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In this contribution, an analytical formalism for investigating the scat-
tering behaviour of a single multi-layered inclusion in a homogeneous
isotropic matrix under the influence of non-plane elastic SH waves is de-
rived. Herein, the inclusion is assumed to have a circular shape with its
layers being eccentrically arranged. Numerical examples are performed
with Textile Reinforced Concrete, a new building material in civil engi-
neering. Within these investigations both shielding and amplification of
SH waves is shown.
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1. Introduction

In many applications in civil, mechanical, biological engineering and related
disciplines, investigations concerning the dynamical behaviour of structures
or parts of them are regularly necessary as they are exposed to dynamic lo-
ads. These may be time-harmonic loads as they occur with rotating machines
mounted at floor slabs or transient loads due to e.g. impacts. The correspon-
ding engineer is then interested in the structures response. For these investi-
gations at the so-called macro- or structural-scale, profound insight into the
materials behaviour at the micro- and meso-scale is necessary in order to de-
velop adequate mechanical models which allow efficient calculations with a
specified accuracy. In real-life applications these forecasts or simulations are
made complicated by the fact that both the material and geometric properties
of the structure and its constituents as well as the dynamic loads themselves
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may vary. Hence, capable solutions including their efficient numerical imple-
mentation are required to fit the needs arising from numerical studies on the
micro- or meso-scale.
In what follows, the wave scattering behaviour of a single inhomogeneous

inclusion embedded in a homogeneous matrix of infinite extent is investigated.
Herein, the matrix material is supposed to behave linear elastic and isotropic.
The calculations are performed with elastic waves propagating through the
textile reinforced concrete (TRC), a new construction material in civil engi-
neering consisting of a fine grained concrete matrix with a maximum grain size
of approx. 0.6mm and fibres made of glass or carbon which are warp-knitted
to uni- or multiaxial reinforcement clutches and then are worked in the fine
grained concrete matrix, cf. Ortlepp and Curbach (2009). These fibres, which
are often called rovings as well, consist of 800 up to 2 000 filaments, each with
a diameter of approx. 13.5µm. A view in the direction of the fibres as shown
in Fig. 1 gives rise to the assumption that the single filaments do participate
differently in the load bearing behaviour. In detail, the outer filaments have

Fig. 1. Setup of a roving

a better interconnection to the surrounding matrix than the inner ones. For
some models concerning the decreasing degree of bonding see e.g. Lepenies
(2007). Additionally, the matrix behaviour in the vicinity of the rovings will
differ from the undisturbed matrix. Consequently, the inclusion – which acts
as an obstacle for the incoming (non-plane) wave and thus will scatter it –
is modeled as a double-layered scatterer. Herein the inner layer is the roving
corresponding to the inner filaments. Thus, it can be called the (inner) core
as well. On the other hand, the outer layer is motivated by the interphase
between the outer filaments and the matrix in the vicinity of the fibre. Among
other things, due to the production and curing process of TRC the inner and
outer layer will be eccentric in most cases, see Weber and Zastrau (2010).
In the following, an analytical solution for the scattering of non-plane shear
waves by eccentric layered inclusions is derived and some numerical results for
arbitrarily chosen deterministic frequencies are discussed. Other parameters
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influencing the wave scattering behaviour of the example dealt with here are
uncertainties in the material properties (e.g. Young’s modulus, Poisson’s ratio)
and the dynamic loads (i.e. amplitude, frequency).

2. Some general remarks on elastic waves

Based on Navier’s equation without body forces

µ∆u+ (λ+ µ)∇∇ · u = ̺ü (2.1)

with ∆ = ∇2, u = (u, v,w) displacement vector, λ, µ Lamé constants and
̺ the density of the material at hand, two general wave types can be distin-
guished according to Fig. 2: the so called S wave is connected to the direction
of particle motion d perpendicular to the direction of wave propagation (the
wave normal n) whereas in the P wave case the direction of particle motion
is parallel to the wave normal. Hence, the P wave is referred to as pressure
wave and the S wave as shear wave. Both waves have different propagation
speeds. The (longitudinal) P wave propagates with cL =

