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A micromechanical model for solution of the problem of transverse stiffness of unidirectional
fiber reinforced composites taking into account the presence of the interphase and a random
distribution of fibers over the transverse cross-section has been developed. The influence of
interphase properties on the elastic modulus in the transverse direction of glass/epoxy com-
posites has been investigated. It has been found that numerical computations of transverse
Young’s modulus obtained from the unit cell models for different fiber volume fractions are
in a good agreement with experimental data.
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1. Introduction

The third phase between original constituents of a composite, known as an interphase, forms as
a result of irreversible chemical reaction in the processing of thermosetting-matrix composites.
It has been observed by using the atomic force microscope nanoindentation that the interphase
has spatially varying rather than uniform properties (Gao and Mader, 2002). It is difficult to
investigate experimentally the effect of such thin interphases between fibers and a matrix on
composite properties. An alternative, or at least a complement to experimentation, is making
use of numerical micromechanical models which take into account the presence of the interphase.
Application of a representative unit cell approach in the modeling of the interphase is based on
the assumption that it is possible to isolate a small volume element of a composite that is
statistically representative of the material as a whole. Such an approach for the modeling of the
elastic behavior of fiber reinforced composites with interphases was proposed by Wacker et al.
(1998), Young and Pitchumani (2004) and Wang et al. (2006).

In the present study, both the inhomogeneous properties of the interphase and the random
fiber distribution over the transverse cross-section are incorporated into a one micromechanical
model. Application of such a unit cell in the modeling of the mechanical properties of fiber
reinforced composites is novel. It can be expected that the consideration of these two aspects
simultaneously allows us to identify the composite properties accurately.

2. Description of the micromechanical model

2.1. Unit cell

No manufacturing process can guarantee perfect uniformity of fiber placement in the com-
posite volume. Therefore, the analysis of composites with a random microstructure is desirable.
In this paper, the unit cell models of a randomly distributed fiber composite are generated using
Wongsto and Li’s algorithm (Wongsto and Li, 2005). The generation of a microstructure in
this algorithm is based on disturbing an initially hexagonal periodic array of fibers packed in
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a two-dimensional plane. The main input data are the number of fibers N , the fiber radius rf
and the fiber volume fraction Vf . A random angle α between 0

◦ and 360◦ is first generated to
determine the direction for the fiber to shift. Along this direction, a maximum possible distance
of the shift d is found. Next, the second random number k is generated between 0 and 1, and
the actual distance of shift is calculated as kd. This process is performed for every fiber to
complete one iteration. The stirring of fibers terminates after the required number of iterations
is completed and when the fiber volume fraction Vf in the central region of the unit cell is the
same as in the outskirts region. Wongsto and Li’s algorithm was implemented in Free Pascal
programming language. Figure 1 shows a typical unit cell with Vf = 0.52 containing N = 105
fibers. Using an ANSYS finite element code, plain strain models made of isoparametric trian-
gular finite elements with 6 nodes (PLANE183) were generated. It was assumed that perfect
bonding between the matrix and the fibers exists. To ensure accurate displacement and stress
field representation within each unit cell, sufficiently dense meshes consisting of approximately
2 · 106 elements with a quadratic displacement field approximation were used. The meshes com-
prised 400 elements equally spaced around the circumference of each fiber. It was found that
such a discretization was fine enough to give accurate results from the numerical viewpoint and
any increased mesh density provided no further accuracy in the solution obtained.

Fig. 1. Typical unit cell model with N = 105 fibers distributed at random for the fiber volume
fraction Vf = 0.52

2.2. Interphase model

Following the approach by Anifantis (2000), it has been assumed that elastic properties
of the interphase are non-uniform across its thickness and vary exponentially. The empirical
relationships between the radial distance from the fiber boundary and elastic moduli of the
interphase Ei, νi, are

Ei(r) = Em
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where r denotes the radial component of the polar coordinate system whose origin is placed in
the centre of a fiber, ri and rf are radii of the interphase and fiber, respectively. The factor q
can be approximated by a function of the factor p, which, in turn, determines the bonding
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conditions on the fiber surface and is defined by the ratio between the interphase modulus at
r = rf and the fiber modulus
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where

p =
Ei(r = rf )

Ef
(2.3)

where 0 < p < 1. Note, that a smaller p leads to a lower stiffness of the interphase. In nu-
merical implementation, the radially graded interphase is discretized into 10 concentric layers
characterized by homogeneous elastic properties as shown in Fig. 2.

Fig. 2. Close-up view of the finite element mesh in the region of individual consistuents

2.3. Model parameters

Numerical calculations have been performed for 3 different thicknesses of the interphase
t = 300, 500 and 700 nm and 4 different fractions of the fiber volume Vf = 0.333, 0.436,
0.531, 0.631. In this paper, 5 different non-uniform distributions of the elastic moduli within
the interphase characterized by factors p = 0, 0.15, 0.30, 0.50, 1.00 have been assumed for each
value of t and Vf . Note, that when p = 0, a two-phase model is considered and no interphase
occurs. And, in turn, when p = 1, a three-phase model without jumps in both elastic properties
on the fiber surface is considered. Finite element computations have been carried out for a
glass/epoxy composite reported by Wacker et al. (1998). The material parameters for the glass
fibers sized by using the polyurethane binder (PU) and anhydride-cured epoxy resin (LY556/917)
are summarized in Table 1.

