ANALIZA WYNIKÓW BADAŃ PEŁZANIA MECHANICZNEGO I OPTYCZNEGO MATERIAŁU MODELOWEGO SYNTEZOWANEGO Z KRAJOWEJ ŻYWICY EPOKSYDOWEJ

KAZIMIERZ SZULBORSKI (WARSZAWA)

1. Ujęcie analityczne wyników badań

Przed przystąpieniem do próby szczegółowego przedstawienia zależności opisujących przebieg pełzania mechanicznego i optycznego tworzywa modelowego syntezowanego z krajowej żywicy «Epidian 2» zostaną rozpatrzone wstępnie niektóre kierunki ujęcia wymienionego zjawiska w formie związków funkcyjnych.

W literaturze dotyczącej badań innych materiałów, głównie konstrukcyjnych, zawarte są rozmaite formy opisu pełzania mechanicznego, które ujmują poszczególne parametry mające wpływ na wartość odkształcenia przy pełzaniu.

Reologiczne równania stanu tworzywa o budowie łańcuchowej wynikające ze struktury fizycznej materiału można zapisać równaniami różniczkowymi wiążącymi ze sobą naprężenia, odkształcenia i ich pochodne różnych rzędów względem czasu. Równania te mogą być liniowe lub nieliniowe.

W wielu przypadkach zamiast równań różniczkowych do opisu rozpatrywanego zjawiska stosuje się zależności przedstawione w formie całkowej.

W celu określenia zależności opisujących przebieg pełzania sprawdzono wstępnie możliwości zastosowania zasady superpozycji Boltzmana dla rozpatrywanego materiału, badanego w różnych temperaturach*.

Z szeregu sposobów sprawdzenia tej zasady (patrz np. [3], [5]) w niniejszym artykule zastosowano metodę polegającą na określeniu ilorazów $\frac{\varepsilon(t)}{\varepsilon_0}$ dla stosowanych poziomów naprężeń oraz określonej temperatury badań. Wyznaczone wartości tych ilorazów przedstawiono w tablicy 1.

Wartości wymienionych odchyłek upoważniają do stwierdzenia, że w zakresie stanu szklistego oraz stosowanych poziomów naprężeń badane tworzywo wykazuje pełzanie o charakterze liniowym.

Analiza wartości ilorazów $\frac{\varepsilon(t)}{\varepsilon_0}$ (tablica 1) w temperaturach 80 i 100°C wskazuje, że pełzanie w zasadzie tylko w początkowym okresie ma charaketr liniowy.

^{*)} W artykule [11] przedstawiono niektóre wyniki badań własności reologicznych machanicznych i optycznych materiału opartego na krajowej żywicy «Epidian 2».

T [°C]	t (h) σ kG/cm ²	0,5	1	2	4	8	16	24
18	170	1,027	1,032	1,040	1,047	1,054	1,060	1,064
	255	1,022	1,031	1,038	1,047	1,053	1,060	1,063
	300	1,028	1,033	1,042	1,051	1,058	1,062	1,067
	340	1,027	1,033	1,038	1,045	1,053	1,060	1,064
40	50	1,063	1,074	1,092	1,103	1,109	1,109	1,109
	100	1,050	1,061	1,075	1,089	1,100	1,106	1,106
	170	1,046	1,053	1,063	1,075	1,085	1,102	1,102
	255	1,039	1,048	1,058	1,068	1,081	1,092	1,098
80	50	1,089	1,104	1,124	1,159	1,222	1,292	1,357
	100	1,074	1,100	1,127	1,164	1,208	1,280	1,335
	170	1,091	1,127	1,71	1,223	1,282	1,388	1,449
100	25	1,286	1,434	1,647	1,966	2,360	2,950	3,258
	50	1,416	1,686	2,008	2,575	3,120	3,839	4,239
	100	1,374	1,583	1,928	2,422	3,320	5,006	6,023

Tablica 1

Z tablicy wynika, że rozpatrywane tworzywo w temperaturach 18° i 40°C z dostatecznym przybliżeniem podlega wymienionej zasadzie superpozycji.