√

(λ+ 2µ)/̺, the
(transverse) S wave with cT =

√

µ/̺, respectively. As cL > cT the P wave is
called primary wave as well – and hence S wave can be understood as secon-
dary wave, see e.g. Achenbach (1973). Obviously these propagation speeds c
are characteristic for a certain material and so is the wave number k

k =
ω

c
(2.2)

where ω is the circular frequency of the wave, cf. Cai (2004). In general, the
impinging of one wave type – either P or S wave – upon the surface of an
elastic body or an obstacle induces both wave types in the reflection problem
(or additional two waves in the case of refracted waves), see Fig. 2. The S wave

Fig. 2. Mode conversion, using the example of reflection of waves



1186 W. Weber, B.W. Zastrau

can be decomposed into a SV and a SH wave, where SV means a vertically
polarised shear wave and SH a horizontally polarised shear wave, respectively.
If the direction of particle motion is parallel to the axis of the obstacle, a SH
wave is at hand, see Fig. 2. It is characteristic that a SH wave is reflected (and
refracted) as a SH wave only. For the sake of brevity, this special case will be
evaluated throughout this paper.
An eccentric layered elastic circular cylinder which is embedded in a linear

elastic and isotropic medium of infinite extent as depicted in Fig. 3b with
different wave numbers km, kiph , and kfi is considered. Herein and with other
parameters the subscripts m, iph, and fi hold with the matrix, the interphase
and the fibre, respectively. The resulting waves are sought due to the acting
of a time-harmonic incident SH wave.

Fig. 3. Problem configuration, eccentric circular cylinder case; (a) 3D-view

As mentioned above, the only nontrivial displacement component for a SH
wave scattering problem is the out of plane displacement w, if the SH wave
propagates in the xy-plane and the axis of the obstacle is parallel to the z-axis
as shown in Fig. 3b. This displacement takes the form

w(x, y, t) = w0 cos(ωt+ α) = Re{φ(x, y)e
−iωt} (2.3)

where the complex amplitude φ with |φ| = w0, Re{φ} = w0 cosα satisfies
the Helmholtz equation

∆φ+
ω2

c2T
φ = 0 = ∆φ+ k2φ (2.4)

which follows from introducing the ansatz Eq. (2.3) into Navier’s equation
(2.1). Herein the imaginary unit i and the circular frequency ω were introdu-
ced. By means of the shear modulus µ the stress components can be derived
from the complex amplitude φ. In the following, the temporal factor e−iωt will
be omitted.
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3. An analytical approach to non-plane SH wave scattering

3.1. Concentric circular scatterer

The single scatterer problem at hand as well as the characterising variables
in cylindrical coordinates are shown in Fig. 3b. The treatment of the single
rovings as layered inclusions (and hence as scatterers for the impinging waves)
was motivated in Section 1. In order to calculate the waves in the matrix, the
interphase and the fibre, the solution of the Helmholtz equation in a circular
coordinate system is sought. With the Laplacian in this coordinate system,
equation (2.4) yields

∂2φ

∂r2
+
1

r

∂φ

∂r
+
1

r2
∂2φ

∂θ2
+ k2φ = 0 (3.1)

cf. Morse and Feshbach (1953). Using the ansatz φ(r, θ) = R(r)Θ(θ) and
separation of constants leads to

∂2Θ

∂θ2
+ n2Θ = 0

r2
∂2R

∂r2
+ r
∂R

∂r
+ (k2r2 − n2)R = 0

(3.2)

where the latter equation is known as the Bessel differential equation. The
solution of the Helmholtz equation in polar coordinates is a linear combination
of cylindrical wave functions consisting of simple harmonics as the angular
factor

Θn(θ) = c1n cos(nθ) + s1n sin(nθ) = C1ne
inθ + C2ne

−inθ (3.3)

and the Bessel functions of various kinds as the radial factor

Rn(r) = A1nJn(kr) + iA2nYn(kr) = C3nH
(1)
n (kr) + C4nH

(2)
n (kr) (3.4)

cf. Pao and Mow (1971). Herein H
(1),(2)
n (kr) = Jn(kr)±iYn(kr) are the Hankel

functions of the first and second kind, respectively. Due to the time dependency

e−iωt used in this contribution the Hankel functions of the first kind H
(1)
n (kr)

represent outgoing waves – whereas in e.g. Skelton and James (1997), the time
dependency is e+iωt and thus waves moving outward are calculated by means

of the Hankel functions of the second kind H
(2)
n (kr). For a more detailed

description of the Bessel and Hankel functions, see e.g. Watson (1922).
By means of the shear modulus µ, the stress components can be derived

from the complex amplitude of the displacement.



