetermined coefficients, and each expansion term of Eq. (3.5) is a
buckling mode.
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4. Boundary conditions and buckling bifurcation condition

In a Lagrangian system, the transverse boundary conditions are generally expressed in terms of
displacement components and internal forces. In a Hamiltonian system, the conditions must be
expressed in terms of the Hamilton dual variables. The clamped boundary conditions are
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In addition to transverse constraints, the in-plane boundary conditions are also necessary.
From Eq. (3.1), the displacement conditions U = 0 and V = 0 can be expressed in equivalent
forms as ∂2θU = 0 and ∂θV = 0 (Yamaki, 1984). Hence, the in-plane boundary conditions are:
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By using Eq. (3.4) and some specified boundary conditions, a homogeneous system consisting
of eight linear equations can be obtained as

Dc1 = 0 (4.7)

where c1 = [c11, c12, . . . , c18]
T is the undetermined coefficients vector, and Dij(Tcr, Ncr, Pcr, n)

are elements of the matrix D which is related to combinations of boundary cases, see Eqs.
(4.1)-(4.6). For the non-trivial solution, the determinant of D must vanish, or

|D|8×8 = 0 (4.8)

Consequently, the relationship of critical loads (Tcr, Ncr, Pcr) and buckling mode can be
determined from Eq. (4.8) and Eq. (3.4).



710 J. Sun et al.

5. Buckling results and discussion

Here, for convenience, a curvature parameter Z =
√
1− ν2L2/H is adopted. In the numerical

examples, the cylindrical shells have dimensionless thickness H = t/R = 0.01 and Poisson’s ratio
ν = 0.3. Various combinations of transverse and in-plane boundary conditions are assumed. For
two specified loads (either two of pressure Pcr, torque Tcr or axial load Ncr), the critical value
for the remaining load can always be determined from bifurcation condition, Eq. (4.8). As an
example, for some specified pressure and compressive load which act on the shell, the torsional
buckling load can be obtained.

From Eq. (3.1), integer n denotes the number of buckling waves in the circumferential di-
rection while the corresponding buckling mode can be referred as the n-th order mode. As
mentioned above, torsional buckling loads for various boundary conditions are illustrated in
Figs. 2 and 3 for Z = 500. In general, it is observed that the effect of pressure is more signi-
ficant than that due to axial compression. The buckling load goes up with increasing internal
pressure but decreases with growing external pressure. This observation is consistent with other
published results (Yamaki, 1984; Winterstetter and Schmidt, 2002). The result indicates that
a cylindrical shell loses stability more easily when acted by an external pressure. For in-plane
boundary conditions, it is noted that relaxing the in-plane axial constraint greatly reduces the
buckling torsional load. Comparatively, the transverse boundary conditions do have relatively
limited effect on buckling solutions. In Figs. 4 and 5, the buckling modes corresponding to va-
rious boundary conditions are presented for Pcr = 20 and Ncr = 200. It also clearly shows that
the in-plane boundary conditions play an important role on the relevant buckling behavior.

Fig. 2. Tcr vs. Pcr under clamped boundary conditions: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4

Here, a case with clamped transverse constraints in Eq. (4.2) and Case 1 with in-plane
constraints in Eq. (4.4) is considered. The buckling loads with the increasing shell length are
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Fig. 3. Tcr vs. Pcr under simply supported boundary conditions: (a) Case 1, (b) Case 2, (c) Case 3,
(d) Case 4

Fig. 4. Buckling modes for clamped boundary conditions: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4

illustrated in Fig. 6. It is noticed that the buckling loads rapidly decrease with an increase in
the shell length. The corresponding buckling modes for Pcr = 20 and Ncr = 200 are shown in
Fig. 7. The axial waveforms which vary with Z are also observed in the figure. For a fixed axial
compressive load (Ncr = 200) and curvature parameter (Z = 1000), the effect of buckling modes
with respect to the external and internal pressure is shown in Fig. 8. It is clearly observed that
the shell is twisted intensively with the increasing internal pressure. However, this effect reverses
completely if the shell is acted by an external pressure. The effect of compressive load on the
buckling modes is presented in Fig. 9 for Pcr = 40. It shows that an increase in the axial load
have a insignificant influence on the buckling deformation.
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Fig. 5. Buckling modes for simply supported boundary conditions: (a) Case 1, (b) Case 2, (c) Case 3,
(d) Case 4

