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The torsion of bars with a multiply connected cross sections by means
of the method of fundamental solutions (MFS) is considered herein. To
determine the optimal parameters of MFS, genetic algorithms were used.
Seven cases of cross sections are considered. The numerical results for
different cross sectional shapes are presented to demonstrate the effi-
ciency and accuracy of the method. Non-dimension torsional stiffness
was calculated by means of numerical integration of the stress function
for one of the cases. This stiffness is compared with the exact stiffness
for the first case and with the stiffness resulting from Bredt’s formulae
for thin walled cross sections.
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1. Introduction

The solution of the torsion problem for a multiply connected cross section is
more difficult than for the simply connected one. Probably, it is the reason
why there are not too many papers considering this problem. For a doubly
connected cross section, the exact solution exists for the annular cross section.
Weinel (1932) proposed the solution for a doubly connected cross section with
excentric circles. In the work (Polya and Weinstein, 1950) it was found that
for the doubly connected domains with prescribed area of the hole and cross
section the ring bounded by two concentric circles has the maximal torsional
rigidity. In the book (Arutiunian and Abramian,1963) the description of the
method of solving the torsion problem for a doubly connected cross section
in which outer and inner contour are rectangles is presented. This method
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was proposed by Russian authors (Szerman, Abramian) in series of papers in
the 50s and it is based on expansion of the stress function in Fourier series.
In order to obtain an effective solution, this method requires the solution to
an infinite system of linear equations. Wang (1995) presented a method for
torsion analysis of two connected cross sections in shape of a flattened tube
consisting of two half annular pieces and two rectangular pieces. He adopted
an approximate solution in the form of truncated series of functions of its own,
and to satisfy the boundary conditions he used boundary element methods.
Wang (1998) generalized this method to treat arbitrary two connected cross
sections consisting of circular arcs and straight lines, all with a uniform thick-
ness. A modified Fourier series method for the torsion analysis of bars with
multiply connected cross sections was presented by Kim and Yoon (1997). The
effectiveness of this method was presented for polygonal cross sections with
polygonal holes. Mejak (2000) presented a method for an optimal shape design
of doubly connected bars in torsion. He solved the problem numerically by the
finite element method. In the work (Kolodziej and Fraska, 2005), the Trefftz
method using special purpose T-functions was used to solve the problem of
torsion. As examples, one-connected, multiply-connected and composite cross
sections of bars in the shape of regular polygons were considered. The pro-
posed Trefftz function not only satisfies the governing equation, but also the
boundary conditions on some sides. In the article, for the stress function, the
boundary collocation methods and the method of smallest squares were used.
Using the analytical integration, an analytical solution for the dimensionless
stiffness of the bar was obtained.

A special group of papers considers thin-walled cross sections. A simple
formulation for torsion analysis of thin-walled hollow bars can be found in ele-
mentary textbooks of strength of materials, as was proposed by Bredt (1896).
In the work (Morassi, 1999) the author proves that Bredt’s theory remains
true for thin tubes with multicell cross sections more than doubly connec-
ted. A closed form expression for the torsion constant and thin-walled typical
multicell profiles is presented by Lubarda (2009). Generalization of Bredt’s
method for moderate thick hollow tubes with polygonal shapes is given by
Hematiyan and Doostfatemeh (2007).

The purpose of this paper is application of Method of Fundamental Solu-
tions and genetic algorithms for the torsion problem with multiply connected
cross sections. This method belongs to so-called meshless methods which ha-
ve been more and more popular in the two last decades. The MFS was first
proposed by the Georgian researchers Kupradze and Aleksidze (1964). Its nu-
merical implementation was carried out by Mathon and Johnston (1977). The
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mathematical analysis (convergence and stability) of this method was conside-
red in Bogomolny (1985), Katsura (1990), Katsura and Okamoto (1988, 1996),
Kitagawa (1988, 1991). The comprehensive reviews of the MFS for various ap-
plications can be found in Fairweather and Karageorghis (1998), Fairweather
et al. (2003), Goldberg and Chen (1998). However, as yet, the method of fun-
damental solutions has been applied basically for simply-connected regions.
There are only few papers with application of MFS for annular region, e.g.
Chen et al. (2006), Li (2009), Tsangaris et al. (2006).