Największe procentowe odchyłki ilorazów w temperaturze $T = 18^{\circ}$ C od wartości skrajnej wynoszą 0,6%, od średniej zaś – 0,39%, natomiast w temperaturze $T = 40^{\circ}$ C maksymalne odchyłki wynoszą w odniesieniu do wartości skrajnej 3,4% i 1,87% względem wartości średniej.

Maksymalne wartości wymienionych poprzednio odchyłek od wartości skrajnych wynoszą 11,4% przy temperaturze 80°C i 13% przy temperaturze 100°C (dla t < 0,5 h). W podanych zakresach maksymalne odchyłki od wartości średniej rozpatrywanego ilorazu wynoszą odpowiednio 5 i 5,37%.

Przebiegi krzywych izochronicznych potwierdzają z dostatecznym przybliżeniem liniowe związki między naprężeniami i odkształceniami pełzania w ustalonych czasach [11]. Na podstawie uzyskanych wyników badań wydaje się możliwe zaproponowanie przedstawienia całkowitego odkształcenia $\varepsilon_c = \varepsilon(t)$ w przypadku pełzania w różnych temperaturach przy $\sigma(t) = \sigma = \text{const}$ w postaci sumy trzech składników według następującej zależności:

(1)
$$\varepsilon_c = \varepsilon_0 + \varepsilon_{cn} + \varepsilon_p,$$

gdzie:

 ε_0 odkształcenie natychmiastowe,

- ε_{cn} odkształcenie odwracalne pełzania,
- ε_p odkształcenie trwałe pełzania.

W dalszym ciągu przedyskutujemy występowanie wyszczególnionych we wzorze (1) składników całkowitego odkształcenia w zakresie temperatur od 18° do 100°C.

Z przebiegu krzywych pełzania i nawrotu przy pełzaniu w temperaturach 18° i 40°C można stwierdzić, że w tym zakresie ze względu na pomijalnie małe odkształcenia ε_p

pełzanie ma — praktycznie ujmując — charakter odwracalny. W przypadku tym przyjmując $\varepsilon_p = 0$ można całkowite odkształcenie ε_c , przy uwzględnieniu zasady superpozycji Boltzmana oraz historii obciążenia opisać, następującą zależnością:

(2)
$$\varepsilon_c = \frac{\sigma(t)}{E_1} + \int_{-\infty}^{t} K(t-\tau)\sigma(\tau) d\tau,$$

gdzie:

 $\sigma(t)$ naprężenie w chwili t,

 E_1 natychmiastowy moduł sprężystości,

 $K(t-\tau)$ funkcja określająca wpływ historii obciążenia w chwili τ na odkształcenie w chwili t.

Przyjmując, że historia obciążenia nie zaczyna się od $-\infty$, lecz w chwili $t_0 = 0$, można odkształcenie ε_c wyrazić również w postaci:

(3)
$$\varepsilon_c = \frac{\sigma(t)}{E_1} + \int_0^t K(t-\tau)\sigma(\tau) d\tau.$$

Z przeprowadzonych doświadczeń wynika, że odkształcenie natychmiastowe ε_0 można z dostateczną dokładnością określić wzorem

(4)
$$\varepsilon_0 = \frac{\sigma}{E_1}$$

przyjmując przy tym za E_1 wartości modułów sprężystości wyznaczonych w badaniach doraźnych.

Do wyznaczenia odkształceń ε_{cn} można wykorzystać drugi składnik równania (3), otrzymując przy $\sigma = \text{const}$

(5)
$$\varepsilon_{cn} = \sigma \int_{0}^{t} K(t-\tau) d\tau.$$

Warunki jakim powinna odpowiadać funkcja $K(t-\tau)$ podane są m.in. w pracy [8].