Fig. 6. Tcr vs. Pcr under different curvature parameters Z: (a) Z = 50, (b) Z = 200, (c) Z = 500,
(d) Z = 1000

To study the effect of thickness on the buckling behavior, shells of thickness 0.002 and 0.005
are considered additionally. The buckling solutions for the shell with L = 2 are illustrated
in Fig. 10. The critical load is redefined as T cr = H

2Tcr. In the figure, it is observed that
the buckling torsional load increases for a thicker shell. For similar loading conditions, the
corresponding axial buckling modes are presented in Fig. 11. The figure indicates that the
buckling waves become densely for a thinner shell.

Next, the buckling response of cylindrical shells subjected to non-symmetric boundary con-
ditions is investigated. In this example, the shell has clamped transverse constraints and Ca-
se 1 in-plane constraints at X = 0. At the other end, the simply supported plus Case 1
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Fig. 7. Buckling mode with different curvature parameters Z: (a) Z = 50, (b) Z = 200, (c) Z = 500,
(d) Z = 1000

Fig. 8. Buckling modes under different pressure Pcr: (a) Pcr = −40, (b) Pcr = −20, (c) Pcr = 0,
(d) Pcr = 20, (e) Pcr = 40

Fig. 9. Buckling modes under different compressive load Ncr: (a) Ncr = 0, (b) Ncr = 40, (c) Ncr = 80,
(d) Ncr = 120, (e) Ncr = 160
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Fig. 10. T cr vs. Pcr: (a) H = 0.002, (b) H = 0.005, (c) H = 0.01

Fig. 11. Buckling modes for different shell thicknesses H : (a) H = 0.002, (b) H = 0.005, (c) H = 0.01

Fig. 12. Tcr vs. Pcr for the non-symmetric boundary condition (clamped at one end and simply
supported at the other end)

constraints are applied. The buckling loads and buckling modes are presented in Figs. 12.
The curvature parameter Z = 500 and thickness H = 0.01 are selected. Compared with
Figs. 2a and 3a, it can be found that the obtained torsional loads are smaller than those
of the symmetric clamped shells and larger than those of the symmetric simply supported
shells.



Combined load buckling for cylindrical shells... 715

6. Conclusion

A very effective Hamiltonian system constructed within a symplectic space for buckling of cylin-
drical shells subjected to a combination of pressure, torsion and axial compression is established.
Applying Legendre’s transformation, the Hamiltonian canonical equations are derived by intro-
ducing four pairs of dual variables. By separating the variables, the classical governing equation
is converted to a symplectic eigenvalue problem where only solutions for the symplectic eigenva-
lues and eigenvectors are required.

Through a systematic and rational procedure, it is derived that the eigensolutions for the
zero-eigenvalues and non-zero-eigenvalues represent axisymmetric and non-axisymmetric shell
buckling modes, respectively. For cylindrical shells subjected to pressure and axial compression,
the numerical examples concluded that: (i) buckling torsional loads should go up with an increase
in the internal pressure and decline with a rise in the external pressure and compressive load.
These changings induced by the applied pressure become more significant. For buckling modes,
the effect of pressure load on the twisted waveforms is also more obvious that caused by axial
compression; (ii) with the relaxation of the in-plane axial constraint, the downtrend of buckling
loads with respect to pressure should be more dramatic. And the corresponding buckling mode
also presents a slight twisted shape. Besides, the transverse boundary conditions have a limited
influence on buckling results while external pressures are not extremely large; (iii) buckling
torsional loads should be reduced for longer and thinner shells. The circumferential waves number
of the buckling mode increases with a decrease in the thickness and length of the shell; (iv) for
shells with non-symmetric boundary constrains, the buckling solutions fall in between those
under the corresponding symmetric boundary conditions.
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