PRZYBLIŻONA METODA ROZWIĄZYWANIA PŁASKICH NIESAMOPODOBNYCH FAL UDERZENIOWYCH W DOSKONAŁYM PRZEWODNIKU W POLU MAGNETYCZNYM

EDWARD WLODARCZYK (WARSZAWA)

1. Wstęp

Zagadnienie rozprzestrzeniania się fal uderzeniowych w doskonałym przewodniku umieszczonym w polu magnetycznym było badane w pracach [1] i [2]. W [1] rozpatrzono wypukło-wklęsłą i wklęsłą charakterystykę $\sigma - \varepsilon$. Wyprowadzono związki na froncie fali uderzeniowej i przeprowadzono jakościową analizę strat energii przy formowaniu się frontu silnej nieciągłości. W pracy [2] rozwiązano *explicite* problem samopodobnej (stacjonarnej) fali uderzeniowej dla doskonałego przewodnika.

Celem niniejszej pracy jest podanie rozwiązania problemu propagacji niesamopodobnej fali uderzeniowej w półprzestrzeni wypełnionej doskonałym przewodnikiem i zanurzonej w polu magnetycznym. Fale wzbudzone są ciśnieniem mechanicznym przyłożonym w sposób nagły do powierzchni półprzestrzeni. Ciśnienie to do chwili $t = \tau_0$ jest stałe w czasie i następnie maleje monotonicznie do zera. Nad półprzestrzenią znajduje się próżnia, w którą wypromieniowuje fala elektromagnetyczna. Rozpatrzono wklęsłą charakterystykę p-V dla ośrodka wypełniającego półprzestrzeń. O ile autorowi wiadomo, problem ten nie był badany w literaturze.

W punkcie drugim formułujemy problem, w trzecim — dokonujemy odcinkowej linearyzacji problemu, natomiast w czwartym podajemy analityczne rozwiązanie zagadnienia.

2. Sformułowanie problemu

Rozpatrzmy problem przy następujących założeniach:

1. Stosujemy współrzędne Lagrange'a x, y, z, t.

2. Przyjmujemy układ osi współrzędnych dla dolnej i górnej półprzestrzeni jak na rys.1.

3. Obciążenie powierzchni półprzestrzeni zależy tylko od czasu t, natomiast nie zależy od y, z (rys. 1). Przyłożone jest w sposób nagły; do chwili $t = \tau_0$ jest stałe w czasie i następnie monotonicznie maleje do zera (rys. 2).

4. Przyjmujemy:

(2.1)

$$H_1 = H_3 = 0, \quad H_2 = H.$$

5. Ośrodek wypełniający dolną półprzestrzeń jest doskonałym przewodnikiem, tj. jego przewodność $\sigma \rightarrow \infty$ (w przybliżeniu złoto, miedź). Górna półprzestrzeń jest próżnią.

6. Pomijamy w równaniach sprzężonych pól dla $\sigma \rightarrow \infty$ prądy przesunięcia.

7. Nie uwzględniamy przewodnictwa cieplnego i lepkości mechanicznej ośrodka.

8. Będziemy badać fale uderzeniowe średniej intensywności (do kilkuset kilobarów).

Dlatego równanie stanu dla przewodnika przyjmujemy w postaci jednoczłonowej bez wpływu temperatury [3] i [4]

$$(2.2) p = A\left[\left(\frac{V_0}{V}\right)^n - 1\right]$$

A, n są stałymi charakteryzującymi dany przewodnik (miedź: A = 296 kbar, n = 4,8; złoto A = 310 kbar, n = 5,7, [4]).

Zgodnie z powyższymi założeniami równania ruchu ośrodka przyjmują następującą postać:

(2.3)
$$v_{,x} = \frac{1}{V_0} V_{,t}$$
$$v_{,t} = -V_0 \tilde{p}_{,x},$$

gdzie

(2.4)
$$\tilde{p} = p + \frac{H_0^2}{8\pi} \left(\frac{V_0}{V}\right)^2 = A\left[\left(\frac{V_0}{V}\right)^n - 1\right] + \frac{H_0^2}{8\pi} \left(\frac{\overline{V_0}}{V}\right)^2;$$

 H_0 jest tu pierwotnym stałym polem magnetycznym.

