STATYKA TARCZ MIKROPOLARNYCH

KRYSTYNA MAJORKOWSKA-KNAP (PLOCK)

1. Wprowadzenie

W niniejszej pracy rozważać będziemy zagadnienie płaskiego stanu naprężenia mikropolarnej elastostatyki na przykładzie tarczy półnieskończonej, pasma tarczowego i tarczy prostokątnej, na podstawie teorii podanej w [1].

2. Zagadnienie tarczy półnieskończonej

W przypadku, gdy wysokość dźwigara tarczowego jest duża w stosunku do rozpiętości przęseł ($a/b \ge 1$), przebieg naprężeń wykazuje daleko idącą zgodność z rozkładem naprężeń w tak samo obciążonej tarczy półnieskończonej.

Rozpatrzymy zagadnienie tarczy półnieskończonej o płaszczyźnie środkowej ograniczonej prostą $x_1 = 0$, która ciągnie się w nieskończoność w obszarze $x_1 \ge 0$. Tarcza jest obciążona równomiernie wzdłuż brzegu $x_1 = 0$ i podparta w odstępach 2a, zgodnie z rys. 1. Obciążenie brzegowe rozwijamy w szereg Fouriera

(2.1)
$$p(x_2) = \sum_{n=1}^{\infty} a_n \cos \alpha_n x_2, \quad \alpha_n = \frac{n\pi}{a}, \quad n = 1, 2, 3, ...,$$

gdzie

$$a_n=-\frac{2pa(-1)^n}{cn\pi}\sin\alpha_n c.$$

Warunki brzegowe przy braku sił poprzecznych na brzegu $x_1 = 0$ są następujące: (2.2) $\sigma_{11}^*(0, x_2) = p(x_2), \quad \sigma_{12}^* = (0, x_2) = 0, \quad \mu_{13}^*(0, x_2) = 0.$

Funkcje naprężeń Airy'ego-Mindlina przyjmujemy w postaci

(2.3)

$$F = \sum_{n=1}^{\infty} (A_n + B_n \alpha_n x_1) e^{-\alpha_n x_1} \cos \alpha_n x_2,$$

$$\Psi = \sum_{n=1}^{\infty} (C_n e^{-\alpha_n x_1} + D_n e^{-\alpha_n x_1}) \sin \alpha_n x_2, \quad \varrho_n = \left(\alpha_n^2 + \frac{1}{l^2}\right)^{1/2}.$$

Funkcje te spełniają równania

(2.4)
$$\begin{aligned} \nabla_1^2 \nabla_1^2 F &= 0, \\ \nabla_1^2 (1 - l^2 \nabla_1^2) \Psi &= 0, \end{aligned}$$

gdzie

$$abla_1^2 = \partial_1^2 + \partial_1^2, \quad l^2 = \frac{(\gamma + \varepsilon)(\mu + \alpha)}{4\mu\alpha}$$

oraz są związane związkami

(2.5)
$$\begin{aligned} &-\partial_1(1-l^2\nabla_1^2)\Psi = A_0\partial_2\nabla_1^2F,\\ &\partial_2(1-l^2\nabla_1^2)\Psi = A_0\partial_1\nabla_1^2F, \end{aligned}$$

gdzie

$$A_{0} = \frac{(2\mu + \lambda_{0})(\gamma + \varepsilon)}{4\mu(\mu + \lambda_{0})}, \quad \lambda_{0} = \frac{2\mu\lambda}{\lambda + 2\mu}.$$

Po wyznaczeniu stałych całkowania z warunków brzegowych (2.2) i związków (2.5), funkcje F i Ψ mają postać

(2.6)

$$F = -\sum_{n=1}^{\infty} \frac{a_n}{\alpha_n} \left(1 + \frac{\alpha_n x_1}{\Delta_0} \right) e^{-\alpha_n x_1} \cos \alpha_n x_2,$$

$$\Psi = \sum_{n=1}^{\infty} \frac{2A_0 a_n}{\Delta_0} \left(\frac{\alpha_n}{\varrho_n} e^{-\rho_n x_1} - e^{-\alpha_n x_1} \right) \sin \alpha_n x_2,$$

gdzie

$$\Delta_0 = 1 + 2A_0 \alpha_n^2 \left(1 - \frac{\alpha_n}{\varrho_n}\right).$$

Składowe naprężenia wyrażone są wzorami:

(2.7)

$$\sigma_{11}^{*} = \sum_{n=1}^{\infty} a_n (1 + \alpha_n x_1) e^{-\alpha_n x_1} \cos \alpha_n x_2 + \sum_{n=1}^{\infty} a_n \left[\frac{\eta}{\Delta_0} \alpha_n x_1 e^{-\alpha_n x_1} + \frac{2A_0 \alpha_n^2}{\Delta_0} (e^{-\alpha_n x_1} - e^{-\rho_n x_1}) \right] \cos \alpha_n x_2,$$

$$\sigma_{12}^{*} = \sum_{n=1}^{\infty} a_n \alpha_n x_1 e^{-\alpha_n x_1} \sin \alpha_n x_2 - \sum_{n=1}^{\infty} a_n \left[\eta \frac{\alpha_n x_1}{\Delta_0} e^{-\alpha_n x_1} + \frac{2A_0 \alpha_n^2}{\Delta_0} \frac{\alpha_n}{\varrho_n} (e^{-\alpha_n x_1} - e^{-\rho_n x_1}) \right] \sin \alpha_n x_2,$$

$$\sigma_{22}^{*} = \sum_{n=1}^{\infty} a_n (1 - \alpha_n x_1) e^{-\alpha_n x_1} \cos \alpha_n x_2 - \sum_{n=1}^{\infty} a_n \left[\eta \frac{1 - \alpha_n x_1}{\Delta_0} e^{-\alpha_n x_1} - \frac{2A_0 \alpha_n^2}{\Delta_0} (e^{-\alpha_n x_1} - e^{-\rho_n x_1}) \right] \cos \alpha_n x_2,$$

$$u_{13}^{*} = 2A_{0} \sum_{n=1}^{\infty} \frac{a_{n} \alpha_{n}}{\Delta_{0}} \left(e^{-\alpha_{n} x_{1}} - e^{-\rho_{n} x_{1}} \right) \sin \alpha_{n} x_{2},$$

$$\mu_{23}^* = -2A_0 \sum_{n=1}^{\infty} \frac{a_n \alpha_n}{\Delta_0} \left(e^{-\alpha_n x_1} - e^{-\rho_n x_1} \frac{\alpha_n}{\varrho_n} \right) \cos \alpha_n x_2,$$

$$\mu_{31}^* = \frac{(\gamma - \varepsilon)(\lambda_0 + 2\mu)}{2\mu(\lambda_0 + \mu)} \sum_{n=1}^{\infty} \frac{a_n \alpha_n}{\Delta_0} \left(e^{-\alpha_n x_1} - e^{-\rho_n x_1} \right) \sin \alpha_n x_2,$$

$$\mu_{32}^{*} = -\frac{(\gamma-\varepsilon)(\lambda_{0}+2\mu)}{2\mu(\lambda_{0}+\mu)} \sum_{n=1}^{\infty} \frac{a_{n}\alpha_{n}}{\Delta_{0}} \left(e^{-\alpha_{n}x_{1}} - \frac{\alpha_{n}}{\varrho_{n}} e^{-\rho_{n}x_{1}} \right) \cos \alpha_{n}x_{2},$$

gdzie wprowadzono oznaczenie $\eta = 2A_0 \alpha_n^2 \left(1 - \frac{\alpha_n}{\varrho_n}\right).$

Otrzymane rozwiązanie w teorii mikropolarnej jest sumą dwu rozwiązań: rozwiązania «klasycznego» i rozwiązania dodatkowego uwzględniającego wszystkie warunki brzegowe ośrodka Cosseratów.

Przyjmując $\alpha = 0$, $\rho_n = \alpha_n$, $\Delta_0 = 1$ wzory (2.7) stają się identyczne z klasycznym rozwiązaniem zadania [2].