In the works (Fairweather and Karageorghis, 1988a,b, 1989; Fairweather et
al., 2003), the location of sources is determined by minimizing the functional
of mean, where the optimization parameters are also the fundamental solu-
tion weighing factors and coordinates of the location of sources. These latter
issues are the evidence of nonlinearity. These authors applied the collocation
method, where the number of sources and the number of collocation points is
determined. Genetic algorithms for one-connected areas were applied in Ko-
łodziej and Klekiel (2008), Nishimura et al. (2000, 2001, 2003) to determine
the optimal positioning of sources. Last time, Karageorghis (2009) appeared
in which the method of the golden mean was used to determine the optimal
location of source points.

In this case, the error is multidimensional, with many local minima, nu-
merical methods of searching for optimal solution fail. The result is that there
can be a case where the solution lies outside the area and thus the process of
finding the optimum can not achieve the desired result. The methods consist
of careful movement from point to point in a certain area of decision-making,
in accordance with the selection rule determining the next point. This is not a
safe way, because it allows the location of false minima in a multi-node space
exploration. For this reason, genetic algorithms were used to determine the
optimum parameters. According to Goldberg (1995), genetic algorithms are
search algorithms based on the mechanisms of natural selection and heredi-
ty, which were developed by Howland. Combining the evolutionary principle
of survival of the fittest with a systematic, although randomized exchange of
information, they create a method of finding, reluctantly giving it her pro-
per degree of inventiveness of the human mind. Genetic algorithms can cope
well where the optimized function is noisy, changes over time and has many
local extremes. Using genetic algorithms in an expeditious manner, we can
determine the optimal solution of the method.

This paper presents the application of this method to multiply connected
cross sections namely: (I) circular with circular centered hole, (II) square with
circular centered hole, (III) square with square centered hole, (IV) square with
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square centered hole with rounded corners with the radius r = E/2 (where
E is the characteristic dimension of the hole), (V) square with square centered
hole with rounded corners with the radius r = 3E/4 (VI) circular with two
circular symmetrical placed holes, (VII) square with two circular symmetrical
placed holes.

2. Formulation of the problem

The problem of torsion of prismatic bars with a multiply connected cross
section (see Fig. 1) is formulated in terms of the stress function, which satisfies
Poisson’s equation (Arutiunian and Abramian,1962)

∇2ψ = −2Gω in Ω (2.1)

with the boundary condition on the outer contour

ψ = 0 on Γ0 (2.2)

and boundary conditions on the inner contour

ψ = ψi on Γi i = 1, 2, . . . , n (2.3)

where ψ(x, y) is the stress function, µ is the shear modulus of the bar material,
ω is the angle of twist of the bar per unit length, ψi are unknown values of
the stress function at inner contours, n – number of hollow areas.

Fig. 1. Multiply connected cross sections of a bar

For determination of the unknown constants ψi, the following integral
relations (Bredt’s theorem) are given

∮

Γi

∂ψ

∂n
ds = −2ΩiGω i = 1, 2, . . . , n (2.4)

where Ωi is the area bounded by Γi.
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After introducing the non-dimensional variables

X =
x

a
Y =

y

a
Ψ(X,Y ) =

ψ(x, y)

a2Gω
(2.5)

The considered boundary value problem has the following dimensionless form:
governing equation for the stress function

∂2Ψ

∂X2
+
∂2Ψ

∂Y 2
= −2 in Ω̃ (2.6)

with the boundary condition at the outside contour

Ψ = 0 on Γ̃0 (2.7)

and the boundary condition at the inner contour

Ψ = Ψi on Γ̃i i = 1, 2, . . . , n (2.8)

and an integral relation in the form

∮

Γ̃i

∂Ψ

∂n
ds = −2Ω̃i i = 1, 2, . . . , n (2.9)

where Ω̃i is the dimension area bounded by Γ̃i.

3. Method of solution

In the MFS, the approximate solution to the problem is represented in form of
linear superposition of source functions (fundamental solutions) with singular
points that are located outside the domain of the problem. These points, cal-
led source points, are located on a “pseudo-boundary” outside the region. The
pseudo-boundary has no common points with the boundary of the region. Be-
cause the fundamental solution satisfies the differential equation at any point
except for the source point, it follows that this representation exactly satis-
fies the governing equation whereas the boundary conditions are only satisfied
approximately. Therefore, the MFS belongs to the group of Trefftz methods
for which it is essential that the governing equation is exactly satisfied. The
weights of coefficients which occur in the approximate solution are determined
by the satisfaction of the boundary condition, usually on a set of boundary
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points (collocation points). Using MFS, the solution of boundary value pro-
blem formulated by (2.6)-*2.9) can now be given as the sum of the particular
solution and the homogeneous solution