1188 W. Weber, B.W. Zastrau

Often, plane waves are dealt with. As this special incoming wave is regular
in the entire xy-plane and the only function in the general ansatz of Eq. (3.4)
being regular throughout this plane is the Bessel function of the first kind, it
is

φin =
∞
∑

n=−∞

AnJn(kmr)e
inθ (3.5)

where the index m of the wave number km induces that the function is eva-
luated in the matrix region. The same holds for kiph (inside the interphase)
and kfi (inside the fibre). According to Eq. (2.3), the Hankel functions of the
first kind represent outgoing waves whereas the Hankel functions of the se-
cond kind count for waves moving inward. Hence, the scattered wave – which
is directed outward with respect to the scatterer – can be described by the
Hankel functions of the first kind

φsc =
∞
∑

n=−∞

BnH
(1)
n (kmr)e

inθ (3.6)

In the interphase, waves propagating in both directions occur and the complete
ansatz including the Hankel functions of the first and second kind is needed

φiph =
∞
∑

n=−∞

[

DnH
(1)
n (kiphr) +EnH

(2)
n (kiphr)

]

einθ (3.7)

The Hankel functions of the first and second kind are singular at the ori-
gin1. Obviously, the refracted wave in the inner layer is regular, hence it is
represented by the Bessel functions of the first kind

φfi =
∞
∑

n=−∞

CnJn(kfir)e
inθ (3.8)

As can be seen from Eqs. (3.5)-(3.8) all wave fields are composed of so the
called wave expansion coefficients (An, . . . , En) and wave basis functions, that
is Bessel functions of various kinds.
The entire field outside the scatterer, which will be evaluated in the given

examples, is expressible as

φent = φin + φsc (3.9)

For the problem at hand, a multi-layered elastic inclusion, the boundary
conditions to be fulfilled are that the stress component σrz and the displace-
ment φ are continuous across the interfaces. Within Section 4, a double-layered

1Due to the singularity of the Bessel functions of the second kind Yn(kr) at kr = 0
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elastic inclusion with boundaries at r = r0 and r = r1 will be investigated.
Hence, the boundary conditions yield

µm
(∂φin
∂ξ
+
∂φsc
∂ξ

)

∣

∣

∣

∣

r=r1

= µiph
∂φiph
∂r

∣

∣

∣

∣

r=r1

µiph
∂φiph
∂r

∣

∣

∣

∣

r=r0

= µfi
∂φfi
∂r

∣

∣

∣

∣

r=r0

(φin + φsc)
∣

∣

∣

r=r1
= φiph

∣

∣

∣

r=r1

φiph
∣

∣

∣

r=r0
= φfi

∣

∣

∣

r=r0

(3.10)

The spatial distribution of the entire wave according to equation (3.9)
for a certain time t, that is, Re{φente

−iωt}, is exemplarily shown in Fig. 4a.
Herein and with the other plots use of the material properties given in Table 1
is made. In general, the main interest is finding maximum exposures of the
material at hand – independently of time t. This information is provided
by mapping the amplitude |φent | as done in Fig. 4b for the present case of
a concentric scatterer. In these figures, a plane wave of unit amplitude acts
upon the concentric obstacle, the inclusions geometric configuration hereby is
plotted within the diagram.

Fig. 4. Spatial distribution of displacement Re{φente
−iωt} (a) and |φent | (b),

concentric scatterer (r0 = 0.6r1, d = 0, and θd = 0)
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3.2. Specialisation to an eccentric circular scatterer

In real-life applications, the obstacles which scatter the incoming waves
will not be concentric in general. Thus, the general ansatz developed in the
precedent Section has to be extended with respect to eccentric scatterers. To
fit the needs of eccentricities, for an n-layered scatterer n coordinate systems
will be necessary. In this contribution n = 2 had been chosen. Herein the inner
layer – the so called core – is shifted by d with respect to the outer layer. The
line connecting the centres of both layers is then rotated by θd as shown in
Fig. 3b. Hence, two (polar) coordinate systems are needed. The coordinate
system connected with the inner layer (the fibre) is denoted with (rfi , θfi)
whereas the one of the interphase, i.e. the outer layer, is (riph , θiph). The
latter one will be used as the global coordinate system, e.g. for evaluating the
waves in the matrix as well. Equations (3.5)-(3.8) for calculating the incoming,
scattered and refracted waves thus have to be rewritten in terms of different
coordinate systems. The ansatz functions for the fields inside the matrix, the
interphase and the fibre then follow to