2.1. Analiza porównawcza naprężeń σ_{22}^* dla teorii mikropolarnej i teorii klasycznej. Zbadano zmienność naprężeń σ_{22}^* dla punktów tarczy o współrzędnych $x_1 = 0 \div 2a, x_2 = 0$ i współrzędnych $x_1 = 0 \div 2a, x_2 = 3a$.

Obliczenia szczegółowe przeprowadzono na elektronowej maszynie cyfrowej ODRA-1204.

K. MAJORKOWSKA-KNAP

Z uwagi na brak dokładnych wartości stałych materiałowych przyjęto do obliczeń: a) dane z klasycznej teorii sprężystości (dla betonu)

$$\begin{array}{l} \nu = 0,16 \\ E = 0,18 \cdot 10^5 \ [\text{kG/cm}^2] \end{array} \right\} \Rightarrow \begin{array}{l} \mu = \frac{E}{2(1+\nu)} = 0,077 \cdot 10^7 [\text{T/m}^2], \\ \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} = 0,036 \cdot 10^7 [\text{T/m}^2], \\ \lambda_0 = \frac{2\mu\lambda}{\lambda+2\mu} = 0,81\lambda; \end{array}$$

b) liczbowe stosunki stałych sprężystości wzorując się na pracy [3]

$$\alpha = \frac{1}{5} \mu = 0,0154 \cdot 10^{7} [T/m^{2}] \\ \gamma = \varepsilon = 0,0154 \cdot 10^{7} [T] \end{cases} \Rightarrow A_{0} = 0,172 [m^{2}], \\ \Rightarrow l^{2} = 0,600 [m^{2}].$$

Zmienność naprężeń σ_{22}^* przedstawiono graficznie na rys. 2. Dla uproszczenia przyjęto grubość tarczy równą jedności. W innym przypadku otrzymane wyniki liczbowe należałoby podzielić przez grubość tarczy.

Analizując zmienność naprężeń σ_{22}^* dochodzimy do następujących wniosków:

a) dla punktów przekroju o współrzędnej $x_2 = 0$ różnica w wartości naprężeń dla obu porównywanych teorii ma największą wartość dla punktów brzegowych, zmniejsza się wraz z oddalaniem się od obciążonego brzegu, dochodząc do wartości zerowej w punkcie o współrzędnej $x_1 =$ około 2a;

b) dla punktów przekroju o współrzędnej $x_2 = 3a$ różnica naprężeń dla teorii mikropolarnej i teorii klasycznej na brzegu $x_1 = 0$ wynosi zaledwie kilka procent, w przedziale $x_1 = 0 \div 0.2a$ rośnie, osiągając wartość największą dla $x_1 = 0.2a$, następnie w przedziale $x_1 = 0.3a \div 2a$, zmniejszając się stopniowo, jest w dalszym ciągu istotna.

Dokładne opracowanie niniejszego zagadnienia zawiera praca [4], w której przeprowadzono również analizę kilku przypadków, przyjmując inne stosunki stałych sprężystości i inne stosunki c/a (typowe dla konstrukcji budowlanych).

Uogólniając, można stwierdzić, że uwzględnienie naprężeń momentowych w teorii mikropolarnej prowadzi do zmian w stanie naprężenia tarczy. Z uwagi na dobór stałych materiałowych nie potwierdzony badaniami doświadczalnymi, uzyskane wyniki nie mogą służyć jako podstawa do ilościowej oceny różnic między obu teoriami, pozwalają jednak na wyciągnięcie wniosków natury jakościowej.