Przy wyprowadzaniu równań (2.3) wykorzystano fakt, że pole magnetyczne w doskonałym przewodniku jest odwrotnie proporcjonalne do objętości właściwej [1, 2]

$$H = \frac{H_0 V_0}{V}.$$

W próżni pole elektromagnetyczne opisane jest równaniami

(2.6)
$$\frac{1}{c^2}H_{,tt}^* = H_{,x_1x_1}^*, \quad \frac{1}{c^2}E_{,tt}^* = E_{,x_1x_1}^*,$$

gdzie

(2.7)
$$H^* = H_0 + H_1^*, \quad E^* = E_1^*.$$

 H_1^* i E_1^* — są to składowe fali elektromagnetycznej wypromieniowanej od przewodnika w próżnię.

Mając na uwadze fakt, że

(2.8)
$$H_1^* = -E_1^*,$$

z (2.6) otrzymujemy

(2.9)
$$H_1^* = -E_1^* = f\left(t - \frac{x_1}{c}\right),$$

gdzie f jest na razie dowolną funkcją.

Warunki na brzegu półprzestrzeni wynikają z ciągłości składowych stycznych pola elektrycznego w układzie związanym z granicą

$$\vec{E_t} = \vec{E_t}$$

oraz z ciągłości ciśnienia na granicy ośrodka i próżni

(2.11)
$$\tilde{p} = p^* + p_0(t)$$

gdzie p* jest składową normalną tensora napięć Maxwella w próżni

(2.12)
$$p^* = T^*_{x_1 x_1} = \frac{1}{8\pi} H^{*2}.$$

Z (2.10) po przejściu na układ Lagrange'a otrzymujemy

(2.13)
$$E + \frac{v_0(t)}{c}H = E^* + \frac{v_0(t)}{c}H^*.$$

Ponieważ w przewodniku zachodzi zależność

(2.14)
$$E = -\frac{v_0(t)}{c}H,$$

przeto

(2.15)
$$E^* + \frac{v_0(t)}{c} H^* = 0.$$

Wprowadzając (2.9) do (2.15) otrzymamy

(2.16)
$$f\left(t - \frac{\eta(t)}{c}\right) = \frac{\frac{v_0(t)}{c}}{1 - \frac{v_0(t)}{c}} = \frac{H_0 v_0(t)}{c - v_0(t)};$$

natomiast z (2.7), (2.9) i (2.16) wynika, że

(2.17)
$$H^* = \frac{H_0}{1 - \frac{v_0(t)}{c}}.$$

Ostatecznie warunek brzegowy (2.11) można przedstawić w postaci

(2.18)
$$\left(\frac{V_0}{V}\right)^n - 1 + \alpha \left(\frac{V_0}{V}\right)^2 = \frac{\alpha}{\left[1 - \frac{v_0(t)}{c}\right]^2} + \frac{p_0(t)}{A},$$

gdzie

$$(2.19) \qquad \qquad \alpha = \frac{H_0^2}{8\pi A}.$$

Z warunku ciągłości masy i pędu na froncie fali uderzeniowej $x = \varphi(t)$ otrzymujemy

(2.20)
$$\frac{\dot{\varphi} - v_x}{\dot{\varphi}} = \frac{V_x}{V_0},$$
$$\tilde{p}_x = \frac{\dot{\varphi}^2}{V_0} \left(1 - \frac{V_x}{V_0} \right) + \frac{H_0^2}{8\pi}.$$

Warunki początkowe są następujące:

(2.21)
$$v(x, 0) = 0, \quad V(x, 0) = V_0, \\ H^*(x, 0) = H_0, \quad H^*_{,t}(x, 0) = 0, \\ E^*(x, 0) = 0, \quad E^*_{,t}(x, 0) = 0.$$

Tym samym problem został jednoznacznie sformułowany.

3. Aproksymacja związku $\tilde{p} = \tilde{p}(V)$ odcinkami prostymi

Rozwiązanie quasi-liniowego układu równań w warunkach tworzenia się niestacjonarnego frontu fali uderzeniowej jest skomplikowanym problemem równań fizyki matematycznej. Do chwili obecnej w literaturze brak jest zamkniętego rozwiązania tego zagadnienia. Numeryczna konstrukcja rozwiązania w ogólnym ujęciu jest żmudna i pracochłonna, mimo zastosowania elektronicznej techniki obliczeniowej. Dlatego w niniejszej pracy pójdziemy w kierunku pewnych uproszczeń natury fizycznej, aby uzyskać zamkniętą analityczną formę rozwiązania tego problemu.