φin =
∞
∑

n=−∞

AnJn(kmriph)e
inθiph

φsc =
∞
∑

n=−∞

BnH
(1)
n (kmriph)e

inθiph

φiph =
∞
∑

n=−∞

[

DnH
(1)
n (kiphrfi)e

inθfi + EnH
(2)
n (kiphriph)e

inθiph
]

φfi =
∞
∑

n=−∞

CnJn(kfirfi )e
inθfi

(3.11)

It is emphasized that for the wave within the interphase both coordinate sys-
tems are used.
To fulfil the boundary and transition conditions as given with Eqs. (3.10),

a formulation of all fields by means of the same coordinate system is adjuvant.
With the addition theorem proved in Meixner and Schaefke (1954) it follows

B
(j)
n (krfi )e

in(θfi−θiph) =
∞
∑

m=−∞

B
(j)
n+m(kriph)Jm(kd)e

in(θiph−θ) (3.12)

where B
(j)
n (kr) with j = 1, . . . , 4 is the Bessel, Neumann or Hankel function

of the first or second kind and order n. It is also known as Graf’s addition
theorem. By means of this addition theorem the two coordinate systems can
be converted to each other.
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The spatial distribution of the amplitude |φent | due to a time-harmonic
plane wave interacting with the present case of an eccentric scatterer is plotted
in Fig. 5. Again, the scatterers geometric configuration is plotted within the
diagram and the material properties according to Table 1 are used. For the
eccentric case, especially in the first quadrant, enormous changes are observa-
ble in comparison with the concentric case shown in Fig. 4b. In these regions,
the amplitude of the total wave by far exceeds the one of the incoming wave;
the affected areas from which cracks may originate are plotted dark. Hence,
the investigation of influences of the scatterers eccentricities to the behaviour
of brittle matrices such as fine grained concrete is necessary.

Fig. 5. Spatial distribution of the displacement amplitude |φent |, eccentric scatterer
(r0 = 0.6r1, d = 0.2r1, and θd = 4π/5)

The extension to an inclusion of a more general shape, that is, an elliptical
shape, is possible and was shown in e.g. Weber and Zastrau (2009).

Substitution of the wave expansions for different coordinate systems into
boundary and transition conditions (3.10) yields a linear system of equations
for the coefficients Bn, . . . , En in terms of the expansion coefficients An of the
incoming non-plane wave which will be determined in the next Section.

3.3. Modeling the incoming non-plane wave

This contribution deals with the scattering of non-plane SH waves. As
an example, a cylindrical wave whose source is parallel to the axis of the
scatterer is being looked at, cf. Fig. 3a. For determining the wave expansions



1192 W. Weber, B.W. Zastrau

of the incoming wave φin its geometry is provided with Fig. 6, where the
source of the incoming wave has the coordinates (rs, θs) with respect to the
global cylinder coordinate system. There, the obstacle – or rather, the center
of the interphase – is situated. In general, a cylindrical wave propagating in
the chosen matrix material follows the relation

φin = H
(1)
0 (km‖r − rs‖)

= H
(1)
0

(

km

√

r2 + r2s − 2rrs cos(θ − θs)
)

= H
(1)
0 (kmR)

(3.13)

with R being the distance between the particular point of observation and
the source of the wave, see also Fig. 6. Again, the time dependency has been
suppressed as throughout the whole paper.

Fig. 6. Geometry of the source of a non-plane SH wave

This term has to be evaluated with respect to the global coordinate sys-
tem as shown in Figs. 3b and 6. Two cases have to be taken into account:
(i) r < rs and (ii) r  rs. For the first case, the admissible wave functions
are Jn(kmr)e

inθ, as φin has to be finite at r = 0 and periodic in 2π on θ.

