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This paper is concerned with the designing of simultaneous flight control deflections for air-
craft system identification. The elevator, ailerons and rudder are excited with harmonically
related multisine signals. The optimal deflections are designed when there is no information
about the stability and control derivatives and when this information is available. The in-
clusion of the system dynamics in the inputs design phase is done with the D-optimality
criterion. Both sets of optimal flight surface deflections are used as excitations of a nonli-
near aircraft model which is identified through the maximum likelihood estimation method.
Parameters accuracy for those maneuvers (designed with and without a-priori knowledge)
is presented and compared.
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1. Introduction

To obtain precise information about aircraft dynamics, aerodynamic stability and control de-
rivatives have to be determined. This can be done by various methods like wind tunnel tests
(Hoe et al., 2012), Computational Fluid Dynamics – CFD (Mader and Martins, 2011) and Sys-
tem Identification – Sys-ID (Jameson and Cooke, 2012; Jategaonkar, 2006; Lichota and Ohme,
2014). Among this group, the gathering of aerodynamic databases from flight test data is the
most reliable as it is based on experiments made on real objects. On the other hand, as multiple
flight tests are performed in the Sys-ID, it is of high cost and time consuming. CFD methods are
the least expensive in this group, however final results of aerodynamic derivatives (regardless of
the object) have to be compared with experiments (Rogowski and Maroński, 2015).

The Sys-ID approach consists of four main steps that are: designing and performing mano-
euvres, measuring the data, modelling the object and estimating unknown parameters. Those
steps are strictly connected, and if the registered data will be inaccurate or there will be not
enough information about the aircraft dynamics in the output signals, reliable estimation will
not be possible. As modern sensors allow one to obtain very high accuracy of the data and me-
asurement techniques are well developed a strong emphasis should be put on designing inputs
used for exciting the optimal aircraft response.

The research concerning excitations that were to maximize the information content in the
measured data was extensively investigated in the seventies and eighties. Those studies showed
that sine-sweep (linear or logarithmical) or typical multi-step inputs (pulse, doublet, 3-2-1-1) can
be used to develop a good mathematical model of an aircraft if only one flight control surface
is deflected through a manoeuvre. It has been shown recently that simultaneous multi-step
excitations could be used for this purpose as well (Lichota and Ohme, 2014), but this requires
a priori knowledge of the aerodynamic derivatives.

If the flight controls can be deflected at the same time, the use of harmonically related
multisine signals is possible as well. This approach does not require the initial information about
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the system and allows one to obtain estimates with the same quality (in terms of parameters
accuracy) as the design with simultaneous multi-step inputs. If the inclusion of the a priori
knowledge in the multisine inputs design phase would increase the quality of estimation, it would
mean that multisine signals are more adequate for aircraft Sys-ID purposes than simultaneous
multi-step excitations.

The incorporation of initial knowledge of aerodynamic parameters can be done by introdu-
cing the D-optimality criterion instead of the Relative Peak Factor in the multisine optimization
phase. In the present study, a linear aircraft model is used for this purpose as it is less com-
putationally demanding than the nonlinear representation. The designed set of simultaneous
multisine excitations is used as inputs for a nonlinear aircraft model that has been created in
Matlab. On the basis of recorded signals the unknown parameters of the object are estimated
by applying the maximum likelihood principle.

A similar procedure is applied to multisine signals that are designed without a priori know-
ledge of the system dynamics. Evaluated ailerons, elevator and rudder deflections are used as
excitations for the nonlinear aircraft model. The response of the object is recorded and then the
unknown parameters of the system are identified. The results are compared with the estimates
obtained from the manoeuvre in which initial values of the aerodynamic derivatives are available
in the inputs design phase.

2. Multisine input signals

The multisine input is an excitation that is composed of summed harmonic sinusoids with
individual amplitudes Ak and phase shifts φk (Morelli, 2012)

δ =
M∑

k=1

Ak sin(2πfkt+ φk) (2.1)

where k = 1, . . . ,M stands for the number of the harmonic, fk is the frequency of the k-th
component and δ is the input signal.