3. Pasmo tarczowe poddane dzialaniu obciążenia brzegowego okresowego

Rozważymy zagadnienie pasma tarczowego nieskończonego poddanego działaniu obciążenia normalnego do brzegu w postaci funkcji symetrycznej względem osi x_1 oraz w postaci funkcji antysymetrycznej względem osi x_1 . Otrzymane wyniki rozwiązania mogą znaleźć zastosowanie przy obliczaniu dźwigarów tarczowych ciągłych i przybliżonego rozwiązania tarcz prostokątnych. Przęsła pośrednie dźwigara tarczowego ciągłe-

Rys. 2

K. MAJORKOWSKA-KNAP

go, składającego się z dużej ilości przęseł o jednakowej rozpiętości, można obliczać przy założeniu nieskończenie wielu przęseł. Dla tarczy prostokątnej o rozpiętości przęsła większej od podwójnej wysokości tarczy stan naprężenia środkowej części przęsła można określić za pomocą wyników rozwiązania dla tarczy w postaci pasma nieskończonego.

3.1. Rozwiązanie problemu dla obciążenia brzegowego symetrycznego względem $x_2 = 0$. Pasmo tarczowe ograniczone brzegami $x_1 = (\pm)h$, rozciągające się w nieskończoność w kierunku osi $(\pm)x_2$, poddane jest działaniu okresowego obciążenia brzegowego $p(x_2)$ i $\bar{p}(x_2)$ symetrycznego względem $x_2 = 0$, zgodnie z rys. 3. W granicach każdego okresu (L = 2a) obciążenia te równoważą się.

Przy wykorzystaniu zasady superpozycji rozpatrzymy powyższy stan obciążenia jako sumę dwóch składowych stanów obciążeń: stanu S-S (symetria względem osi x_1 i osi x_2) zgodnie z rys. 4 i stanu S-A (symetria względem osi x_1 i antysymetria względem osi x_2) zgodnie z rys. 5.

Stan S-S. Obciążenia brzegowe rozwijamy w szeregi Fouriera:

$$\frac{1}{2}\overline{p}(x_2) = \frac{1}{2} \sum_{n=0}^{\infty} \overline{a}_n \Delta_n \cos \alpha_n x_2 = \frac{1}{2} \sum_{n=0}^{\infty} \overline{p}_n \cos \alpha_n x_2, \quad \alpha_n = \frac{n\pi}{a},$$

$$n = 1, 0, 2, ...,$$

Warunki brzegowe na brzegach $x_1 = \pm h$

(3.1.2)
$$\sigma_{11}^*(\pm h, x_2) = \frac{1}{2} [\overline{p}(x_2) + p(x_2)], \quad \sigma_{12}^*(\pm h, x_2) = 0, \quad \mu_{13}^*(\pm h, x_2) = 0.$$

Przyjęte funkcje naprężeń

••

(3.1.3)

$$F = \sum_{n=0}^{\infty} (A_n \operatorname{ch} \alpha_n x_1 + \alpha_n x_1 \beta_n \operatorname{sh} \alpha_n x_1) \cos \alpha_n x_2,$$

$$\Psi = \sum_{n=0}^{\infty} (F_n \operatorname{sh} \alpha_n x_1 + H_n \operatorname{sh} \varrho_n x_1) \sin \alpha_n x_2, \quad \varrho_n = \left(\alpha_n^2 + \frac{1}{l^2}\right)^{1/2}$$

po wyznaczeniu stałych całkowania z warunków brzegowych (3.1.2) i ze związków (2.5) mają postać:

$$F = -\sum_{n=0}^{\infty} \frac{\overline{p}_n + p_n}{2\alpha_n^2 \operatorname{ch} \alpha_n n} \left[\left(1 + \frac{\alpha_n h \operatorname{th} \alpha_n h}{\Delta_0} \right) \operatorname{ch} \alpha_n x_1 - \frac{\alpha_n x_1 \operatorname{sh} \alpha_n x_1}{\Delta_0} \right] \cos \alpha_n x_2,$$

$$(3.1.4)$$

$$\Psi = \sum_{n=0}^{\infty} \frac{A_0(\overline{p}_n + p_n)}{\Delta_0} \left(\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \frac{\alpha_n}{\varrho_n} \frac{\operatorname{sh} \varrho_n x_1}{\operatorname{ch} \varrho_n h_1} \right) \sin \alpha_n x_2,$$

gdzie

$$\Delta_0 = 1 + 2A_0 \alpha_n^2 \left(1 - \frac{\alpha_n}{\varrho_n} \operatorname{th} \varrho_n h \operatorname{cth} \alpha_n h \right) + \frac{2\alpha_n h}{\operatorname{sh} 2\alpha_n h}.$$