For the latter case, the admissible functions yield H
(1)
n (kmr)e

inθ, as φin has
to represent waves propagating outward. Thus

φin =























∞
∑

n=−∞

anH
(1)
n (kmrs)Jn(kmr)e

in(θ−θs) for r < rs

∞
∑

n=−∞

anJn(kmrs)H
(1)
n (kmr)e

in(θ−θs) for r  rs

(3.14)

where the expansion coefficients an have to be determined now. For this, the
source of the cylindrical wave is set into infinity, e.g. (rs = +∞, θs = 0).
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Asymptotic formulas for the Hankel functions as given in Harrington (2001)
may be used to obtain

φin = H
(1)
n (km‖r − rs‖) −→

rs=+∞, θs=0

√

2i

πrs
e−irseir cos θ (3.15)

and, consequently

φin −→
rs=+∞, θs=0

√

2i

πrs
e−irs

∞
∑

n=−∞

ani
nJn(kmr)e

inθ (3.16)

Herein, use of the expansion of a plane wave propagating in the positive
x-direction

eir cos θ =
∞
∑

n=−∞

AnJn(kmr)e
inθ =

∞
∑

n=−∞

inJn(kmr)e
inθ (3.17)

was made, cf. Weyrich (1937). Obviously an = 1, thus leading

φin =























∞
∑

n=−∞

H(1)n (kmrs)Jn(kmr)e
in(θ−θs) for r < rs

∞
∑

n=−∞

Jn(kmrs)H
(1)
n (kmr)e

in(θ−θs) for r  rs

(3.18)

Referring back to the ansatz given with Eq. (3.5), the wave expansion coeffi-
cients An for a cylindrical wave situated at (rs, θs) are

An =







H
(1)
n (kmrs)e

in(−θs) for r < rs

Jn(kmrs)e
in(−θs) for r  rs

(3.19)

which implies changes within the wave basis functions of the incoming wave
as well. As the final step, these An may be scaled in such a way that φin has
unit amplitude at a certain point2 in free space – e.g. at (r = r1, θ = π), that
is, at the nearest point of the obstacle facing the source of the incoming wave
φin, at the origin (r = 0, θ = 0) or at (r = r1, θ = 0) – the point of the
scatterer having the longest distance to the source of the cylindrical wave.
Figures 7a,b show the spatial distribution of both the current displace-

ment field Re{φente
−iωt} at an arbitrary time t and the displacement ampli-

tude |φent | for an eccentric double-layered scatterer due to a cylindrical wave.
To ensure a better comparability with Figs. 4 and 5, the incoming cylindri-
cal wave φin has unit amplitude at the centre of the obstacle. The material
properties refer to Table 1.

2In fact all points within the xy-plane lying in the material and having the same
distance from the source will have equal amplitudes
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Fig. 7. Spatial distribution of the displacement Re {φente
−iωt} (a) and |φent | (b),

eccentric scatterer (r0 = 0.6r1, d = 0, and θd = 4π/5), due to a non-plane SH wave

4. Numerical example

In this Section, some numerical results for TRC based on the analytical so-
lutions of the precedent Sections are presented. The investigations deal with
the displacement distribution in the vicinity of a double-layered obstacle. The
radius of the scatterers outer layer is r1, whereas the radius of the inner layer
is r0 = 0.6r1, see also Figs. 4, 5 and 7. Between both, the interphase is ar-
ranged, the fibre is represented by the inner layer. Carbon fibres were used
as reinforcement of the fine-grained concrete. The constituents properties are
listed in Table 1 und were taken from SFB528. The scatterer is subjected to
a non-planar incident SH wave as given with Eq. (3.18) whose source is set at
(rs = 5a, θs = π). The intensity of the source is scaled in such a way that the
incoming non-plane wave would reach unit amplitude at (r = 0, θ = 0), thus
at the centre of the obstacle.

Table 1. Material properties of a certain type of TRC
Constituent Matrix Carbon fibre Interphase

̺ [kg/m3] 2 160 1 760 1 500

µ [GPa] 12 97 1.17

ν 0.2 0.0 0.49

cT [m/s] 2 340 7 440 880
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In mechanical sense, the scattering of non-plane elastic SH waves is influen-
ced by three geometric parameters, that is, the core size r0 with respect to r1,
the offset d and the orientation angle θd as introduced in Fig. 3b. As the inves-
tigations in this contribution were motivated by the requirements of TRC, the
range of the core size is limited3 and so is the offset4. Hence, the focus of the
investigations lies on varying angles θd, the orientation angle. Additionally,
the behaviour of the chosen scatterer for different frequency regimes is being
looked at. For both fixed eccentricity and frequency, the total displacement
field Re{φente

−iωt} for a certain time t as well as the spatial distribution of
its amplitude |φent | due to a cylindrical wave is shown in Figs. 7a,b.
In addition to these aforementioned evaluations, the scattering behaviour

can be exploited well by investigating the amplitude of the entire wave at
a certain distance from the scatterer for different frequency regimes. In this
contribution, the chosen distance is r = 4r1 referring to the centre of the outer
layer. In Figs. 8 and 9, these amplitudes are sketched within a polar plot. Each
polar plot contains the (normalised) amplitudes of the entire wave φent for the
dimensionless frequencies kmr1 = {1, 5, 10}. Please note that these diagrams
do not provide classical directivity patterns, as not the scattered wave φsc is
plotted but the entire wave φent .