Mianowicie, z prawa zachowania masy wynika, że:

(3.1)
$$\frac{V}{V_0} = \frac{\varrho_0}{\varrho} = 1 + u_{,x} = 1 + \varepsilon, \quad \varepsilon = u_{,x},$$

gdzie u jest przemieszczeniem ośrodka.

Wprowadzając (3.1) do (2.4) otrzymamy

(3.2)
$$P = \frac{\tilde{p}}{A} = \left(\frac{1}{1+\varepsilon}\right)^n - 1 + \alpha \left(\frac{1}{1+\varepsilon}\right)^2$$

Na rys. 3 wykreślono funkcję $P(\varepsilon)$ dla miedzi (linie ciągłe). Podobne przebiegi uzyskuje się dla złota. Jak wynika z zamieszczonych wykresów funkcję $P(\varepsilon)$ w zakresie stosowalności równania stanu (2.2) (P < 2,5) z wystarczającą dla celów praktyki dokładnością można aproksymować w strefie obciążenia linią łamaną złożoną z dwóch odcinków prostych (linie przerywane na rys. 3), których nachylenie i długość zależy od parametru α (początkowego pola magnetycznego H_0). Ponieważ równanie stanu (2.2) jest również pewnym przybliżeniem wyników eksperymentalnych, przeto proponowana odcinkowa aproksymacja funkcji $P(\varepsilon)$ jest tym bardziej uzasadniona. W strefie odciążenia przyjmiemy, że funkcja $P(\varepsilon)$ jest liniowa (rys. 4).

Mamy wówczas:

$$\tilde{p} = A\alpha - E_0 \varepsilon = A\alpha - E_0 \left(\frac{V}{V_0} - 1 \right),$$

jeśli $A\alpha \leqslant \tilde{p} \leqslant \tilde{p}^*(\alpha)$,

oraz

(3.3)
$$\tilde{p} = \tilde{p}^*(\alpha) - E_1(\varepsilon - \varepsilon^*) = (E_1 - E_0)\varepsilon^* + A\alpha - E_1\left(\frac{V}{V_0} - 1\right),$$

jeśli $\tilde{p} \ge \tilde{p}^*(\alpha)$; natomiast

(3.4)
$$\tilde{p} = \tilde{p}_{\varphi}(x) + E_2 \varepsilon_{\varphi}(x) - E_2 \varepsilon = \tilde{p}_{\varphi}(x) + E_2 \varepsilon_{\varphi}(x) - E_2 \left(\frac{V}{V_0} - 1\right)$$

w strefie odciążenia.

Za frontem fali uderzeniowej postulujemy proces odciążenia. Wówczas ruchem ośrodka rządzą równania

(3.5)
$$v_{,x} = -\frac{1}{E_2}\tilde{p}_{,t}; \quad v_{,t} = -\frac{1}{\varrho_0}\tilde{p}_{,x}.$$

Powyższy układ równań różniczkowych można zastąpić równoważnym układem równań algebraicznych na charakterystykach o następującej postaci

(3.6)
$$v = \mp \frac{1}{\varrho_0 a_2} \tilde{p} + C^{\pm}, \quad \text{jeśli} \quad x = \pm \varrho_0 a_2 t + c^{\mp},$$

gdzie

$$a_2 = \sqrt{\frac{E_2}{\varrho_0}}$$

Warunek brzegowy (2.18) po uwzględnieniu (3.4) oraz faktu, że

$$\frac{v_0(t)}{c} \ll 1,$$

można przedstawić w następującej formie

(3.8)
$$\tilde{p}_{\varphi}(0) + E_2 \varepsilon_{\varphi}(0) - E_2 \left[\frac{V(0, t)}{V_0} - 1 \right] = A \alpha + p_0(t).$$