Przyjmijmy funkcję $K(t-\tau)$ w postaci

(6)
$$K(t-\tau) = \frac{\gamma}{(t-\tau)^{1-\alpha}},$$

gdzie γ i α — odpowiednie stałe zależne od warunków pomiarów.

Po podstawieniu (6) do równania (5) otrzymuje się

(7)
$$\varepsilon_{cn} = \sigma \int_{0}^{t} \frac{\gamma}{(t-\tau)^{1-\alpha}} d\tau = \sigma \frac{\gamma}{\alpha} t^{\alpha}.$$

Wprowadzając nowe oznaczenie zgodnie z zależnością

(8)
$$V = \sigma \frac{\gamma}{\alpha}$$

można również napisać

(9) $\varepsilon_{cn} = V t^{\alpha}.$

Przy uwzględnieniu wpływu temperatury na wartości ε_0 i V można całkowite odkształcenie przy pełzaniu w stanie szklistym wyrazić w postaci

(10)
$$\varepsilon_c = \varepsilon_0(\sigma, T) + V(\sigma, T)t^{\alpha},$$

gdzie $\varepsilon_0(\sigma, T)$ i $V(\sigma, T)$ — funkcje naprężenia i temperatury.

Po przeanalizowaniu wykresów pełzania i nawrotu przy pełzaniu w temperaturach 80° i 100°C wydaje się, że podobnie jak to ma miejsce w modelu Burgersa, odkształcenie trwałe w tych temperaturach można przedstawić w postaci

(11)
$$\varepsilon_p = -\frac{\sigma}{\eta} t,$$

gdzie η — lepkość.

Wzrost temperatury oraz obciążenie powodują, prawdopodobnie wskutek zmian zachodzących w wiązaniach drugorzędowych, przejście badanego tworzywa ze stanu szklistego w stan pośredni między stanem szklistym i wysokoelastycznym. Zakresowi temu, jak wykazały pomiary, towarzyszy znaczne pełzanie oraz występowanie odkształceń trwałych.

Biorąc pod uwagę zależność ilorazu $\frac{\sigma}{\eta}$ od temperatury można równanie (11) przed-

stawić w postaci

(12)
$$\varepsilon_p = \mu(\sigma, T)t,$$

gdzie

(13)
$$\mu(\sigma, T) = \frac{\sigma}{\eta}.$$

Po uwzględnieniu zależności (12) równanie (11) można przedstawić w postaci stosowanej do opisu wyników badań pełzania mechanicznego w temperaturze 80° i 100°C

(14)
$$\varepsilon_c = \varepsilon_0(\sigma, T) + V(\sigma, T)t^{\alpha} + \mu(\sigma, T)t.$$

Przy rozpatrywaniu związków funkcyjnych określających pełzanie badanego tworzywa w różnych temperaturach rozważano zamieszczone w pracy [10] słuszne zastrzeżenia odnośnie zasady dziedziczności Boltzmanna.

W niniejszej pracy wykonywano badania przy ustalonych poziomach temperatur, uzyskując równomierne ogrzanie materiału w całej objętości, co potwierdzają obliczenia współczynnika Poissona posiadającego wartość stałą na poziomej danej temperatury badań. W związku z tym w omawianym zakresie badań wydaje się, że można się oprzeć na zasadzie dziedziczności Boltzmana bez wprowadzenia dodatkowych poprawek.

Uzyskane w przeprowadzonych równolegle pomiarach optycznych wyniki wskazują, że charakter krzywych pełzania mechanicznego i optycznego jest podobny, zatem do opisu pełzania optycznego można również wykorzystać zależności w formie związków funkcyjnych o budowie podobnej do zależności (10) i (14), określających odkształcenia przy pełzaniu mechanicznym.

1.1. Analiza pelzania mechanicznego w różnych temperaturach. Wyniki badań pelzania mechanicznego w temperaturze 18°C przedstawiono w oparciu o równanie (10).

