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The objective of the present work is to evaluate alternative approximate
techniques to determine the amplitudes of the limit cycles that evolve
from stick-slip vibrations based on a mass-on-moving-belt model. The
control of self-excited systems is a very interesting problem because of
friction-induced self sustained oscillations which result in a very robust
limit cycle that characterizes stick-slip motion. This motion should be
avoided because it creates unwanted noise, diminishes accuracy and in-
creases wear. The stick-slip motion produced by a mass-spring-damper
on a moving belt is analyzed using the Liapunov second method, which
is based on constructing a positive definite function and checking the
condition for which its time derivative is negative semi-definite. From
this condition, an estimate of the amplitude of the velocity of the limit
cycle of stick-slip motion is obtained. This estimate is found to be the
zero of a certain function derived from the Coulomb friction model. An
estimate of the amplitude of the displacement is also found. It is shown
that the simulation results of the amplitude and the estimated amplitude
are indistinguishable.
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1. Introduction

This work presents a technique that will allow useful estimation of the am-
plitude of displacement and velocity of the limit cycle of stick-slip motion
produced by a mass-spring-damper on a moving belt and analyzed by using
the Liapunov second method. Often in engineering practice, there is a need for
minimization or maximization of the friction force like in rolling and breaking
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processes. The problem of control of self-excited systems is very difficult be-
cause of friction-induced vibrations. Self-excited vibrations can be frequently
noticed in everyday situations, not only in the engineering practice. Noise and
wear appear to be their undesirable and avoided results. Modern systems requ-
ire a very high operating precision as necessary for working, namely, the proper
operation of various types of manipulators in modern automatic control sys-
tem requires a very high operating precision. Hence, there is a strapping need
to reduce the amplitude of such vibrations. This problem can be solved by ad-
ditionally influenced external harmonic excitation for the amplitude vibration
minimization. In some cases, it is impossible to use absorbers and the emerging
stick-slip vibration is unavoidable. It is characterized by a displacement-time
evolution which clearly defines stick and slip phases in which the two surfaces
in contact respectively slip over each other. The motion is governed by a static
friction force in the stick phase and a velocity dependent kinetic friction force
in the slip phase. The present work outlines a study of the estimate of the am-
plitude of velocity of the limit cycle of stick-slip motion, and also simulation
results of the amplitude and the estimated amplitude are compared.

2. Brief overview of the state of the art

In oscillatory motion both phenomena, i.e. stick and slip, take place succes-
sively, resulting in a stick-slip mode. Since friction characteristics consist of
two quantitatively different parts with non-smooth transition, the resulting
motion also shows non-smooth behavior. Thus, stick-slip systems belong to
the class of non-smooth systems, where discontinuities occur on a surface in
the state space (Utkin, 1978). Numerous mechanical interfaces are characteri-
zed by some form of dry friction where the force-velocity curve has a negative
slope at low velocities (Popp and Rudolph, 2004). The stick-slip vibrations
are well known in many kinds of engineering systems and everyday life, e.g.
like sounds form when a violin is played, squeaking chalks and shoes, creaking
doors, squealing tramways, chattering machine tools, drillstrings, car steering
systems, grating brakes and various other systems. For ease of the setup and
interpretation, an idealized physical system consisting of a mass sliding on a
moving belt has been considered very often. For self-excited friction induced
oscillations, essentially four different instability mechanisms have been descri-
bed in literature. First, the friction coefficient decreasing with relative sliding
velocity may lead to negative damping and consequently to oscillatory instabi-
lity of the steady sliding state. Second, mode-coupling (sometimes also referred
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to as binary flutter or displacement dependent friction force instability) may
destabilize the steady sliding state also for constant friction coefficients. Third,
sprag slip, and fourth the follower force nature of the friction force have been
identified as fundamental mechanisms for friction self-excited vibrations. All
of these mechanisms are amply described in literature (Spurr, 1961; Popp and
Stelter, 1990; Ibrahim, 1994; Wallaschek et al., 1999; Gaul and Nitsche, 2001;
Gasparetto, 2001; Hoffmann et al., 2002; Hoffmann and Gaul, 2003; Abdo and
Al-Yahmadi, 2009; Abdo et al., 2010), a further discussion is therefore not
given here. Also when it comes to the system nonlinearities, a lot of work has
already been conducted.