An important feature of the multisine signals is that they can be designed as mutually
orthogonal in the time and frequency domain (Morelli, 2003). This means that simultaneous
ailerons, elevator and rudder deflections can be independent. In order to achieve this aim, it
is required to assign different harmonics to each flight control (e.g. 2f0, 5f0, 8f0,. . . to ailerons,
3f0, 6f0, 9f0,. . . to elevator, 4f0, 7f0, 10f0,. . . to rudder). This assignment provides orthogonality
in the frequency domain as distinct spectral lines form the frequency content of each input. In
the time domain, the mutual orthogonality is achieved due to orthogonality properties of the
sine function (Morelli, 2012). It is practicable to omit the first harmonic in this assignment in
order to optimize the cost function effectively.

Frequencies of the consecutive components in the multisine signals are evenly spaced and
based on the excitation time T : fk = k/T . This also limits the minimum available frequency
which must satisfy the condition: fmin  2/T . The maximum available frequency is limited by
the frequency range of interest in the investigated case.

Multisine input signals have wide-frequency band and the amplitudes of the different har-
monics Ak are chosen to achieve desired power spectrum. If there is no need to put an emphasis
on specific frequencies, a uniform power spectrum should be used. For simultaneous aileron,
elevator and rudder deflections and flat power spectrum, the amplitudes Ak related to the j-th
control are given by

Aj,k =
Aj√
Mj

(2.2)
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where Aj is the amplitude of the j-th flight control and Mj is the number of the harmonic
components assigned to the j-th flight surface.
For each flight control, input energy maximization is done through proper selection of conse-

cutive harmonics phase angles φj,k. The phase angles should maximize the excitation effectiveness
without unnecessary increase in each signal value as this can cause that aircraft will go too far
from the trim conditions and will hinder the Sys-ID process. For this purpose, the Relative Peak
Factor (RPF ) can be used as it expresses the input amplitude range divided by the excitation
energy. The RPF is also scaled so that for a single sinusoid it is equal to 1. For the j-th flight
surface deflection δj , the RPF is given by

RPF (δj) =
max δj −min δj
2
√
2rms(δj)

(2.3)

RPF minimization is equivalent to input effectiveness maximization and can be achieved with
a simplex optimization algorithm. In our study, the Schroeder phase angles are used as initial
values of the phase angles φk for the j-th flight control (Schroeder, 1970)

φj,k = φj,k−1 + 2π(fj,k−1 − fj,k)tj,k−1 tj,k = T
k∑

l=1

pj,l (2.4)

where fj,k is the k-th harmonic frequency assigned to the j-th input and tk is time epoch. For the
flat power spectrum and the j-th flight control, the power of the k-th component is pj,k = 1/Mj .
As deflections should start and end with zero amplitude, it is necessary to find a constant

time offset for the components of each excitation. This is equivalent to sliding the inputs along
the time axis until the zero crossing occurs at t = 0.

3. D-optimal criterion

The design process of multisine input signals does not require knowledge of the system dynamics
in terms of stability and control derivatives. However, it is considered that inclusion of some
information about aerodynamic parameters in the design phase could increase the quality of
the aircraft response in terms of the Sys-ID. This requires introducing estimator based on the
minimum mean squared error (Kay, 1993)

MSE(Θ̂) = E[(Θ̂−Θ)2] = cov (Θ̂) + bias2(Θ, Θ̂) (3.1)

where Θ are the parameters of the model and Θ̂ are their estimates.
When the estimator is designed to be unbiased, the minimum mean squared error consists

only of the covariance term. This part can be determined on the basis of Cramér-Rao inequality
which states that the covariance of the unbiased estimator is at least as high as the inverse of
the Fisher Information Matrix F

cov (Θ̂)  F−1 (3.2)

The Fisher Information Matrix which is a measure of the amount of information that observable
variables carry about the unknown system parameters is defined as

F = E

{[
∂ lnL(Θ|z)
∂Θ

] [
∂ lnL(Θ|z)
∂Θ

]T}

(3.3)

where the likelihood function L(Θ|z) is equal to p(z|Θ) – conditional probability that the
measurement vector z is observed for the model parameters Θ.
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If the likelihood function is twice differentiable with respect to the model parameters, it can
be shown that

F = −E
[
∂2 lnL(Θ|z)
∂ΘΘT

]

(3.4)

Multivariate normal distribution is usually chosen to evaluate the probability density function
at a certain time point tk. Due to variables, independence the probability can be defined for all
time points in the manoeuvre (Jategaonkar, 2006)

p(z|Θ) = 1
√
(2π)n|R|N

exp

(

−1
2

N∑

k=1

[z(tk)− y(tk)]TR−1[z(tk)− y(tk)]
)

(3.5)

where n is the number of model outputs y, k = 1, . . . , N is the index of time samples and R is
the measurement noise covariance matrix.