Ψ = −
1

2
(X2 + Y 2) +

MZ∑

j=1

cj ln[(X −XSZj)
2 + (Y − Y SZj)

2]

+
n∑

i=1

MWi∑

k=1

c
(i)
k ln[(X −XSW

(i)
k )
2 + (Y − Y SW

(i)
k )
2]

(3.1)

where: XSZj , Y SZj are the coordinates of source points which are placed

outside the region Ω̃ (Fig. 2), XSW
(i)
k , Y SW

(i)
k are the coordinates of source

points which are placed inside the inner contours Γ̃i, where i = 1, 2, . . . , n,
MZ is the number of source points outside the region Ω̃, MWi is the num-

ber of source points inside each inner contour Γ̃i, cj and c
(i)
k are unknown

coefficients.

Fig. 2. Arrangement of the source points on a similar contour

The unknown coefficients cj , c
(i)
k and constants Ψi are determined by col-

location of boundary conditions (2.7) and (2.8) and application of integral
relations (2.9).

In order to do this, NCZ collocation points on the outer contour with
coordinates XCZl, Y CZl are chosen and NCW collocation points on each

inner contour with the coordinates XCW
(i)
m , Y CW

(i)
m are chosen.
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Substituting solution (3.1) to the boundary condition (2.7) we have
(l = 1, 2, . . . , NCZ)

MZ∑

j=1

cj ln[(XCZl −XSZj)
2 + (Y CZl − Y SZj)

2]

+
n∑

i=1

MWi∑

k=1

c
(i)
k ln[(XCZl −XSW

(i)
k )
2 + (Y CZl − Y SW

(i)
k )
2]

=
1

2
(XCZ2l + Y CZ

2
l )

(3.2)

Similarly, substitution of solutions (3.1) into boundary condition (2.8) leads
to a system of linear equations (m = 1, 2, . . . , NCW )

MZ∑

j=1

cj ln[(XCW
(i)
m +XSZj)

2 + (Y CW (i)m − Y SZj)
2]

+
n∑

i=1

MWi∑

k=1

c
(i)
k ln[(XCWm −XSW

(i)
k )
2 + (Y CWm − Y SW

(i)
k )
2]

=
1

2
(XCZ2l + Y CZ

2
l ) + Ψi

(3.3)

Using Bredt’s conditions (2.9) on the inner contour Γ̃i, we have
(i = 1, 2, . . . , n)

MZ∑

j=1

cj

∮

Γ̃i

∂

∂n
ln[(Xs +XSZj)

2 + (Ys − Y SZj)
2] ds

+
n∑

i=1

MWi∑

k=1

c
(i)
k

∮

Γ̃i

∂

∂n
ln[(Xs −XSW

(i)
k )
2 + (Ys − Y SW

(i)
k )
2] ds = 0

(3.4)

In this way, we obtain NCZ + nNCW + n equations with MZ + nMW + n
unknowns.

For further numerical calculations, the following assumptions:
M =MZ +MWi and NC = NCZ +NCW were made.
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4. Torsional stiffness and stress

The relations between the nonzero components of the stress and stress function
are given by following formulae

τyz = −
∂ψ

∂x
τxz =

∂ψ

∂y
(4.1)

The torsional moment is given by an integral of the shear stresses over the
area, which gives

SZ =

∫∫
(τyzx− τxzy) dx dy = −

∫∫
∂Ψ

∂x
x dx dy−

∫∫
∂Ψ

∂y
y dx dy+2

n∑

i=1

Ωiψi

(4.2)
After simple manipulations, we get

SZ = 2−

∫∫
Ψ dx dy + 2

n∑

i=1

Ωiψi (4.3)

Introducing the non-dimensional variables into (4.3), the torsional moment
can be related to the non-dimensional stress function

SZ = Gωa4
[
2

∫∫
Ψ(X,Y ) dX dY + 2

n∑

i=1

Ω̃iΨi

]
(4.4)

Next, the non-dimensional torsional stiffness can by expressed as

Ms =
SZ

Gωa4
= 2

∫∫
Ψ(X,Y ) dX dY + 2

n∑

i=1

Ω̃iΨi (4.5)