Mainly, there are four different models of stick-slip friction: Rough surfaces
or surface topology model (McClelland, 1989; Meyer et al., 1998), distance-
dependent or creep model (Sampson et al., 1943), velocity dependent friction
model (Carlson and Langer, 1989; Nasuno et al., 1997), and phase transition
model (Thompson and Robbins, 1990; Robbins and Thompson, 1991). An
approximate analysis of the stick-slip vibration amplitude is conducted by
Thomsen and Fidlin (2003). The analysis is based on dividing the motion into
two phases. The stick phase in which the velocity of motion is constant and
the slip phase in which motion is approximated as circular (pure sinusoidal)
motion with a constant amplitude. The solutions of the two phases are batched
together. The exact solution for this model is given in Wensrich (2006) for a
simple Coulomb friction model consisting of a sign function and a linear term
in the relative velocity with no cubic term. One sided solution (i.e. when the
relative velocity is negative) is only considered. This is also done by Thomsen
and Fidlin (2003).

Same model with friction is considered by McMilan (1997). The model
treats velocity and acceleartion in a discontiuous manner. The experimentally
observed phenomenon is explained and aproximated by hystersis. The model
is numerically integrated and the results are compared with the experimental
ones to validate the friction model. Leine et al. (1998) proposed a numerical
method known as the shooting method for calculation of the period of vibration
of a one degree of freedom mechanical model. Two degrees of freedom for
stick-slip motion is studied in Awrejcewicz and Olejnik (2007) in which the
mass-spring- damper on a belt is used with allowable vertical motion.

In this paper, stick-slip vibration is analyzed for one degree of freedom
depending on the model of Thomsen and Fidlin (2003). However, a novel
approach for estimating the amplitude of vibration is introduced. A prediction
of oscillations is done using the Liapunov second method (Khalil, 1992), which
is usually used to check the stability of equlibrium points. The Liapunov direct
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method, also known as the Liapunov second method, represents an approach
to the problem of stability of dynamical systems not requiring the solution
to the differential equations of motion. The condition for the derivative of a
negative definite or semi-definite Liapunov function is examined from which
the amplitude of the velocity of the limit cycle is estimated. The friction model
of Thomsen and Fidlin (2003) is used here. It is shown that the amplitude of
the velocity is a zero function obatined from the friction model. The estimated
amplitude is thus related to the model parameters allowing for controlling
the amplitude of vibration by adjusting these control parameters. Simulation
results show matching between the predicted amplitude and the simulation
results.

3. Analysis using the Liapunov direct method

The equation of motion of a mass-spring-damper on a moving belt, shown in
Fig. 1, is given by

MẌ + CẊ +KX = Fs (3.1)

where X is the displacement, M is the mass, C is the viscous damping,
K is the spring constant, and Fs is the friction force, where the dot indicates
derivation w.r.t. t. Figure 2 shows a typical friction force as given in Thomsen
and Fidlin (2003), Ibrahim (1992), Navaro-Lopezz et al., 2004.

Fig. 1. Mass-spring-damper on a moving belt

Let Vr = Ẋ − V be the relative velocity of the mass, for |CẊ + KX| ¬
¬ µsMg (g is the gravity vector) and Vr = 0, the pulling force is smaller than
the friction force and there is no motion (stick phase), hence

MẌ = 0 for |CẊ +KX| ¬ µsMg and Vr = 0 (3.2)

otherwise

Fs = −µsMg sgn (Ẋ − V ) +K1(Ẋ − V )−K3(Ẋ − V )3 (3.3)
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Fig. 2. Friction function as given by (3.2)

where

sgn (s) =






1 for s > 0
0 for s = 0
−1 for s < 0

and the equation of motion is

MẌ +CẊ +KX = −µsMg sgn (Ẋ − V ) +K1(Ẋ − V )−K3(Ẋ − V )3 (3.4)

with

µs = 0.4 µm = 0.25 vm = 0.5

K1 =
3(µs − µm)
2vm

K3 =
µs − µm
2v3m

Transformation of the equation of motion into a dimensionless form is done in
Thomsen and Fidlin (2003).
Let

L =
Mg

K
ω0 =

√
K

M
t0 =

1

ω0
k1 =

K1
Mω0

k3 =
K3ω0L

2

M
2β =

C√
KM

v =
V t0
L

τ =
t

t0

x =
X

L
vr =

VrL

t0

equations of motion (3.2), (3.4) read

ẍ = 0 for ẋ = v and − µs ¬ 2βv + x ¬ µs
(3.5)