Ponieważ

$$\tilde{p}_x(0) = p_m, \quad \varepsilon_x(0) = \varepsilon_m = \frac{A\alpha - \tilde{p}^*}{E_0} - \frac{\tilde{p}_m - \tilde{p}^*}{E_1},$$

przeto z (3.8) mamy

(3.9)
$$\frac{V(0,t)}{V_0} - 1 = \left(\frac{1}{E_2} - \frac{1}{E_1}\right)\tilde{p}_m + \left(\frac{1}{E_1} - \frac{1}{E_2}\right)A\alpha + \left(1 - \frac{E_0}{E_1}\right)\varepsilon^* - \frac{1}{E_2}p_0(t).$$

Warunki na froncie fali uderzeniowej przyjmują obecnie postać

(3.10)

$$v_{\varphi} = \left(1 - \frac{V_{\varphi}}{V_{0}}\right)\dot{\varphi},$$

$$\left(1 - \frac{E_{1}}{E_{0}}\right)\tilde{p}^{*}(\alpha) + \frac{E_{1}}{E_{0}}A\alpha - E_{1}\left(\frac{V_{\varphi}}{V_{0}} - 1\right) = \left(1 - \frac{V_{\varphi}}{V_{0}}\right)\frac{\dot{\varphi}^{2}}{V_{0}} + \frac{H_{0}^{2}}{8\pi}$$

Warunki początkowe nie ulegają zmianie.

Przejdziemy obecnie do analitycznego rozwiązania uproszczonego w ten sposób problemu.

4. Rozwiązanie problemu

Falowy obraz rozwiązania przedstawionego wyżej problemu przyjmuje postać pokazaną na rys. 5. Płaszczyzna x, t podzielona jest na dwa obszary. Obszar I zawiera stacjonarny odcinek frontu fali uderzeniowej wywołany stałym obciążeniem p_m działającym w czasie $0 \le t \le \tau_0$. W obszarze II propaguje się niestacjonarny, krzywoliniowy odcinek frontu fali uderzeniowej generowanej przez malejące w czasie ciśnienie $p_0(t)$. Analityczne rozwiązanie problemu w poszczególnych obszarach kształtuje się następująco.

Rys. 5

Obszar I. W obszarze tym zgodnie z rozwiązaniami podanymi w [1] i [2] propaguje się stacjonarny (ze stałą prędkością) front fali uderzeniowej $x = \varphi(t)$. Wszystkie parametry problemu za frontem takiej fali mają stałą wartość. Zatem po rozwiązaniu równań (3.9) i (3.10) otrzymujemy:

$$\tilde{p}_{1}(x, t) = \tilde{p}_{m} = A\alpha + p_{m},$$

$$V_{1}(x, t) = V_{m} = V_{0} \left[1 - \frac{p_{m}}{E_{1}} + \left(1 - \frac{E_{0}}{E_{1}} \right) \varepsilon^{*}(\alpha) \right],$$

$$v_{1}(x, t) = v_{m} = \left[\frac{p_{m}}{E_{1}} - \left(1 - \frac{E_{0}}{E_{1}} \right) \varepsilon^{*}(\alpha) \right] D_{m},$$

$$\dot{\varphi}_{1}(t) = D_{m} = a_{1} \left[1 - \frac{(E_{0} - E_{1})\varepsilon^{*}(\alpha)}{p_{m} + (E_{0} - E_{1})\varepsilon^{*}(\alpha) + \frac{E_{1}}{E_{2}} A\alpha} \right]^{1/2},$$

(4.1)

gdzie

$$a_1 = \sqrt{\frac{E_1}{\varrho_0}}$$

Z kolei na podstawie (2.5) i (2.14) mamy:

(4.2)
$$H_{1}(x,t) = H_{m} = H_{0} \left[1 - \frac{p_{m}}{E_{1}} + \left(1 - \frac{E_{0}}{E_{1}} \right) \varepsilon^{*}(\alpha) \right]^{-1},$$
$$E_{1}(x,t) = E_{m} = -\frac{v_{m}}{c} H_{m}.$$

Obszar II. Ze związków wzdłuż charakterystyk wychodzących z frontu fali uderzeniowej i przecinających się w dowolnym punkcje x, t obszaru II znajdujemy:

(4.3)
$$v_{2}(x,t) = \frac{1}{2} \left\{ v_{\varphi_{1}}(t_{1}) + v_{\varphi_{2}}(t_{2}) + \frac{1}{\varrho_{0}a_{2}} [\tilde{p}_{\varphi_{2}}(t_{2}) - \tilde{p}_{\varphi_{1}}(t_{1})] \right\},$$

$$\tilde{p}_2(x,t) = \frac{1}{2} \{ \tilde{p}_{\varphi_1}(t_1) + \tilde{p}_{\varphi_2}(t_2) + \varrho_0 a_2 [v_{\varphi_2}(t_2) - v_{\varphi_1}(t_1)] \},\$$

gdzie

(4.4)
$$t_{1} = t - \frac{\varphi_{1}(t_{1}) - x}{a_{2}}$$
$$t_{2} = t + \frac{\varphi_{2}(t_{2}) - x}{a_{2}}$$

Ponieważ początkowy odcinek frontu fali jest już znany

(4.5)
$$\varphi_1(t_1) = D_m t_1,$$

zatem czas t₁ można wyliczyć explicite

(4.6)
$$t_1 = \frac{a_2 t + x}{a_2 + D_m}.$$

Wielkości $v_{\varphi_1}(t_1)$ i $\tilde{p}_{\varphi_1}(t_1)$ są znane z I obszaru [patrz wzory (4.1)]. Natomiast wartości $v_{\varphi_2}(t_2)$ i $\tilde{p}_{\varphi_2}(t_2)$ określamy ze związków na froncie fali (3.10) i równań konstytutywnych (3.3):

(4.7)

$$v_{\varphi_{2}}(t_{2}) = \varepsilon^{*}(\alpha) \left(1 - \frac{E_{1}}{E_{0}}\right) \frac{a_{0}^{2}}{a_{1}^{2} - \dot{\varphi}_{2}^{2}(t_{2})} \dot{\varphi}_{2}(t_{2}), \quad a_{0}^{2} = \frac{E_{0}}{\varrho_{0}}$$

$$\tilde{p}_{\varphi_{2}}(t_{2}) = A\alpha + (E_{1} - E_{0})\varepsilon^{*} + E_{1}\varepsilon^{*} \left(1 - \frac{E_{1}}{E_{0}}\right) \frac{a_{0}^{2}}{a_{1}^{2} - \dot{\varphi}_{2}^{2}(t_{2})}.$$

Z podanych wyżej zależności wynika, że do jednoznacznego określenia funkcji $v_2(x, t)$ $i p_2(x, t)$ potrzebna jest prędkość propagacji następnego odcinka frontu fali uderzeniowej $\dot{\varphi}_2(t_2)$. Określimy go w następujący sposób. Ze związków wzdłuż charakterystyk, zaznaczonych na rys. 5 liniami przerywanymi, mamy

(4.8)
$$v_{0}(t^{*}) = \frac{1}{\varrho_{0}a_{2}} \tilde{p}_{0}(t^{*}) + v_{\varphi 1}(t_{1}^{*}) - \frac{1}{\varrho_{0}a_{2}} \tilde{p}_{\varphi 1}(t_{1}^{*}),$$
$$v_{0}(t^{*}) = -\frac{1}{\varrho_{0}a_{2}} \tilde{p}_{0}(t^{*}) + v_{\varphi 2}(t_{2}^{*}) + \frac{1}{\varrho_{0}a_{2}} \tilde{p}_{\varphi 2}(t_{2}^{*}),$$

gdzie

(4.9)
$$t_{1}^{*} = t^{*} - \frac{\varphi_{1}(t_{1}^{*})}{a_{2}} = \frac{a_{2}}{a_{2} + D_{m}}t^{*},$$
$$t_{2}^{*} = t + \frac{\varphi_{2}(t_{2}^{*})}{a_{2}}.$$

Z (4.8) po dodaniu stronami otrzymujemy

(4.10)
$$2v_0(t^*) = v_{\varphi_1}(t_1^*) + v_{\varphi_2}(t_2^*) + \frac{1}{\varrho_0 a_2} [\tilde{p}_{\varphi_2}(t_2^*) - \tilde{p}_{\varphi_1}(t_1^*)].$$