Table 1. Properties of the constituent materials

Consitituent Properties

glass fiber (E-glass) Ef = 77GPa, νf = 0.2, rf = 6µm

epoxy resin (556/917) Em = 3.11GPa, νm = 0.34
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2.4. Homogenization

According to Hill’s principle (Hill, 1963), the volume average of the strain energy in a unit
cell should be equal to the energy produced by the average strain and stress in an equivalent
material

U = U eq (2.4)

where the strain energy of the equivalent material is given by

U eq =
1

2
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and the strain energy stored in the unit cell is as follows
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1
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where σij, εij are components of the microstress and microstrain, respectively, Φij are compo-
nents of the macrostrain and Cijkl are components of the stiffness tensor. The elastic constants
ν23 and E2 are determined by applying normal components of the macrostrain to the unit cell,
i.e. first Φ22 (state I), and next simultaneously Φ22 and Φ33 (state II). By using Eq. (2.4),
an appropriate system of linear algebraic equations for the unknown stiffnesses can be formed.
Under plane strain conditions, the solution for the stiffnesses is
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The relationships between the stiffnesses and the elastic constants are as follows

ν23 =
C2233

C2222 + C2233
E2 = C2222

(1 + ν23)(1 − 2ν23)

1− ν23
(2.8)

2.5. Boundary conditions

In the numerical homogenization, the periodic boundary conditions must be imposed on the
unit cell to reflect the repeatability of the microstructure and to ensure the compatibility of
the displacement fields. On the assumption of periodicity, each displacement field ui may be
decomposed in a linear part associated with the macrostrain Φij and a periodic one u

p
i

ui(x1, x2) = Φijxj + u
p
i (x1, x2) (2.9)

These relations are implemented at each periodic pair of nodes to link the displacements of the
top and the bottom boundaries and the displacements of the right and left boundaries of the unit
cell. Because of a huge number of nodes at the opposite boundary surfaces, a APDL program
(Ansys, 2007) has been used to generate all required constraint conditions (2.9) automatically.

3. Validation of random fiber distribution

An efficient method of characterizing the regularity or irregularity in the distributions generated
by this code is based on the computing of the pair distribution function g(r) (Pyrz, 1994). This
statistical function is defined as the probability of finding the centre of a fiber inside an annulus
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of internal radius r and thickness dr with the centre at a randomly selected fiber. It can be
expressed by the following equation

g(r) =
1

2πr

dK(r)

dr
(3.1)

where K(r) is the second order intensity function. It gives the average number of fiber centroids
expected to lie within the radius r about an arbitrary fiber centroid. For observations within
the finite window of area A, the second order intensity function is defined as (Pyrz, 1994)
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A

N2

N
∑
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(3.2)

where N is the number of fibers within A, Ik(r) is the number of fiber centroids within a circle
of the radius r not counting the central fiber, and Rp is the ratio of the circumference of a circle
of the radius r inside the viewing area to the entire circumference. For regular fiber distributions,
g(r) takes very sharp peaks and strongly oscillates with r. For random fiber distributions, on
the other hand, g(r) approaches a constant value of 1 as r increases.

4. Results and discussion

In Figs. 3 and 4, comparative analyzes of g(r) in dependence on the non-dimensional radial
distance are presented for two fiber volume fractions about 40% and 60%. The results presented
in these figures are obtained by the averaging over 10 samples containing N = 39, 105 and 538
fibers. The comparison reveals that the code used in the present paper is, in general, able to
produce random fiber distributions. Due to edge effects, the condition that g(r) = 1 as r
increases cannot be fully satisfied for small N . Although, the fiber arrangements for small Vf
and large N are more homogeneous and statistically valid, a tendency toward the random fiber
distribution is visible for all tested samples. Therefore, taking the above into account, the unit
cells involving the number N = 105 have been chosen for further study.

Fig. 3. Variation of the pair distribution function g(r) with normalized radius r/rf for the fiber volume
fraction about 40%; (a) random fiber arrangement; (b) initial hexagonal fiber arrangement
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Fig. 4. Variation of the pair distribution function g(r) with normalized radius r/rf for the fiber volume
fraction about 60%; (a) random fiber arrangement; (b) initial hexagonal fiber arrangement

The numerical calculations of transverse Young’s modulus in dependence on the fiber volume
fraction for the glass/epoxy composite with three values of the thickness of the interphase are
presented in Figs. 5-7. In order to validate the numerical results, transverse Young’s moduli
obtained through the unit cell models have been compared to the experimental data reported
by Wacker et al. (1998). It can be seen from these figures that the interphase parameters t and p
have the significant effect on transverse Young’s modulus. Note, that unit cell models without
the interphase (p = 0) always produce unreliable results that lie under experimental points.
For the case of models of too thin interphase (Fig. 5), numerical points have been also found to
localize under experimental points even for an extremely stiff interphase (p = 1). Models with
the interphase of a moderate thickness (Fig. 6) guarantee that mean values of the experimental
moduli lie within the range of p from 0 to 1. For the case of models of a thick interphase (Fig. 7),
not only the mean values but also standard deviations of the means are within this scope. Thus,
the interphase with t = 700 nm is the most reliable. For the thickness t = 700 nm, the models
with the interphase parameters p = 0.15 and 0.30 are in a very good agreement with the mean
values of experimental data.

Fig. 5. Comparison between the model predictions for t = 300nm and the experimental data
(Wacker et al., 1998)
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Fig. 6. Comparison between the model predictions for t = 500nm and the experimental data
(Wacker et al., 1998)

Fig. 7. Comparison between the model predictions for t = 700nm and the experimental data
(Wacker et al., 1998)

5. Concluding remarks

By using the unit cell approach and the finite element method, a micromechanical model of
fiber-reinforced composite for predicting transverse Young’s modulus has been proposed. In
particular, the effect of complex features such as the presence of the third phase between the
reinforcement and the matrix and its inhomogeneous as well as the random distribution of the
fibers over the transverse cross-section have been incorporated into the model. Also, a method
of identifying the interphase properties has been presented and validated by comparison with
the experimental data.
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