W celu wyznaczenia wartości α przyjmijmy, że w chwili t_1 wartość odkształcenia pełzania równa jest ε_{c_1} , a w chwili $t_2 - \varepsilon_{c_2}$. Otrzymuje się odpowiednio do poprzedniej zależności:

(15)
$$\varepsilon_{c1} = \varepsilon_0 + V t_1^{\alpha}$$

(16)
$$\varepsilon_{c2} = \varepsilon_0 + V t_2^{\alpha}$$

lub

$$\varepsilon_{c1} - \varepsilon_0 = V t_1^{\alpha},$$
$$\varepsilon_{c2} - \varepsilon_0 = V t_2^{\alpha}.$$

Po podzieleniu stronami i następnie zlogarytmowaniu wzór na parametr α przyjmuje postać

(17)
$$\alpha = \frac{\lg \frac{\varepsilon_{c_2} - \varepsilon_0}{\varepsilon_{c_1} - \varepsilon_0}}{\lg \frac{t_2}{t_1}}$$

Do wyznaczenia parametru α przyjęto odkształcenia pełzania ε_{c1} odpowiadające czasowi $t_1 = 2$ h oraz odkształcenia ε_{c2} dla czasu $t_2 = 24$ h. Dla wyznaczonej wartości α odpowiednie wartości V określono z równania (15).

Na rys. 1 przedstawiono wykres zależności parametru V od σ . Z rysunku tego widać, że parametr V rośnie monotonicznie wraz z naprężeniami.

Na rys. 2 przedstawiono w układzie podwójnie logarytmicznym zależności ε_{cn} od t dla stosowanych poziomów naprężeń przy pełzaniu w temperaturze 18°C. W celu sprawdzenia poprawności uzyskanych formuł empirycznych, wykonano obliczenia wartości odkształceń dla różnych czasów t.

Analiza otrzymanych wyników prowadzi do stwierdzenia, iż największa odchyłka wartości odkształcenia ε_c obliczonej według (10) od wartości wyznaczonej doświad-

K. SZULBORSKI

czalnie w stosunku do tej ostatniej nie przekracza 2,5% dla czasów $t < t_1$, zaś przy czasach $t > t_1$ największa procentowa wartość odchyłki wynosi 1,23%. Charakterystyczny jest również fakt, że odchyłki procentowe są mniejsze przy wartościach naprężeń

 $\sigma > 100 \text{ kG/cm}^2$. Należy zatem stwierdzić, że przedstawienie odkształceń pełzania proponowanymi zależnościami daje dobrą zgodność z otrzymanymi wynikami doświadczalnymi.

Na podstawie wzoru (10) wyznaczono prędkość pełzania (rys. 3)

(18)
$$\dot{\varepsilon}_c = \frac{d\varepsilon_c}{dt} = V\alpha t^{\alpha-1}$$

Do opisu pełzania w temperaturach podwyższonych wykorzystano równanie (14) zamieszczone w punkcie 3.1.

W zakresie stanu szklistego tworzywa, tj. temperaturze badań $T = 40^{\circ}$ C, nie stwierdzono odkształceń trwałych. Można przyjąć, iż lepkość η jest tak duża, że odkształcenia $\varepsilon_p(t)$ są bliskie zeru. Zatem do przedstawienia wyników pomiarów odkształceń w temperaturze 40°C wykorzystano zależność (10).

Analiza wykresów pełzania mechanicznego w temperaturach 80° i 100°C nasuwa przypuszczenie, że badany materiał znajduje się w obszarze przejściowym między stanem szklistym i stanem wysokoelastycznym. Ten stan przejściowy określany jest często [1], [5], jako stan wymuszonej elastyczności. Zaobserwowane znaczne odkształcenia trwałe podczas prób pełzania w temperaturze 80° i 100°C wskazują na zmniejszanie się lepkości η w miarę wzrostu temperatury. Szczegółową analizę wyników badań w temperaturze 80° i 100°C, opartą o zależność (14), podano w pracy [12].