ẍ+ 2βẋ+ x = −µs sgn (ẋ− v) + k1(ẋ− v)− k3(ẋ− v)3 for ẋ 6= v

where the dot indicates derivation w.r.t. τ .
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Analysis of motion is carried out using the Liapunov second method (Ba-
nakov and Gubanov, 1965; Leine et al., 1998), by splitting it into two phases,
the stick and slip phase. Partition the state space R2 into three regions

Ω = [−µs − 2βv, µs − 2βv]× {v}
Ω− = R× {ẋ < v} ∪ [−µs − 2βv,−∞] × {v}
Ω+ = R× {ẋ > v} ∪ [∞, µs − 2βv]× {v}

In Ω, motion is linear
x(τ) = x(0) + vτ (3.6)

In Ω−, motion is described by

ẍ+ 2βẋ+ x = µs + k1(ẋ− v)− k3(ẋ− v)3 (3.7)

and in Ω+, motion is described by

ẍ+ 2βẋ+ x = −µs + k1(ẋ− v)− k3(ẋ− v)3 (3.8)

We consider two cases:

Case 1: The motion starts in Ω

Case 2: The motion starts in Ω− or Ω+.

Case 1: Assume that the motion starts in Ω, we show that the trajectory
described by (3.6) and (3.7) returns to Ω. Thus the solution maps into itself.
Since the exit point from Ω is unique (x = x0, ẋ = v), (xω0 = µs − 2βv)
this is a unique trajectory, call it the stick-slip limit cycle. However to be a
true limit cycle it should have the property that any trajectory starting in its
neighborhood must converge to (or diverge from) it Leine et al. (1998). This
stick-slip limit cycle is the union of two motions; one given in (3.6) and the
other being the solution to (3.7). To analyze the solution to Eq. (3.7) starting
from (x0, v), using the Lyapunov method, a change of variables is conducted
to move the equilibrium point to the origin. The equilibrium displacement
x = µs − k1v + k3v3. Let y = x− x, hence ẏ = ẋ, and

ÿ + (2β − k1 + 3k3v2)ẏ − 3k3vẏ2 + k3ẏ3 + y = 0 (3.9)

Let
h(ẏ) = (2β − k1 + 3k3v2)ẏ − 3k3vẏ2 + k3ẏ3 (3.10)

then
ÿ + h(ẏ) + y = 0 (3.11)
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Make the following change of variables: ẏ = z, hence

ż = ÿ = −y − h(z) z̈ + h′(z)ż + z = 0 (3.12)

where h′(z) is the derivative of h w.r.t z. Let x1 = z, x2 = ż + h(z), then

ẋ1 = x2 − h(x1) ẋ2 = −x1 (3.13)

Note that x1 = ẏ, x2 = −y. Consider the Liapunov function

W =
1

2
(x21 + x

2
2) (3.14)

Time differentiating W along (3.13), we obtain

Ẇ = −x1h(x1) (3.15)

Figure 3 shows the function h(x1). It has three roots r2 =
3
2v +

√
D > 0,

r1 =
3
2v −
√
D < 0 and r0 = 0, if the belt velocity v is less than

vmax =

√
k1 − 2β
3k3

(3.16)

where

D =
(3v
2

)2
− 2β − k1 + 3k3v

3

k3
(3.17)

Fig. 3. The polynomial h(x1) and its approximations in D1 and D2

The range of h(x1) is divided into three intervals x1 > r2, r2  x1  r1
and x1 < r1. Since the trajectory starts with x1 = v < r2, we analyse motion
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in the intervals D1 : {v  x1  r1} and D2 : {x1 < r1}. In D1, Ẇ  0 and
the trajectory spirals away from the origin which is an unstable focus point
and in D2, Ẇ < 0 hence the trajectory converges to the origin. Also shown
in Fig. 3 the two functions ĥ1(x1) in ,D1 and ĥ2(x1) in D2 where ĥ1(x1) is
chosen linear and satisfies:

0  x1h(x1)  x1ĥ1(x1) (3.18)

hence

Ẇ ¬ −x1ĥ1(x1) (3.19)

in D1 and ĥ2(x1) is chosen parabolic such that x1h(x1) > x1ĥ2(x1) in D2
and

Ẇ ¬ −x1ĥ2(x1) ¬ 0 (3.20)