In elementary textbooks of strength of materials (Dylag et al., 1999),
one can find the expression for torsional stiffness for thin-walled hollow bars
(Fig. 3), known as Bredt’s formula

SZ =
4GA2midω∮

ds
t

(4.6)

where Amid is the area bounded by the centerline of the wall cross section,
t is thickness.
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Fig. 3. Thin-walled bar with closed cross-section

5. Test examples

In order to demonstrate the exactness and the effectiveness of the proposed
method, seven cases of cross sections are considered: (I) circular with circular
centered hole, (II) square with circular centered hole, (III) square with square
centered hole, (IV) square with square centered hole with rounded corners
with the radius r = E/2 (where E is the characteristic dimension of the
hole), (V) square with square centered hole with rounded corners with the
radius r = 3E/4, (VI) circular with two circular symmetrical placed holes,
(VII) square with two circular symmetrical placed holes.

The formulation of boundary values problems for seven considered cross
sections in terms of the non-dimensional stress function Ψ(X,Y ) is given in
Figs. 4-10. In this case, the thickness E is a geometrical parameter which
changes in a permissible range, i.e. 0 < E < 0.5 for problems I-V and
0 < E < 0.25 for problems VI, VII.

Fig. 4. Formulation of the boundary value problem for the circular with circular
centered hole cross section of the bar. Problem I
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Fig. 5. Formulation of the boundary value problem for the square with circular
centered hole cross section of the bar. Problem II

Fig. 6. Formulation of the boundary value problem for the square with square
centered hole cross section of the bar. Problem III

Fig. 7. Formulation of the boundary value problem for the square with square
centered hole cross section of the bar with rounded corners with the radius r = E/2.

Problem IV

In order to validate the proposed numerical method, the maximum relative
error on the outer and the inner boundary can be evaluated by

δMAXou =
max |Ψouter |

max(i)|Ψmid outer i |
δMAXini =

max |Ψouter i − Ψmid inner i |

max(i)|Ψmid inner i |
(5.1)
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Fig. 8. Formulation of the boundary value problem for the square with square
centered hole cross section of the bar with rounded corners with the radius

r = 3E/4. Problem V

Fig. 9. Formulation of the boundary value problem for the circular with two circular
symmetrically placed holes cross section of the bar. Problem VI

Fig. 10. Formulation of the boundary value problem for the square with two circular
symmetrically placed holes section of the bar. Problem VII

where: δMAXou is the maximum error on the outer contour, δMAXini – maxi-
mum error on the inner contour, where i = 1 for the problem I-V and i = 1, 2
for the problem VI-VII, Ψouter – value of the stress function on the outer
contour, Ψmid inner i – value of the stress function on the inner contour, where
i = 1 for the problem I-V and i = 1, 2 for the problem VI-VII.
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6. Discussion on the numerical results

The MFS applied in this paper to the problem of torsion of a prismatic bar
depends on ythe number of parameters. These parameters are as follows: the
distance of the outer contour containing the source points from the bounda-
ry – Sd, the distance of the inner contour containing the source points from
the boundary – Sm (Fig. 3), the number of source points – NC, the num-
ber of collocation points – M and thickness of the elements – E. In the first
method, for given M and NC equal to 100 for problem I-II and 120 for
the case of III-VII, Sd in the range from 0.001 to 2 and Sm were searched
through in the range from 0.001 to E – 0.01. Out of thousands of errors, the
minimum value was determined which was the value of the error method. De-
termination of the minimum value of bug was becoming very time consuming.
In this case, the error is multidimensional, with many local minima (Fig. 11)
and numerical methods of searching for the optimal solution fail. For this re-
ason, genetic algorithms to the parameters set out in Table 1 were used to
determine the optimal values of M , NC, Sd and Sm for a given thickness
of E. After determining the optimal values M , NC, Sd and Sm, the values
of the minimum error on the internal and external contour were determined,
which are presented in Tables 2-8. Based on the numerical results presented
in the Tables, it can be concluded that the smallest values or error were obta-
ined for case I, and the largest for case III (square with square centered hole).
The possible explanation of the large error in this case can be the existence
of the corners of the inner boundary. In the remaining cases, when the inner
contour or contours were smooth (circular), the values of error were much
smaller.