Stan S-A. Rozwinięcie obciążeń brzegowych w szeregi Fouriera ma postać:

$$\frac{1}{2}\overline{p}(x_2) = \frac{1}{2}\sum_{n=0}^{\infty} \overline{a}_n \Delta_n \cos \alpha_n x_2 = \frac{1}{2}\sum_{n=0}^{\infty} \overline{p}_n \cos \alpha_n x_2, \quad \alpha_n = \frac{n\pi}{a}, \ n = 0, 1, 2, ...,$$

(3.1.5)

$$\frac{1}{2}p(x_2) = \frac{1}{2}\sum_{n=0}^{\infty} a_n \Delta_n \cos \alpha_n x_2 = \frac{1}{2}\sum_{n=0}^{\infty} p_n \cos \alpha_n x_2.$$

Warunki brzegowe na brzegach $x_1 = \pm h$:

(3.1.6)
$$\sigma_{11}^{*}(+h, x_{2}) = \frac{1}{2} [\overline{p}(x_{2}) - p(x_{2})], \quad \sigma_{12}^{*}(\pm h, x_{2}) = 0,$$

$$\sigma_{11}^{*}(-h, x_2) = \frac{1}{2} [p(x_2) - \overline{p}(x_2)], \quad \mu_{13}^{*}(\pm h, x_2) = 0.$$

Przyjęte funkcje naprężeń

(3.1.7)

$$F = \sum_{n=0}^{\infty} (C_n \operatorname{sh} \alpha_n x_1 + \alpha_n x_1 D_n \operatorname{ch} \alpha_n x_1) \cos \alpha_n x_2,$$

$$\Psi = \sum_{n=0}^{\infty} (E_n \operatorname{ch} \alpha_n x_1 + G_n \operatorname{ch} \varrho_n x_1) \sin \alpha_n x_2, \quad \varrho_n = \left(\alpha_n^2 + \frac{1}{l^2}\right)^{1/2},$$

po wyznaczeniu stałych całkowania mają postać

$$F = -\sum_{n=0}^{\infty} \frac{\overline{p}_n - p_n}{2\alpha_n^2 \operatorname{sh} \alpha_n h} \left[\left(1 + \frac{\alpha_n h \operatorname{cth} \alpha_n h}{\overline{\Delta}_0} \right) \operatorname{sh} \alpha_n x_1 + \frac{\alpha_n x_1 \operatorname{ch} \alpha_n x_1}{\overline{\Delta}_0} \right] \cos \alpha_n x_2,$$
(3.1.8)

$$\Psi = \sum_{n=0}^{\infty} \frac{A_0(\overline{p}_n - p_n)}{\overline{\Delta}_0} \left(\frac{\operatorname{ch} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \frac{\alpha_n}{\varrho_n} - \frac{\operatorname{ch} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \sin \alpha_n x_2,$$

gdzie

$$\overline{\Delta_o} = 1 + 2A_o \alpha_n^2 \left(1 - \frac{\alpha_n}{\varrho_n} \operatorname{th} \alpha_n h \operatorname{cth} \varrho_n h \right) - \frac{2\alpha_n h}{\operatorname{sh} 2\alpha_n h}.$$

Uwzględniając wzory (3.1.4) i (3.1.8) otrzymujemy następujące wzory na składowe naprężeń:

$$(3.1.9) \quad \sigma_{11}^{*} = \sum_{n=0}^{\infty} (\overline{p}_{n} + p_{n}) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{ch} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{tg} \, \alpha_{n} h}{\Delta_{0}} \right) \mathrm{ch} \, \alpha_{n} \, x_{1} - \frac{\alpha_{n} x_{1} \mathrm{sh} \, \alpha_{n} \, x_{1}}{\Delta_{0}} \right] - \frac{\alpha_{n} x_{1} \mathrm{sh} \, \alpha_{n} \, x_{1}}{\Delta_{0}} \right\}$$