Since 0.5r2 = x21 + x
2
2 = ẏ

2 + y2 it follows that in D2: dr
2/dt ¬ −x1ĥ1(x1)

or r2 ¬ − ∫ x1ĥ1(x1) dt and the trajectory of motion is contained insi-
de the trajectory described by DE: ÿ + ĥ1(ẏ) + y = 0 starting at (y0, v),
(y0 = x0 − x) ∈ D1.
In D2, dr

2/dt ¬ −x1ĥ2(x1) or r2 ¬ −
∫
x1ĥ2(x1) dt and the tra-

jectory of motion is contained inside the trajectory described by DE:
ÿ + ĥ2(ẏ) + y = 0 ∈ D2.
We choose ĥ1(x1) = −a1x1, a1 > 0 in D1 and ĥ2(x1) = −a2(x21 − r21),

a2 > 0 in D2.

We analyze the trajectory of motion in the two regions D1, D2.

In D1
ÿ − 2a1ẏ + y = 0 (3.21)

which is a linear DE and has two complex poles in the right half plane at
a1 ± j for a1 ≪ 1.
The solution to which is

y(t) = ea1t(y0 cos t+ (v − a1y0) sin t) (3.22)

If ẏ = r1, y = y1 ≈
√
y20 + (v − a1y0)2 − r21 approximately for a1 ≪ 1.

In D2

ÿ − a2(ẏ2 − r21) + y = 0 (3.23)

or
dẏ2)

dy
− 2a2(ẏ2 − r21) + 2y = 0 (3.24)



Analytical approach to estimate amplitude... 979

This is a first order linear differential equation ẏ2 which has the solution

ẏ2 = e2a2(y−y1)
(
ẏ21 −

2a2y1 + 2a
2
2r
2
1 + 1

2a22

)
+
2a2y + 2a

2
2r
2
1 + 1

2a22
(3.25)

starting from (y1, ẏ1). If ẏ1 = r1 then the trajectory will move clockwise until
ẏ = r1 again and y reaches the value y2 which satisfies the equation

(1 + 2a2y2)e
−2a2y2 = (1 + 2a2y1)e

−2a2y1 = c (3.26)

For a solution to exist c < 1. Solving for y2 and y1, we get using the Padé
approximation of e−x = (1+x+x2/2)−1, a2y2 = (1− c−

√
1− c2)/c < 0 and

a2y1 = (1− c+
√
1− c2)/c > 0.

Eliminating c, we get

a2y2 + a2y1 = 2
1− c
c

a22y2y1 = −2
1− c
c
= −a2y1 − a2y2

Thus

y2 =
−y1
1 + a2y1

(3.27)

Hence, the absolute value of y2 is smaller than y1. If y = 0, ẏ = ẏm

ẏ2m = e
−2a2y1

(
ẏ21 −

2a2y1 + 2a
2
2r
2
1 + 1

2a22

)
+
2a22r

2
1 + 1

2a22
(3.28)

When reaching (y2, r1), the trajectory enters D1 again and has an equation

y(t) = ea1t(y2 cos t+ (r1 − a1y2) sin t) (3.29)

which hits the line y2 = v at approximately y = y3

y3 ≈ −
√
y22 + (r1 − a1y2)2 − v2 (3.30)

at which the motion enters the stick phase again since y3  −y0. The smallest
slip velocity is greater than r1 + ẏm and the amplitude of the displeacement

is smaller than
√
y20 + (v − a1y0)2. This completes the analysis of Case1.

Case 2: If the trajectory of motion starts in Ω−, then it is described by
Eq. (3.7). Shifting the equilibrium again, we obtain Eq. (3.9) which possesses
a stable limit cycle in the whole plane (Leine et al., 1998) (provided that
there is no other type of motion). Any trajectory starting in the plane would
converge to this limit cycle, call it the right limit cycle.
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Similarly, if the motion starts in Ω+ the equation of motion is (3.8) with
the equilibrium point x = −µs − k1v + k3v3. Shifting this equilibrium point
to the origin, we obatin the same Eq. (3.9) which also possesses a stable limit
cycle in the whole plane (provided that there is no other type of motion). Any
trajectory starting in the plane would converge to this limit cycle, call it the
left limit cycle. The distance between the two origins is 2µs, which equals
the length of Ω. If the right and left limit cycles intersect the set Ω, then a
trajectory starting at any point in the plane must enter the set Ω in trying
to reach one of the limit cycles. Figure 4 shows these limit cycles and their
intersections with the set Ω. Thus, eventually every trajectory will enter the
set Ω, and hence reach the slip-stick limit cycle. This completes the analysis
of Case 2.