Fig. 11. Searching errors
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Table 1. Parameters used for genetic algorithm calculation

Population size 40

Crossover probability 0.9

Probability of mutation 0.1

Parameter of random number generator 100

Number of generations 100

The lower limit for Sd 0.001

The upper limit for Sd 2

The lower limit for Sm 0.001

The upper limit for Sm 0.01

The lower limit for M 5

The upper limit for M 25

The lower limit for NC 5

The upper limit for NC 25

Table 2. Values of maximum local errors – case I

M NC E A∗ δMAXou A∗∗ δMAXini
26 26 0.05 1.75 6.00E-10 0.01 4.49E-16

46 46 0.1 0.37 1.91E-06 0.01 8.33E-15

46 46 0.15 0.39 1.35E-06 0.01 9.76E-16

46 46 0.2 0.41 1.19E-06 0.01 1.45E-15

46 46 0.25 0.83 6.56E-11 0.02 1.92E-15

46 46 0.3 0.83 7.41E-11 0.07 1.14E-14

46 46 0.35 1.00 2.88E-12 0.09 8.75E-14

46 46 0.4 0.97 1.12E-11 0.01 9.50E-13

46 46 0.45 1.00 1.69E-11 0.01 1.63E-11

A∗ – Optimal values outer contour Sd
A∗∗ – Optimal values inner contour Sm

For the case of circular with circular centered hole, the calculation of the
dimensionless torsional stiffness was conducted. The calculation of stiffness
based on the approximate solution was completed by dividing the cross section
into triangular elements which were integrated with the seven point Gauss
quadrature. The obtained results were compared with the exact formula for
dimensionless stiffness of the annular region

Ms =
π

2

[(1
2

)4
− E4

]
(6.1)
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Table 3. Values of maximum local errors – case II

M NC E A∗ δMAXou A∗∗ δMAXini
65 65 0.05 0.16 4.45E-02 0.04 2.08E-10

65 65 0.1 0.15 8.51E-03 0.09 1.67E-08

70 70 0.15 0.04 7.74E-02 0.12 3.61E-07

65 65 0.2 0.04 7.94E-02 0.18 4.45E-06

65 65 0.25 0.04 2.28E-01 0.24 2.83E-05

65 65 0.3 0.04 4.30E-01 0.33 1.21E-04

65 65 0.35 0.04 1.81E-01 0.39 2.74E-04

65 65 0.4 0.08 1.46E-01 0.51 1.00E-03

65 65 0.45 0.01 8.90E-01 0.41 3.18E-02

Table 4. Values of maximum local errors – case III

M NC E A∗ δMAXou A∗∗ δMAXini
164 164 0.05 0.10 1.67E-05 0.01 5.72E-12

164 164 0.1 0.21 1.32E-05 0.01 4.44E-08

164 164 0.15 0.26 1.77E-03 0.07 7.67E-04

164 164 0.2 0.21 2.32E-05 0.01 1.24E-03

164 164 0.25 0.15 4.36E-05 0.08 5.09E-03

164 164 0.3 0.08 6.39E-05 0.08 7.18E-03

164 164 0.35 0.09 1.23E-04 0.07 9.13E-03

164 164 0.4 0.17 4.40E-05 0.01 3.20E-02

164 164 0.45 0.29 1.47E-02 0.01 4.71E-02

Table 5. Values of maximum local errors – case IV

M NC E A∗ δMAXou A∗∗ δMAXini
96 96 0.05 0.08 7.96E-02 0.01 1.01E-05

96 96 0.1 0.52 1.42E-03 0.05 4.19E-06

96 96 0.19 0.06 3.35E-01 0.11 2.03E-05

96 96 0.2 0.07 1.05E-01 0.04 9.14E-05

96 96 0.25 0.18 2.74E-01 0.11 1.57E-05

96 96 0.4 0.04 3.98E-01 0.06 1.20E-03

224 224 0.45 0.07 5.12E-02 0.03 1.85E-03

96 96 0.49 0.01 7.48E+00 0.41 2.75E-02

A∗ – Optimal values outer contour Sd
A∗∗ – Optimal values inner contour Sm
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Table 6. Values of maximum local errors – case V