Na rys. 4 pokazano wykresy prędkości pełzania w różnych temperaturach dla naprężenia przy pełzaniu $\sigma = 50 \text{ kGcm}^{-2}$. Z wykresu na rysunku 4 widać, że pełzanie mechaniczne w temperaturze 100°C odbywa się ze znaczną prędkością odkształcenia i ma charakter nieustalony.

1.2. Zależności opisujące pełzanie optyczne w temperaturze pokojowej i w temperaturach podwyższonych. Na podstawie stwierdzonego poprzednio w punkcie 1.1 podobieństwa przebiegu krzywych charakteryzujących pełzanie mechaniczne i optyczne podjęto próbę przedstawienia zależności między efektem optycznym i czasem w postaci funkcji w analogicznej formie, jak w przypadku odkształceń, mianowicie

$$(19) m_c = m_0 + m_{nc},$$

gdzie

m_c sumaryczny rząd izochromy przy pełzaniu,

- m₀ rząd izochromy bezpośrednio po obciążeniu,
- m_{cn} reologiczny efekt optyczny.

Wprowadzając nowe parametry V_1 i α_1 można analogicznie do wyrażenia (9) przedstawić m_{cn} w postaci

$$(20) m_{cn} = V_1 t^{\alpha_1}$$

tutaj V_1 — parametr zależny od naprężenia i temperatury, α_1 — parametr zależny od rodzaju materiału

Biorąc pod uwagę (19) i (20) otrzymuje się

(21)
$$m_c = m_0 + V_1 t^{\alpha_1}$$

Wartość parametru α_1 zmienia się od 0,20226 do 0,26759. Ze względu na małe zmiany tego parametru wydaje się możliwe przyjęcie wartości $\alpha_1 = 0,22390$ równej średniej sumarycznej w rozpatrywanym przedziale naprężeń. Największa procentowa odchyłka od wartości średniej tego parametru wynosi 9,51%.

Wyznaczone parametry α_1 i V_1 pozwoliły na przedstawienie zależności $m_c = m(t)$ dla $\sigma = \text{const.}$ Odchyłki procentowe wyników badań doświadczalnych od wartości wyznaczonych równaniem (21) osiągają dla czasów $t < t_1$ ($t_1 = 2$ h) wartość 0,95% oraz dla $t > t_1$ odpowiednio 0,70%. Małe wartości procentowe odchyłek świadczą o prawidłowości przedstawienia krzywych pełzania optycznego zależnością (21).

Na rys. 5 przedstawiono w układzie podwójnie logarytmicznym reologiczny efekt optyczny m_{cn} w zależności od czasu t. Pełzanie optyczne w temperaturach podwyższonych opisano równaniami przyjętymi przez analogię do pełzania mechanicznego.

Z uwagi na podobieństwo przebiegu krzywych pełzania mechanicznego i optycznego w temperaturach 80° i 100°C nasuwa się przypuszczenie, że całkowity rząd izochromy przy pełzaniu optycznym w wymienionych temperaturach można wyrazić wzorem

(22)
$$m_c = m_0 + V_1 t^{\alpha_1} + \mu_1 t,$$

gdzie μ_1 — parametr charakteryzujący trwały efekt optyczny.

Przykładowo na rys. 6 przedstawiono wykresy krzywych prędkości pełzania obliczonych po zróżniczkowaniu zależności (22) w temperaturze $T = 80^{\circ}$ C. Analizę wyników badań pełzania optycznego w temperaturze 100°C oparto o analogiczną zależność, jak w przypadku pełzania w temperaturze 80°C.