Fig. 4. The left and right limit cycles and there intersection with Ω

4. Simulation results

The dynamic model in Eq. (3.7) is simulated using the parameters used in
Thomsen and Fidlin (2003), where β = 0.05, v = 0.25, µs = 0.4, µm = 0.25,
vm = 0.5, k1 = 0.45, k3 = 0.6. For the selected parameters, the zeros of
h(ẏ) are 0, 1.1074, −0.3574, the negative zero is an estimate of the amplitude
of velocity. Figure 5 shows the stick-slip limit cycle starting from (0, 0.25).
Figure 6 shows both the displacement and velocity, where the stick phase
is obvious. Figures 7 and 8 show the the trajectories with stating points
(0, 0.125) and (0, 0.5), respectively. Both converge to the slip-stick limit cycle.
Note that the lower slip velocity predicted in Thomsen and Fidlin (2003) is
equal to A = 0.7265, which is about two times the absolute value of our
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Fig. 5. Stick-slip limit cycle with the initial point (0, 0.25)

Fig. 6. Displacement and velocity with the initial values (0, 0.25)

Fig. 7. Trajectory with the initial point (0, 0.125) converges to the slip-stick limit
cycle
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Fig. 8. Trajectory with the initial point (0, 0.5) converges to the slip-stick limit cycle

Fig. 9. Trajectory with the initial point (0, 0.45) converges to the slip-stick limit
cycle with belt velocity 0.45

Fig. 10. Displacement and velocity with belt velocity 0.45 (initial point (0, 0.45))
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estimated value. This shows that our estimated amplitude is more accurate
than the one presented by Thomsen and Fidlin (2003). The displacement range
in the existed work is −0.45 < x < 035. Note that the maximum belt velocity
is 0.44. Figure 9 shows the trajectory of motion with belt velovcity 0.45, which
is greater than the maximum belt velocity. Figure 10 shows the displacement
and velocity of this case.The obtained trajectory converges to the origin and
there is no sick-slip limit cycle.

5. Conclusion

This work analyzes stick-slip motion using the Liapunov second method, which
is based on constructing the positive definite energy like a function and testing
the condition for which its time derivative is negative semi-definite or negative
definite. From this condition, an estimate of the amplitude of velocity of the
limit cycle of stick-slip motion is obtained. The estimate of the amplitude of
the displacement is also found. It is shown that the simulation results match
the estimated amplitude. Due to their vast realm in abundant engineering
systems and severe impacts on their performance, the oscillations resulting
due to stick-slip always confront smooth operation, and hence it is vital to
have knowledge about their behavior and effects. The benefit of this estimate
is that it presents a new model for examination of control parameters which
affect the vibration amplitude and thus facilitate its control.
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Analityczna metoda określania amplitudy drgań ciernych
(typu stick-slip)

Streszczenie

Praca przedstawia ocenę przydatności przybliżonych metod wyznaczania amplitu-
dy cykli granicznych drgań ciernych (stick-slip) na podstawie modelu skupionej masy
poruszającej się na ruchomym pasie. Sterowanie drganiami samowzbudnymi stanowi
interesujące zagadnienie z racji ochrony układów mechanicznych przed znacznymi i sil-
nie stabilnymi cyklami granicznymi drgań indukowanych tarciem. Ruch typu stick-slip
powinien być eliminowany w maszynach i urządzeniach, gdyż wywołuje hałas, zmniej-
sza precyzję działania, zwiększa zużycie części. Zjawisko to opisane prostym mode-
lem masy skupionej zamocowanej elementami sprężysto-tłumiącymi i usytuowanej
na ruchomym szorstkim pasie przeanalizowano za pomocą drugiej metody Lapunowa
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opartej na konstrukcji dodatnio określonej funkcji i sprawdzeniu warunku, dla które-
go jej pochodna względem czasu jest pół-określona ujemnie. Na tej podstawie dało
się oszacować amplitudę prędkości cyklu granicznego obserwowanych drgań ciernych.
Oszacowanie to znaleziono dla zerowania pewnej funkcji zbudowanej dla modelu tarcia
Coulomba. Wyznaczono także amplitudę przemieszczeń układu. Pokazano, że różni-
ce pomiędzy otrzymanymi wartościami szacowanymi amplitud i wynikami symulacji
numerycznych są pomijalne.
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