M NC E A∗ δMAXou A∗∗ δMAXini
96 96 0.05 0.34 1.09E-03 0.03 1.89E-10

224 224 0.06 0.07 9.72E-03 0.01 1.50E-09

96 96 0.1 0.45 8.71E-05 0.08 3.70E-09

96 96 0.11 0.52 3.63E-04 0.08 1.58E-09

96 96 0.2 0.54 7.97E-03 0.12 1.20E-07

96 96 0.22 0.32 3.72E-02 0.11 1.08E-07

224 224 0.25 0.21 4.87E-04 0.04 1.14E-06

224 224 0.45 0.18 6.32E-01 0.04 7.05E-05

Table 7. Values of maximum local errors – case VI

M NC E A∗ δMAXou A∗∗ δMAXini
69 69 0.025 0.61 8.80E-06 0.02 1.24E-11

69 69 0.05 0.54 3.79E-05 0.03 2.23E-11

69 69 0.075 0.27 1.33E-04 0.05 6.52E-11

69 69 0.1 1.35 1.58E-04 0.13 7.29E-10

72 72 0.125 1.06 6.01E-05 0.09 8.76E-10

72 72 0.15 1.37 1.41E-04 0.10 9.78E-10

69 69 0.175 1.23 1.61E-03 0.23 2.56E-08

72 72 0.2 0.80 1.57E-03 0.12 4.05E-06

72 72 0.225 1.85 1.40E-02 0.10 4.27E-05

Table 8. Values of maximum local errors – case VII

M NC E A∗ δMAXou A∗∗ δMAXini
78 78 0.025 0.34 1.09E-02 0.02 3.90E-10

78 78 0.05 0.43 5.34E-03 0.04 2.81E-09

78 78 0.075 0.01 4.41E-01 0.08 2.56E-08

84 84 0.1 0.17 2.87E-02 0.07 1.43E-07

78 78 0.125 0.17 3.80E-02 0.12 6.08E-06

78 78 0.15 0.39 2.59E-01 0.14 3.97E-05

84 84 0.175 0.51 7.68E-03 0.10 3.97E-05

78 78 0.2 0.60 1.97E-02 0.12 1.15E-03

78 78 0.225 0.63 1.06E-01 0.09 4.21E-03

A∗ – Optimal values outer contour Sd
A∗∗ – Optimal values inner contour Sm
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Next, the result was compared with the results of the dimensionless stiffness
resulting from Brendt’s formula for an annular region

Ms =
π

4

(1
2
+ E
)3(1
2
− E
)

(6.2)

The results of comparison are presented in Fig. 12.

Fig. 12. Comparison of the results given by proposed here formula (4.6) – points,
Bredt’s formula (6.2) – solid line and exact solution (6.1) – broken line for the case

of circular with circular centered hole; M = 46, NC = 46

7. Conclusion

The method of fundamental solutions was successfully applied to solve the bo-
undary problem of torsion of bars with multiply connected cross sections. The
paper considered seven cases with multiply connected cross sections, where the
thickness E varied between 0 < E < 0.5 for problems I-V and 0 < E < 0.25
for problems VI and VII. With the application of this method, the maximum
error for problems I, II, and IV-VII is smaller on the inner boundary than
on the outer boundary. For problem III, the errors on the inner and outer
boundary are comparable. The values of the maximum errors are really small.

Furthermore, on the basis of the numerical results for the circle with cir-
cular hole cross section of the bar, it was concluded that well known Brendt’s
method of calculating stiffness of thin-walled bars can be successfully applied
to bars with the dimensionless thickness larger than E = 0.4. In all the cases
studied, it was observed that the boundary condition is satisfied. Stress func-
tion values along the X axis converge to zero, reaching zero at the edge of the
outer section.
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In the first method for given M and NC, Sd and Sm were searched
through. Out of thousands of errors, the minimum value, which was the value
of the method error, was determined. Determination of the minimum value of
bug was becoming very time consuming. For this reason, genetic algorithms
were used to determine the optimal coefficients M , NC, Sd and Sm of the
method of fundamental solutions in order to determine values of the error
method. Application of genetic algorithms increased the speed of finding the
minimum error in comparison with the method of searching.
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3. Bogomolny A., 1985, Fundamental solution method for elliptic boundary
value problems, SIAM Journal on Numerical Analysis, 22, 644-669

4. Bredt R., 1896, Kritische Bemerkungen zur drehungselastizitat, Zeitschrift
des Vereines Deutscher Ingenieure, 40, 785-790

5. Chen K.H., Kao J.H., Chen J.T., Young D.L., Lu M.C., 2006, Regula-
rized meshless method for multiply-connected-domain Laplace problems, Engi-
neering Analysis with Boundary Elements, 30, 882-896