1.3. Relaksacja naprężeń w różnych temperaturach. Wyniki badań relaksacji mogąw pewnym stopniu stanowić potwierdzenie otrzamanych poprzednio związków charakteryzujących pełzanie przy stałej wartości naprężenia. W tym celu rozpatrzony zostanie przebieg relaksacji w możliwie prostym ujęciu. Opisane w artykule [11] badania relaksacji prowadzono w temperaturach 18°, 40° i 80°C. Z uwagi na kontrolny charakter tych badań w dalszych rozważaniach ograniczymy się do opisu relaksacji naprężeń w temperaturach 18° i 40°C.

Całkowite odkształcenie podczas relaksacji jest sumą odkształcenia sprężystego i odkształcenia pełzania przy zmiennym naprężeniu. Zakładając, że odkształcenie sprężyste dodlega prawu Hooke'a przy pewnym stałym module *E*, przebieg relaksacji można okreś-

lić równaniem różniczkowym:

(23)
$$\frac{1}{E}\frac{d\sigma}{dt} + \dot{\varepsilon}_{cn} = 0,$$

gdzie

E moduł sprężystości,

 $\frac{d\sigma}{dt}$ prędkość naprężenia,

 $\dot{\varepsilon}_{en}$ prędkość odkształcenia przy pełzaniu.

Prędkość odkształcenia przy pełzaniu $\dot{\varepsilon}_{cn}$ można wyznaczyć w oparciu o zależności opisujące pełzanie w temperaturach 18° i 40°C (punkt 1).

Pierwiastkując obustronnie związek (9) otrzymuje się

(24)
$$\varepsilon_{cn}^{1/\alpha} = V^{1/\alpha}t.$$

Po obustronnym zróżniczkowaniu zależności (24) względem czasu t prędkość σ wyraża się w postaci

(25)
$$\dot{\varepsilon}_{cn} = \frac{V^{1/\alpha}}{\varepsilon_{cn}^{1/\alpha-1}},$$

co odpowiada uzależnieniu umocnienia od odkształcenia.

Z drugiej strony w rozpatrywanym przypadku relaksacji odk
ształcenie ε_{cn} spełnia za leżność

(26)
$$\varepsilon_{cn} = \frac{\sigma_0 - \sigma}{E},$$

gdzie σ_0 — naprężenie początkowe, σ — naprężenie w chwili czasowej t.

W dalszym ciągu rozważań za wartości modułów sprężystości E w rozpatrywanych temperaturach przyjmowane będą umownie wartości E wyznaczone w badaniach doraźnych. Uwzględniając związki (24), (25) i (26) otrzymuje się równanie relaksacji naprężenia w czasie

(27)
$$\frac{d\sigma}{dt} + \alpha \frac{V^1/\alpha}{(\sigma_0 - \sigma)^{1/\alpha - 1}} E^{1/\alpha} = 0.$$

Biorąc pod uwagę fakt, że zależną od naprężenia funkcję V określono jedynie wykreślnie, równanie (27) rozwiązano metodą numeryczną. Przyjmując t za funkcję σ można równanie (27) przedstawić w postaci

(28) $dt = f(\sigma)d\sigma,$

gdzie

(29)
$$f(\sigma) = -\frac{1(\sigma_0 - \sigma)^{1/\alpha - 1}}{\alpha E^{1/\alpha}}.$$

Przez wprowadzenie w miejsce różniczek różnic skończonych, stosownie do zależności (28) otrzymuje się

(30)
$$(\Delta t)_i = f_i(\sigma_i)(\Delta \sigma_i),$$

gdzie:

$$f_i(\sigma) = \frac{1}{2} [f(\sigma_i) + f(\sigma_{i-1})],$$

$$(\Delta \sigma)_i = \sigma_i - \sigma_{i-1},$$

$$(\Delta t)_i = t_i - t_{i-1}.$$

Posiłkując się wzorem (30) wyznaczono wartości naprężenia podczas relaksacji badanego materiału modelowego przy założeniu naprężeń początkowych $\sigma_0 = 170 \text{ kG/cm}^2$ w temperaturach 18° i 40°C.