The described approach with neglecting small terms leads strictly to the Fisher Information
Matrix sensitivity form

F ≈
N∑

k=1

[
∂y(tk)

∂Θ

]T
R−1

[
∂y(tk)

∂Θ

]
(3.6)

where the output signals gradients ∂y(tk)/∂Θ can be obtained through forward difference for-
mula. Introducing central differences does not increase the accuracy significantly and raises the
computational time, therefore, it is not used in the evaluations.

The columns of the Fisher Information Matrix represent contributions of the model para-
meters, so if the columns are independent, the determinant reaches its maximum value. On
the contrary, if the columns are linearly dependent, the determinant will accept the minimum
value. Therefore, the optimality criterion (D-optimality) is expressed by maximization of the
Fisher Information Matrix determinant what means that the estimation error ellipsoid volume
is minimized.

Inclusion of the D-optimality criterion in the multisine design phase can be used in order
to introduce the initial information about stability and control derivatives. This task can be
achieved by incorporating the linear aircraft model and minimization of the Fisher Information
Matrix inverse (Parameter Error Covariance Matrix P) determinant. The linear representation
has been selected because it well describes the object, and the computational time for single
evaluation is relatively short.

4. Linear model

The aircraft dynamic equations of motion are derived in a vehicle carried coordinate system
Oxyz and linearised in accordance with Etkin (1972). The origin of the Oxyz reference frame is
located at the center of gravity. The Ox axis coincides with the longitudinal axis of the airplane.
The Oy axis is normal to the aircraft symmetry plane and is pointing in the direction of the right
wing. The Oz axis is oriented downward, so it completes the right-handed coordinate system.
The Oxyz system is related to the vehicle carried Oxgygzg reference frame through rotation

angles: Φ (roll angle), Θ (pitch angle), Ψ (yaw angle) which are used to describe the orientation of
the object. The Oxgygzg coordinate system remaines parallel to the earth fixed reference frame
O1x1y1z1, whose origin is located at an arbitrary point of the Earth with the Ox1 axis pointed
north, Oy1 axis pointed east and the Oz1 axis is directed toward center of the Earth. Relations
between the described coordinate systems are shown in Fig. 1, and the transformations of linear
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Fig. 1. Coordinate systems and motion variables

and angular quantities from the gravitational reference frame Oxgygzg to the body coordinate
system Oxyz are given by the matrices

ΛV =




1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ








cosΘ 0 − sinΘ
0 1 0
sinΘ 0 cosΘ








cosΨ sinΨ 0
− sinΨ cosΨ 0
0 0 1





ΛΩ =




1 0 − sinΘ
0 cosΦ sinΦ cosΘ
0 − sinΦ cosΦ cosΘ





(4.1)

Dynamic equations of motion are derived from Newton’s second law of motion in Oxyz and
kinematic relationships, which leads to

m(V̇O +Ω×VO) = F IΩ̇+Ω× (IΩ) =MO Φ̇ = Λ−1Ω Ω (4.2)

where VO = [U V W ]
T is the velocity of the origin, Ω = [P Q R]T is the angular velocity,

Φ̇ = [Φ Θ Ψ ]T describes the aircraft orientation, m stands for mass, I for inertia matrix,
F = [X Y Z]T and MO = [L M N ]T are forces and moments acting on the object. The dot
symbol is used to denote derivatives with respect to time.
When the level flight is the equilibrium state, it is possible to linearize the equations of

motion and describe the system as follows

u̇ = Xuu+Xαα+ (Xq − u0α0)q + gθ cosΘ0 +XδEδE
β̇ = Yββ + (Yp + α0)p+ (Yr − 1)r +

g

|V0|
cosΘ0 + YδAδA + YδRδR

α̇ = Zuu+ Zαα+ (Zq + 1)q −
g

U0
sinΘ0 + ZδEδE

ṗ = Lββ + Lpp+ Lrr + LδAδA + LδRδR

q̇ =Muu+Mαα+Mqq +MδE δE

ṙ = Nββ +Npp+Nrr +NδAδA +NδRδR

φ̇ = p+ r tanΘ0

θ̇ = q

(4.3)