Ponieważ

(4.11)
$$\tilde{p}_0(t^*) = A\alpha + p_0(t^*),$$

przeto prędkość poruszania się brzegu $v_0(t^*)$ zgodnie z (4.8), wynosi

(4.12)
$$v_0(t^*) = \frac{A\alpha}{\varrho_0 a_2} + \frac{p_0(t^*)}{\varrho_0 a_2} + v_{\varphi_1}(t_1^*) - \frac{1}{\varrho_0 a_2} \tilde{p}_{\varphi_1}(t_1^*).$$

Wprowadzając (4.7) i (4.12) do (4.10) po licznych przekształceniach otrzymamy

(4.13)
$$\dot{\varphi}_2(t_2^*) = \frac{b_0}{2b_1} + \sqrt{\left(\frac{b_0}{2b_1}\right)^2 + 4b_1b_2},$$

gdzie

(4.14)
$$b_{0} = \left(\frac{E_{1}}{E_{0}} - 1\right)a_{0}^{2}\varepsilon^{*}, \quad a_{0}^{2} = \frac{E_{0}}{\varrho_{0}};$$
$$b_{1} = \frac{A\alpha}{\varrho_{0}a_{2}} + \frac{2}{\varrho_{0}a_{2}}p_{0}(t^{*}) + v_{\varphi_{1}}(t^{*}_{1}) - \frac{1}{\varrho_{0}a_{2}}\tilde{p}_{\varphi_{1}}(t^{*}_{1}) - \frac{E_{1} - E_{0}}{\varrho_{0}a_{2}}\varepsilon^{*},$$
$$b_{2} = b_{1}a_{1}^{2} + \frac{E_{1}}{\varrho_{0}a_{2}}b_{0}.$$

Dla jednoznacznego rozwiązania problemu potrzebna jest jeszcze znajomość położenia frontu fali $\varphi_2(t_2^*)$ na płaszczyźnie x, t.

Z równania dodatniej charakterystyki wynika, że

(4.15)
$$\frac{dt_2^*}{dt^*} = 1 + \frac{1}{a_2} - \frac{d\varphi_2(t_2^*)}{dt^*}.$$

Poza tym mamy

(4.16)
$$\frac{d\varphi_2(t_2^*)}{dt^*} = \dot{\varphi}_2(t_2^*) \frac{dt_2^*}{dt^*}, \quad \dot{\varphi}_2(t_2^*) = \frac{d\dot{\varphi}_2}{dt_2^*}.$$

Z (4.15) i (4.16) otrzymujemy

(4.17)
$$\frac{d\varphi_2(t_2^*)}{dt^*} = \frac{a_2 \dot{\varphi}_2(t_2^*)}{a_2 - \dot{\varphi}_2(t_2^*)},$$

a po scałkowaniu

(4.18)
$$\varphi_2(t_2^*) = D_m t_1 + \int_{\tau_0}^{t^*(t_2^*)} \frac{a_2 \dot{\varphi}_2(t_2^*)}{a_2 - \dot{\varphi}_2(t_2^*)} dt^*,$$

gdzie

(4.19)
$$t_1 = \frac{a_2}{a_2 - D_m} \tau_0.$$

W ten sposób określiliśmy *explicite* następny odcinek frontu fali uderzeniowej $K_1 K_2$ i wartości funkcji $v_2(x, t)$ i $\tilde{p}_2(x, t)$ w strefie $\tau_0 \tau_1 K_2 K_1 \tau_0$ (rys. 5).

Dla rozwiązania problemu w następnych strefach obszaru II stosujemy wyprowadzone wyżej zależności w sposób rekurencyjny.

Mając określone funkcje $v_2(x, t)$ i $\tilde{p}_2(x, t)$ łatwo znajdujemy pozostałe parametry problemu. I tak, z $(3.10)_1$ i $(4.7)_1$ mamy

(4.20)
$$V_{\varphi_2}(t_2^*) = V_0 \left[1 - \varepsilon^*(\alpha) \left(1 - \frac{E_1}{E_0} \right) \frac{a_0^2}{a_1^2 - \dot{\varphi}_2^2(t_2^*)} \right].$$

Natomiast z (3.4) otrzymujemy:

(4.21)
$$V_2(x,t) = \left\{ \tilde{p}_{\varphi 2}(t_2^*) + E_2 \left[\frac{V_{\varphi 2}(t_2^*)}{V_0} - 1 \right] - \tilde{p}_2(x,t) \right\} \frac{V_0}{E_2} + 1.$$

Składowe pola magnetycznego i elektrycznego odpowiednio wynoszą:

$$H_2(x, t) = H_0 \frac{V_0}{V_2(x, t)},$$

(4.22)

$$E_2(x,t) = -\frac{v_2(x,t)}{c}H_2(x,t).$$

Tym samym uzyskaliśmy pełne zamknięte rozwiązanie dość złożonego problemu.