Fig. 8. Polar plot of |φent | at a distance r = 4r1 with d = 0 (concentric scatterer)

As can be readily reconstructed from Fig. 7a, the amplitude of the incoming
wave (of course) decreases with increasing distance from its source – thus
showing a main difference between planar waves as given in Fig. 4a. Hence,

3The core size is set constant to r0 = 0.6r1, a useful range should be
0.6r1 ¬ r0 ¬ r1
4The offset is d = 0.2r1 for all calculations performed, a useful range should be

0 ¬ d ¬ (r1 − r0)
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Fig. 9. Polar plot of |φent | at a distance r = 4r1 with d = 0.2r1
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a normalisation of the entire field at each point in free space lying on the
circumferential line with distance r = 4r1 from the scatterers origin by the
respective maximum value – that is

|φent(r = 4r1, θ, km)|

|φent(r = 4r1, θ, km)|max

as done in Weber and Zastrau (2010) is not helpful if the relation of the entire
wave to the incoming one is of interest. Due to this fact the authors decided
to normalise each field point circumscribing the scatterer at a distance from
r = 4r1 measured from the origin by the amplitude of the incoming non-plane
wave at this particular point

|φent(r = 4r1, θ, km)|

|φin(r = 4r1, θ, km)|

Thus, if no obstacle was present5 this quotient would equal 1 for all field
points, hence yielding to a circle with radius 1 in the polar plots in Figs. 8
and 9. As a reference, Fig. 8 shows the normalised amplitude of the entire wave
on a circumferential line around the concentric scatterer (d = 0).
To show the remarkable influence of eccentricities to the wave scattering

behaviour of TRC, the inner layer is then shifted by d = 0.2r1 and rotated
by θd = {0,

1
5π,

2
5π,

3
5π,

4
5π, π} with respect to the positive x-axis, as defined

in Fig. 3b. As can be seen from Figs. 9a-9f for a fixed core size and offset
the scattering behaviour strongly depends on the frequency of the incoming
non-plane SH wave. For low (dimensionless) frequencies, e.g. kmr1 = 1, the
normalised amplitude of the entire wave φent oscillates around 1 with θ,
where the oscillating “frequency”6 is quite low. As expected. the normalised
amplitude does not vary that much for kmr1 = 1. Additionally it clearly can
be seen that the changes in the graphs curvature even decrease with increasing
orientation angle θd. This is due to the fact that for increasing θd the scattering
gets more and more forward, see Weber and Zastrau (2010), thus reducing
the peaks in the backward direction at θ ≈ ±34π. Investigating the medium
frequency regime kmr1 = 5, yields that the “frequency” of the oscillatory
structure of the plotted graph is higher than in the regime kmr1 = 1. It is also
apparent that the ratios

|φent (r = 4r1, θ, km)|

|φin(r = 4r1, θ, km)|
> 1.5

5Or the inclusion would have the same material properties as the surrounding
matrix
6Of the varying normalised amplitude
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mainly occur for the orientation angles −15π ¬ θd ¬
1
5π and

4
5π ¬ θd ¬

6
5π.

Thus, small deviances of the position of the inner core with respect to the
x-axis should be omitted. For kmr1 = 10, it can be stated that the oscilla-
tions within the scattering pattern have an even higher “frequency” as in the
two cases investigated before. The second observation is that there seems no
clear connection between small orientation angles θd and enlarged amplitudes
of φent which was revealed for kmr1 = 5. It is conjectured that the higher the
dimensionless frequency kmr1 the more chaotic the scattering patterns are.
Hence, further investigations are necessary.
Concerning the shielding of the incoming wave, it can be stated that the

entire waves amplitude in the forward direction (θ = 0) as conjectured decre-
ases with increasing frequency of the incoming wave. The previous numerical
results further showed that within the design process the engineer should as-
sume displacement amplitudes in the vicinity (r = 4r1) of a single obstacle of
radius r1 due to scattering approximately reaching twice the amplitude of the
incoming wave, at least in the region θ = ±(16π, . . . ,

5
6π).