where small letters are used to describe the perturbations of the flight state from the trim
condition which is denoted by subscript 0 (e.g. U = u0 + u). Symbol g is used for gravitational
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acceleration, α is the angle of attack, β is the angle of sideslip and δA, δE , δR are ailerons,
elevator and rudder deflections respectively. The signs of flight control deflections are defined
with accordance to Hopkin (1970) – a positive flight surface deflection causes a negative aircraft
response. This means that: left aileron up, elevator down and rudder to left are considered as
positive. The symbols that are not defined yet are known as dimensional stability and control
derivatives, e.g. Mα is the pitching moment derivative with respect to the angle of attack.

5. D-optimal multisine inputs

Application of the D-optimality criterion for phase angles selection in multisine inputs design
requires minimization of the Fisher Information Matrix inverse determinant (cost function)

δ = min
φ
F
−1 (5.1)

The cost function has multiple local minima, therefore a genetic algorithm is selected for finding
the optimal solution. The phase angles related with j-th flight surface and k-th harmonic φj,k are
coded in a binary string that consists of fixed-length strings s. Base-2 floating point representa-
tion is used to determine phase angles for different aileron, elevator and rudder deflections

φj,k = 2π
∑

s

bs2
−s (5.2)

where s = 1, . . . , 12 is a part of the string that contains bit values bs ∈ {0, 1} used for coding a
specific phase angle φj,k.
Genetic algorithms mimics the process of natural selection and require multiple executions

of four steps that are: population generation, selection mating, exchange of the information and
mutation (Mitchel, 1999).
The initial population contains P possible solutions that are randomly drawn. The solutions

are decoded into input signals and sorted in descending order in accordance with the cost
function. Then different selection probability is assigned for each solution. The binary string
that represents simultaneous excitations and produces the highest cost function has the smallest
drawing probability pmin = 1/

∑P
i=1 i. The binary string that represents excitations with the

smallest cost function has the highest drawing probability pmax = P/
∑P
i=1 i. The probabilities

are assigned with the linear scale. In the next step, solutions are drawn in accordance to their
probabilities and combined in pairs.
Exchanging information between the solutions in each mated pair (parents) is done by apply-

ing uniform crossover which results in creating two new solutions (offspring). Applying uniform
crossover requires drawing a mask of flags which has the same length as coded solutions and is
filled with zeros and ones. The first offspring is formed from fields of the first parent when the
flag of the mask is 0 and from fields of the second parent when the flag of the mask is 1. The
second offspring is created in a similar way – from fields of the first parent when the flag of the
mask is 1 and from fields of the second parent when the flag of the mask is 0. The uniform cross-
over idea is shown in Fig. 2. Fields of the first parent have white background and of the second
parent – gray. The described procedure is carried for all mated pairs and results in creating a
set of new solutions whose size is equal to the initial population.
To introduce more diversity in the newly created population, a mutation operator is used.

This action requires drawing a number for each field of each solution. When this number is
higher than the threshold (0.95), the value of the field is changed from 0 to 1 or from 1 to 0.
After performing mutation for all solutions, the initial population is replaced by the new one.
In order to preserve the best simultaneous inputs, the parent that has the lowest cost function
is also included in this population.
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Fig. 2. Uniform crossover

The described steps: selection, crossing, mutation and population generation are performed
until the global maximum is found.

6. Nonlinear model

Multisine input signals designed with and without a priori knowledge of stability and control
derivatives are used as excitations of the nonlinear aircraft model (Lichota and Ohme, 2014;
Raab, 2006). The dynamic equations of motion of the object are given by (4.2). The forces and
moments that act on the aircraft consist of aerodynamic, gravitational and propulsion terms

F = Fa + Fg + Ft MO =Ma +
4∑

i=1

ri × Ft (6.1)

where r is the thrust force arm and the indices a, g and t indices denote aerodynamic, gravita-
tional and propulsion forces and moments.