6. Dyląg Z., Jakubowicz A., Orłoś Z., 1999, Wytrzymałość materiałów,
tom I, Wydawnictwo Naukowo-Techniczne, Warszawa

7. Fairweather G., Karageorghis A., 1988a, The almansi of fundamental so-
lutions for numerical solution of the biharmonic equation, International Journal
for Numerical Methods in Engineering, 26, 1668-1682

8. Fairweather G., Karageorghis A., 1998b, The method of fundamental so-
lutions for elliptic boundary value problems, Advances in Computational Ma-
thematics, 9, 69-95

9. Fairwearther G., Karageorghis A., 1989, The simple layer potential me-
thod of fundamental solutions for certain biharmonic equations, International
Fluids for Numerical Methods in Fluids, 9, 1221-1234

10. Fairweather G., Karageorghis A., Martin P.A., 2003, The method of
fundamental solutions for scattering and radiation problems, Engineering Ana-
lysis with Boundary Elements, 27, 759-769



1076 P. Gorzelańczyk

11. Goldberg D.E., 1995, Algorytmy genetyczne i ich zastosowania, Wydawnic-
two Naukowo-Techniczne, Warszawa

12. Golberg M.A., Chen C.S., 1998, The method of fundamental solutions for
potential, Helmholtz and diffusion problems, [In:] Boundary Integral Methods –
Numerical and Mathematical Aspects, Golberg M.A. (Edit.), Boston, Compu-
tational Mechanics Publications, 103-176

13. Hematiyan M.R., Doostfatemeh A., 2007, Torsion of moderately thick
hollow tubes with polygonal shapes, Mechanics Research Communications, 34,
528-537

14. Karageorghis A., 2009, A practical algorithm for determining the optimal
pseudo-boundary in the method of fundamental solutions, The Advances in
Applied Mathematics and Mechanics, 1, 4, 510-528

15. Katsurada M., 1990, Asymptotic error analysis of the charge simulation me-
thod, Journal of the Faculty of Science, University of Tokyo, Section 1A, 37,
635-657

16. Katsurada M., Okamoto H., 1988, A mathematical study of the charge
simulation method, Journal of the Faculty of Science, University of Tokyo,
Section 1A, 35, 507-518

17. Katsurada M., Okamoto H., 1996, The collocation points of the fundamen-
tal solution method for the potential problem,Computers and Mathematics with
Applications, 31, 123-137

18. Kim Y.Y., Yoon M.S., 1997, A modified Fourier series method for the torsion
analysis of bars with multiply connected cross sections, International Journal
Solids Structures, 34, 4327-4337

19. Kitagawa T., 1988, On the numerical stability of the method of fundamental
solutions applied to the Dirichlet problem, Japan Journal of Industrial and
Applied Mathematics, 35, 507-518

20. Kitagawa T., 1991, Asymptotic stability of the fundamental solution method,
Journal of Computational and Applied Mathematics, 38, 263-69

21. Kołodziej J.A., Fraska A., 2005, Elastic torsion of bars possessing regular
polygon in cross-section, Computers and Structures, 84, 78-91

22. Kołodziej J.A., Klekiel T., 2008, Optimal parameters of method of fun-
damental solutions for Poisson problems in heat transfer by means of gene-
tic algorithms, Computer-Assisted Mechanics and Engineering Sciences, 15,
99-112



Method of fundamental solution and genetic algorithms... 1077

23. Kupradze V.D., Aleksidze M.A., 1964, The method of functional equations
for the approximate solution of certain boundary-value problems, Zurnal Vy-
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Zastosowanie metody rozwiązań podstawowych oraz algorytmów
genetycznych do zagadnienia skręcania prętów o przekroju wielospójnym

Streszczenie

W artykule rozważano skręcanie pretów z wielospójnym przekrojem poprzecznym
za pomocą metody rozwiązań podstawowych (MRP). Do wyznaczenia optymalnych
parametrów MRP wykorzystano algorytmy genetyczne. W pracy rozważano siedem
problemów testowych. Bezwymiarowe sztywności skręcania liczono za pomocą nume-
rycznego całkowania funkcji naprężeń dla jednego z przypadków. Te sztywności po-
równywano ze ścisłą sztywnością dla pierwszego przypadku i ze sztywnością uzyskaną
ze wzoru Bredta dla cieńkich przekrojów poprzecznych.
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