Literatura cytowana w tekście

- 1. S. KALISKI, Plaska fala uderzeniowa w cialach stalych w polu magnetycznym przy doskonalym przewodnictwie elektrycznym, Biul. WAT, 6 (95), (1960). — The plane elastic shock wave in perfectly conducting solids in a magnetic field, Proc. Vibr. Probl., 1, 2 (1961).
- J. MICHALEC, Samopodobna fala uderzeniowa w stalym ośrodku doskonale przewodzącym w polu magnetycznym, Biul. WAT, 3 (175), (1967).
- 3. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Москва 1966.
- 4. В. П. Челышев, Б. И. Шехтер, Л. А. Шушко, Об изменении давления на поверхности преграды при контактном взрыве заряда BB, Физика взрыва, 2, 6 (1970).
- E. WŁODARCZYK, O pewnym zamkniętym rozwiązaniu problemu propagacji uderzeniowej fali odciążenia w biliniowym ośrodku sprężystym, Biul. WAT, 6 (238), (1972). — A closed-form solution of the propagation problem of an unloading shock wave in a bilinear elastic body, Proc. Vibr. Probl., 3, 13 (1972).

- E. WŁODARCZYK, Propagacja plaskiej uderzeniowej fali obciążenia w biliniowym pręcie sprężystym, Biul. WAT, 8 (240), (1972). — Propagation of a plane loading shock wave in a bilinear bar, Proc. Vibr. Probl., 4, 13 (1972).
- 7. E. WŁODARCZYK, Propagacja plaskiej fali uderzeniowej w ośrodku trójskladnikowym ze sprężystym odciążeniem, Biul. WAT, 1 (245), (1973). — Propagation of a plane shock wave in a three-component medium with elastic unloading, Proc. Vibr. Probl., 1, 13 (1973).

Резюме

ПРИБЛИЖЕННЫЙ МЕТОД РЕШЕНИЯ ПЛОСКИХ НЕАВТОМОДЕЛЬНЫХ УДАРНЫХ ВОЛН В ИДЕАЛЬНОМ ПРОВОДНИКЕ В МАГНИТНОМ ПОЛЕ

В работе решена задача о распространении плоской неавтомодельной ударной волны, распространяющейся в полупространстве, заполненном идеально проводящим материалом и находящимся под действием магнитного поля, направленного параллельно поверхности полупространства. Волны возбуждаются механическим давлением, приложенным мгновенно к поверхности полупространства, и остающимся постоянным до некоторого момента времени $t = \tau_0$, а затем монотонически исчезающего до нуля. Над полупространством находится пустота, в которую излучается электромагнитная волна. Получено замкнутое решение для упрощенной задачи. Упрощение состоит в том, что уравнение состояния апроксиммируется кусочно-линейной зависимостью, дополненной членами, связанными с магнитным полем. Насколько известно автору статьи, данная задача еще не изучалась в литературе.

Summary

AN APPROXIMATE METHOD OF SOLVING PLANE, NON-SELFSIMILAR SHOCK WAVES IN A PERFECT CONDUCTOR SUBJECT TO MAGNETIC FIELD

The paper presents a solution to the problem of propagation of a plane, non-selfexited impact wave moving in a perfectly conducting halfspace subject to a magnetic field directed parallel to its surface. The waves are excited by a mechanical pressure applied instantaneously to the surface of the halfspace; at the instant $t = \tau_0$ it is constant in time and then monotonically decreases to zero. Electromagnetic waves are radiated into the vacuum over the halfspace. A closed-form solution of the simplified problem is found. The simplification consisted in a sectionally linear approximation of the constitutive equation supplemented with magnetic field terms. In author's opinion, the problem has not been considered in literature thus far

WOJSKOWA AKADEMIA TECHNICZNA

Praca zostala złożona w Redakcji dnia 9 marca 1973 r.