The aerodynamic forces Fa = [Xa Ya Za] and moments MaO = [La Ma Na] are obtained
with the use of dimensionless force and moment coefficients (about quarter-chord point)

CD = CD0 + kC
2
L

CY = CY 0 + CY ββ + (CY p + CY pαα)p
∗ + (CY r + CY rαα)r

∗ + CY δRδR

CL = CL0 + CLWBαα+
SH
S
(CLHαHαH + CLHδEδE)

Cl25 = Cl0 + Clββ + (Clp + Clpαα)p
∗ + (Clr + Clrαα)r

∗ + ClδAδA + ClδRδR

Cm25 = Cm0 + CmWBqq
∗ − xLH

c

SH
S
(CLHαHαH + CLHδEδE)

Cn25 = Cn0 + Cnββ + (Cnp + Cnpαα)p
∗ + (Cnr + Cnrαα)r

∗ + CnδAδA + CnδRδR

(6.2)

where p∗ = pb/(2VO), q
∗ = qc/(VO) and r

∗ = rb/(2VO) are normalised angular rates, S is the
wing area, SH the horizontal tail area, xLH is the horizontal tail arm and k is the drag polar
coefficient. The indices WB and H in the equations for the lift force and pitching moment
coefficients denote Wing-Body and Horizontal tail, respectively.

The angle of attack at the horizontal tail is given by

αH = α−
∂ε

∂α
α
(
t− xLH
VO

)
+ iH + αdyn (6.3)

where ε is the downwash angle, iH is the horizontal tail setting angle and αdyn = qxLH/VO is
the dynamic angle of attack.

The force and moment coefficients are defined in the aerodynamic coordinate system Oxeyeze.
The Oxe axis has the direction of the flow, the Oye axis is directed towards the right wing and
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the Oze axis is directed upwards. As the equations of motion are derived in the body fixed
coordinate system Oxyz, the following transformation is required

Cx = −CD cosα+ CL sinα Cy = CY Cz = −CD sinα− CL cosα
Cl = Cl25 cosα− Cn25 sinα Cm = Cm25 Cn = Cl25 sinα+ Cn25 cosα

(6.4)

This allows one to obtain components of the aerodynamic forces and moments as

Xa = CxqS Ya = CyqS Za = CzqS

La = ClqSb Ma = CmqSc Na = CnqSb
(6.5)

The thrust force is a function of the throttle position, altitude and speed: T(δth, h, VO). It
is stored in a 3D array and interpolated for specific flight conditions. The gravitational force
Fg = mg is defined in the Oxgygzg coordinate system, therefore transformation to Oxyz is
required.

7. System Identification

The classical and most widely used definition of System Identification was given by Zadeh:
“Identification is the determination, on the basis on input and output, of a system within a
specified class of systems, to which the system under test is equivalent” (Zadeh, 1962). If the
response of the dynamical system and input signals are recorded and the structure of the model
is known then the Sys-ID is equal to adjusting the model parameters Θ so that the model
outputs y match the measured aircraft response z when the inputs u are the same. The process
can be done either offline or online in real time (Hendzel and Trojnacki, 2014).
The structure of the model we used in the Sys-ID was nonlinear and the same as for generating

the aircraft response what allowed us to eliminate modelling errors in the study. The adjusting
of model parameters was done in the time domain when all data was collected (offline). To find
the set of unknown model parameters we used the Output Error Method whose aim was to
minimize the error between measured system outputs and estimated response.
When the Maximum Likelihood Estimation principle is selected for error minimization the

task is equivalent to finding the parameters vector that maximize the conditional probability
p(z|Θ)

Θ̂ = argmax
Θ

p(z|Θ) (7.1)

where the hat symbol denotes the estimates, and the conditional probability p(z|Θ) is given by
(3.5).
As it is frequently done, we replace the probability maximization task by an easier action –

minimization of a negative log likelihood function (Jategaonkar, 2006)

L(Θ|z) = 1
2

N∑

k=1

[z(tk)− y(tk)]TR−1[z(tk)− y(tk)] +
nN

2
ln(2π) +

N

2
ln(det(R)) (7.2)

The unknown measurement covariance matrix R is estimated as

R̂ =
1

N

N∑

k=1

[z(tk)− y(tk)][z(tk)− y(tk)]T (7.3)

Substitution of the measurement covariance matrix estimate R̂ into the negative log likelihood
function and rejection of the constant terms allows one to obtain the cost function

J(Θ) = det(R) (7.4)
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The Gauss-Newton algorithm has been used for cost function minimization.