Fig. 10. Polar plot of |φsc| at a distance r = 4r1 with d = 0.2r1, θd = π;
(a) non-plane wave, (b) plane wave

Obviously, the directivity pattern – that is, the polar plot of only the scat-
tered field φsc (normalised by its respective maximum value) which is provided
in Fig. 10a – for the example of a non-plane wave highly differs from the one
obtained for the plane wave case as given in Fig. 10b. For this, two main re-
asons can be identified: firstly, the wave chosen in this contribution propagates
cylindrically outward with respect to its centre, thus more and more decre-
asing its amplitude due to energy conservation. Hence, the incoming wave at
the surface of the obstacle in the forward direction of the scatterer will ha-
ve a lower amplitude than at the surface in the backward direction – and so
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will the scattered wave. These difficulty can be overcome by means of proper
normalisation as shown in Figs. 9a-9f. The second reason for the remarkable
changes in the directivity patterns and related graphs is the drastically diffe-
rent distribution of the incoming wave field at the surface of the obstacle due
to the additional curvature of the wavefront of the incoming cylindrical wave.
On the other hand, this is exactly the reason for the investigations presented
here. It is evident that with increasing distance R of the scatterer from the
source of the incoming wave, with decreasing size of the obstacle or with in-
creasing km the differences related to the curvature of the wavefront of the
incoming wave will reduce. First signs of which can be seen from Fig. 10a for
the high-frequency regime when comparing them with the results obtained for
the plane wave case in Fig. 10b.

5. Conclusions

Efficient investigations concerning the scattering behaviour of non-plane elastic
SH waves due to a single but multi-layered eccentric obstacle can be performed
by the derived analytical approach. It opens up the possibility for fast calcu-
lations of different geometric configurations as they occur with stochastic or
fuzzy-stochastic analyses. Additionally, the obtained results may be coupled
to standard procedures as BEM, thus avoiding – for special cases – the use of
FEM or XFEM.

Numerical calculations were performed for TRC and showed regions with
a tremendous increase of the materials exposures due to an incoming wave
even in the single scatterer case. These exposures exceed the ones known from
concentric scatterers with comparable material properties by far. The conjec-
ture that the scattering of non-plane waves leads to different results compared
with incoming plane waves could be confirmed. These differences decrease with
the increasing ratio R/r1, where R is the distance of the scatterer from the
source of the incoming wave and r1 the outer radius of the obstacle itself, and
with increasing km. Hereby, the geometric property R/r1 in the limiting case
R/r1 → ∞ directly leads to plane waves. It is thus apparent that especially
in the vicinity of non-plane wave sources the procedure proposed in this con-
tribution is essential for studying the wave scattering behaviour, whereas in
the far field region a “reduced” approach with incoming plane waves – which
means reduced numerical effort – may be accurate enough.
A profound knowledge concerning the wave scattering behaviour of compo-

site materials at the micro- and meso-scale, which may be obtained by means
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of the presented procedure, allows the engineer to derive proper material mo-
dels at the macro- or structural scale. On the other hand, materials having
certain wave-scattering-properties may be constructed within an inverse pro-
cess. However, this implies manufacturing of these materials under laboratory
conditions. Hence, this work is a contribution to prevent structures from ha-
zardous responses to dynamic loads.
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Niepłaskie rozpraszanie fal od kołowego mimośrodowo osadzonego

wtrącenia w materiale – część I: fale SH

Streszczenie

W pracy przedstawiono analityczny formalizm zagadnienia rozpraszania fal na
pojedynczym, wielowarstwowymwtrąceniu materiałowym w izotropowej, jednorodnej
strukturze osnowy poddanej działaniu niepłaskich fal spolaryzowanych w płaszczyźnie
poziomej (fale typu SH). Założono, że wtrącenie ma kołowy kształt, a jego warstwy
są rozmieszczone mimośrodowo. Zamieszczono rezultaty symulacji numerycznych na
przykładzie nowego materiału budowlanego, jakim jest beton wzmacniany tekstyliami.
Pokazano efekt ekranowania i wzmacniania fal SH w takiej strukturze.
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