Na rys. 7 przedstawiono wykresy zależności $\sigma = \sigma(t)$, przy temperaturach badania $T = 18^{\circ}$ C i $T = 40^{\circ}$ C uzyskanych z rozwiązania równania (27). Z rysunku tego można

Rys.	7
------	---

Lp	Metoda	Naprę σ_k (kG przy temp	żenie /cm²) eraturach	% odchyłki w stosunku do metody [3]		
		18°C	40°C	18°C	40°C	
1	Obliczeniowa na podstawie równania (27)	159,40	155,30	- 1,06	+0,40	
2	Pomiar elastooptyczny	158,95	155,65	-0,78	+0,18	
3	Na podstawie wartości siły rozciągającej z pomiarów bez- pośrednich	157,72	155,93	0	0	

Tablica 2

stwierdzić dostateczną zgodność przebiegu zależności $\sigma = \sigma(t)$ wyznaczonych równaniem (27) oraz wartości $\sigma(t)$ określonych doświadczalnie. Maksymalne podstawowe odchyłki osiągają wartość 1,28% w temperaturze 18°C oraz 0,51% w temperaturze 40°C. Pnmiary relaksacji optycznej mierzonej spadkiem rzędu izochromy potwierdziły zgodność wyników otrzymanych metodą analityczną.

W tablicy 2 zestawiono wartości naprężeń końcowych σ_k po 24 godzinach relaksacji, wyznaczonych na podstawie: rozwiązania równania (27), pomiarów elastooptycznych i wartości siły obciążającej próbkę.

Otrzymane niewielkie odchyłki procentowe świadczą o poprawności opisu relaksacji przyjętym równaniem różniczkowym.

2. Wnioski szczególowe z przeprowadzonych badań

Analiza wyników pełzania mechanicznego i optycznego w różnych temperaturach rozpatrywanego materiału prowadzi do następujących wniosków szczegółowych:

1. W stanie szklistym w zakresie temperatur 18° i 40°C badane tworzywo wykazuje pełzanie o charakterze liniowym, podlegając zasadzie superpozycji Boltzmana.

2. W temperaturze 80° i 100°C pełzanie ma charakter zbliżony do liniowego tylko w początkowym okresie (t < 0.5 h).

3. Prędkość pełzania zależy zarówno od temperatury, jak i wartości naprężenia;

4. W miarę upływu czasu wartości prędkości pełzania w badanym zakresie naprężeń i temperatury maleją monotonicznie.

5. W temperaturach 80° i 100°C można zauważyć występowanie odkształceń trwałych, których wartość zwiększa się w miarę wzrostu temperatury, naprężeń i czasu. W wymienionych temperaturach odkształcenie trwałe jest proporcjonalne do wartości naprężenia i czasu pełzania.

6. Z uwagi na zmienność reologicznego efektu optycznego przy równoczesnej zmianie wywołanych pełzaniem mechanicznym składowych stanu odkształcenia, nasuwa się myśl o związku pełzania optycznego wyrażonego rzędem izochromy z odkształceniami wywołanymi pełzaniem mechanicznym.

7. Prędkość pełzania optycznego jest zależna od naprężenia i temperatury T. Przy ustalonej temperaturze prędkość pełzania optycznego jest większa dla większych naprężeń. Przy ustalonym naprężeniu prędkość ta rośnie w miarę wzrostu temperatury T.

8. W stanie szklistym tworzywa proces pełzania optycznego można w zasadzie uznać za odwracalny. Przykładowo wartość rzędu izochromy po okresie 24-godzinnego nawrotu wynosi 0,03 j.rz.iz. dla naprężeń $\sigma = 340 \text{ kG/cm}^2$.

9. Badane tworzywo w przedziale $T = 80^{\circ}$ C i $T = 100^{\circ}$ C po okresie 24-godzinnego nawrotu przy pełzaniu wykazuje znaczny trwały efekt optyczny o wartościach proporcjonalnych do czasu pełzania.