The accuracy of each estimated parameter is determined on the basis of the Parameter Error
Covariance Matrix P

σ(Θi) =
√
Pi,i (7.5)

where σ is the standard deviation and Pi,i is the element of the Parameter Error Covariance
Matrix P = F−1.

8. Results

In the study, we investigate two designs with simultaneous multisine inputs: when there is no
a priori knowledge of the system dynamics and when this information is available. The frequency
range of interest upper bound is set to fmax = 2Hz and the lower is determined on the basis of
the excitation length T = 20 s. A total of 39 harmonics is evaluated and assigned to the elevator
(f2, f5, . . .), aileron (f3, f6, . . .) and rudder deflections (f4, f7, . . .). The maximum values of all
inputs are set to 1 deg. In the multisine design without a priori knowledge, the phase angles φk
are optimized through Relative Peak Factor minimization. When additional information about
the system is available, the D-optimality criterion is used for signal optimization. In this case,
the cost function extreme is found by a genetic algorithm.

Both designed sets of excitations are used as input signals for a nonlinear aircraft model.
In both cases, the response of the model is recorded. The gathered data is used to perform a
Sys-ID for a model with unknown aerodynamic parameters. The results of the estimation are
shown in Fig. 3, Fig. 4 and in Table 1.

Fig. 3. Measured and estimated signals for multisine inputs
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Fig. 4. Measured and estimated signals for the D-optimal multisine inputs

Table 1. Standard deviations

Parameter Multisine
D-optimal

Parameter Multisine
D-optimal

multisine multisine

k 2.5440E-004 3.5897E-004 Cl0 2.2346E-009 7.2915E-010
CL0 3.6488E-005 3.9050E-005 Clβ 2.6671E-006 9.9505E-007
CLWBα 2.6817E-004 3.1839E-004 Clp 1.3783E-004 2.1207E-004
CLHαH 1.1588E-003 1.3114E-003 Clpα 1.6153E-003 2.6471E-003
CLHδE 6.8113E-005 8.6226E-005 Clr 2.3736E-004 2.6195E-004
∂ε/∂α 1.7339E-004 1.9543E-004 Clrα 3.0391E-003 3.2459E-003
CD0 1.0919E-004 1.6787E-004 ClδA 1.2369E-006 4.8513E-007
Cm0 2.1883E-004 1.8874E-004 ClδR 9.6532E-007 4.0260E-007
CmWBq 1.0397E-002 1.1892E-002 Cn0 2.1906E-009 7.2876E-010
CY 0 2.2318E-008 8.4724E-009 Cnβ 2.5441E-006 1.6348E-006
CY β 1.3871E-005 5.2384E-006 Cnp 1.1095E-004 2.1430E-004
CY p 1.0030E-003 1.6169E-003 Cnpα 1.3218E-003 2.6642E-003
CY pα 1.2198E-002 2.0359E-002 Cnr 1.9973E-004 2.3221E-004
CY r 1.6164E-003 2.0590E-003 Cnrα 2.5561E-003 2.8803E-003
CY rα 2.0288E-002 2.5716E-002 CnδA 1.5451E-006 8.3159E-007
CY δR 4.8513E-006 2.6505E-006 CnδR 1.2249E-006 7.7315E-007

In Figs. 3 and 4, solid lines are used to denote the estimated aircraft response and the input
signals. The cross points denote the recorded values of flight parameters. For presenting the
measurements, a 10-point data reduction is used. From Figs. 3 and 4 it can be seen that the
obtained set of estimates allows one to obtain a good visual match for flight parameters whether
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the D-optimality criterion is used or not. However, as more than one set of model parameters
can produce a response that visually fits well the data, another quality of estimation indicator
should be used – standard deviations.

Table 1 indicates that for both analysed designs the evaluated standard deviations are small
(of the order of 1.0E-002 or lower) for all parameters what means that the estimation is successful.
The standard deviations obtained for model parameters when the D-optimality is used in the
design phase are of the same order as when the criterion is not used in the optimization. Therefore
we consider that the inclusion of the D-optimality criterion for phase angles optimization in the
simultaneous multisine inputs design does not increase significantly the quality of the Sys-ID
manoeuvre. Moreover, as the Parameter Error Covariance Matrix determinant minimization is
more computationally demanding that Relative Peak Factor optimization, we found the inclusion
of the D-optimality criterion impractical.
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