10. Badane tworzywo podlega relaksacji, której przebieg w czasie można opisać z dobrą dokładnością równaniem (23).

11. Opis analityczny relaksacji naprężeń w temperaturach 18° i 40°C potwierdza wyniki badań pełzania mechanicznego.

Literatura cytowana w tekście

- 1. Т. Алфрей, *Механические свойства высокополимеров*, Издат. Иностранной Литературы, Москва 1952.
- 2. L. BRUNARSKI, W. CIOŁEK, Odkształcenia reologiczne stali przy liniowo zmieniającym się naprężeniu, IV Sympozjon poświęcony reologii, Wrocław 1969.
- 3. J. H. FERRY, Lepkosprężystość polimerów, WNT, Warszawa 1968.
- 4. I. FINNIE, W. R. HELLER, Pelzanie materialów konstrukcyjnych, WNT, Warszawa 1962.
- 5. J. KAPUŚCIŃSKI, Wlasności lepkosprężyste szkla organicznego w zakresie temperatur jego stosowania, Praca doktorska, Politechnika Warszawska, 1970.
- Z. ORLOŚ, K. SZULBORSKI, Niektóre zagadnienia reologiczne materialów do badań modelowych, IV Sympozjon poświęcony reologii, Wrocław 1969.
- 7. J. T. PINDERA, Reologiczne własności materiałów modelowych, WNT, Warszawa 1962.
- 8. Н. И. Работнов, Ползучесть элементов конструкций, Издат. "Наука". Главная Редакция Физико-Математической Литературы, Москва 1966.
- 9. A. WILCZYŃSKI, Badanie własności mechanicznych niektórych tworzyw sztucznych, Mechanika Teoretyczna i Stosowana, 1, 6 (1963).
- 10. J. ZAWADZKI, E. GROZIK, Badania podstawowe do studium nad anizotermicznym pelzaniem tworzyw termoplastycznych, IV Sympozjon poświęcony reologii, Wrocław 1969.
- 11. K. SZULBORSKI, Badanie własności reologicznych materialu modelowego wykonanego w oparciu o żywicę epoksydową «Epidian 2», Mechanika Teoretyczna i Stosowana, 3, 10 (1972).
- 12. K. SZULBORSKI, Wlasności mechaniczne i optyczne w różnych temperaturach materialu modelowego opartego na żywicy epoksydowej «Epidian 2». Rozprawa doktorska, WAT, 1970.

Резюме

АНАЛИЗ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ МЕХАНИЧЕСКОЙ И ОПТИЧЕСКОЙ ПОЛЗУЧЕСТЕЙ МОДЕЛЬНОГО МАТЕРИАЛА СИНТЕЗИРОВАННОГО ИЗ ОТЕЧЕСТВЕННОЙ ЭПОКСИДНОЙ СМОЛЫ

В статье представлены зависимости описывающие механическую и оптическую ползучести модельной пластмассы, изготовленной на основе эпоксидной смолы «Эпидиан 2». Предложены реологические уравнения состояния пластмассы испытуянной в температурах 18°C, 40°C, 80°C, 100°C.

Поведение кривых механической ползучести проверено дополнительно при помощи зависимостей, описывающих релаксацию напряжений в температурах эксперимента 18 и 40°С.

Summary

ANALYSIS OF RESULTS OF MECHANICAL AND OPTICAL CREEP INVESTIGATIONS OF A POLISH RESIN USED FOR PHOTOELASTIC MODELS

The paper presents relations describing the process of mechanical creep and fading of a model material based on the epoxy resin «Epidian 2». The rheological constitutive equation is proposed for the material tested at temperatures 18°, 40°, 80° and 100° centigrades.

The form of the mechanical creep curves has been additionally verified by means of the relations describing the relaxation of stresses at the temperatures of 18° C and 40° C.

POLITECHNIKA WARSZAWSKA

Praca zostala zlożona w Redakcji dnia 14 kwietnia 1972 r.