584

$$\begin{array}{ll} \begin{array}{l} (3.1.9)\\ [c.d.] \end{array} & - \displaystyle\frac{A_0}{A_0} \left(\displaystyle\frac{\operatorname{ch} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \displaystyle\frac{\operatorname{ch} \varrho_n x_1}{\operatorname{ch} \varrho_n h} \right) \right\} \cos \alpha_n x_2 + \displaystyle\sum_{n=0}^{\infty} \left(\overline{\rho}_n - p_n \right) \alpha_n^2 \left\{ \displaystyle\frac{1}{2\alpha_n^2 \operatorname{sh} \alpha_n h} \times \\ & \times \left[\left(1 + \displaystyle\frac{\alpha_n h \operatorname{ch} \operatorname{ch} \alpha_n h}{\overline{A_0}} \right) \operatorname{sh} \alpha_n x_1 - \displaystyle\frac{\alpha_n x_1 \operatorname{ch} \alpha_n x_1}{\overline{A_0}} \right] - \\ & - \displaystyle\frac{A_0}{\overline{A_0}} \left(\displaystyle\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \displaystyle\frac{\operatorname{sh} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \right\} \cos \alpha_n x_2, \\ \sigma_{12}^* = \displaystyle\sum_{n=0}^{\infty} \left(\overline{\rho}_n + \rho_n \right) \alpha_n^2 \left\{ \displaystyle\frac{1}{2\alpha_n^2 \operatorname{ch} \alpha_n h} \left[\left(\displaystyle\frac{1 - \alpha_n \operatorname{hth} \alpha_n h}{A_0} - 1 \right) \operatorname{sh} \alpha_n x_1 + \\ & + \displaystyle\frac{\alpha_n x_1 \operatorname{ch} \alpha_n x_1}{A_0} \right] + \displaystyle\frac{A_0}{A_0} \left(\displaystyle\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\frac{\operatorname{sh} \varrho_n x_1}{\operatorname{ch} \varrho_n h} \right) \right\} \sin \alpha_n x_2 + \\ & + \displaystyle\sum_{n=0}^{\infty} \left(\overline{\rho}_n - p_n \right) \alpha_n^2 \left\{ \displaystyle\frac{1}{2\alpha_n^2 \operatorname{ch} \alpha_n h} \left[\left(\displaystyle\frac{1 - \alpha_n \operatorname{hth} \alpha_n h}{A_0} - 1 \right) \operatorname{sh} \alpha_n x_1 + \\ & + \displaystyle\frac{\alpha_n x_1 \operatorname{ch} \alpha_n x_1}{A_0} \right] + \displaystyle\frac{A_0}{A_0} \left(\displaystyle\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\frac{\operatorname{sh} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \right\} \sin \alpha_n x_2 + \\ & + \displaystyle\sum_{n=0}^{\infty} \left(\overline{\rho}_n - p_n \right) \alpha_n^2 \left\{ \displaystyle\frac{1}{2\alpha_n^2 \operatorname{sh} \alpha_n h} \left[\left(\displaystyle\frac{1 - \alpha_n h \operatorname{ch} \alpha_n h}{A_0} - 1 \right) \operatorname{ch} \alpha_n x_1 + \\ & + \displaystyle\frac{\alpha_n x_1 \operatorname{sh} \alpha_n x_1}{\overline{A_0}} \right] + \displaystyle\frac{A_0}{A_0} \left(\displaystyle\operatorname{sh} \alpha_n x_1} - \frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \varrho_n x_1 \right) \right\} \sin \alpha_n x_2 , \\ \mu_{13}^* = \displaystyle\sum_{n=0}^{\infty} \displaystyle\frac{A_0}{A_0} \left(\overline{\rho}_n + p_n \right) \alpha_n \left(\displaystyle\operatorname{ch} \alpha_n x_1} - \displaystyle\operatorname{ch} \varrho_n x_1 \\ \operatorname{ch} \alpha_n h} - \displaystyle\operatorname{ch} \varrho_n x_1 \\ \operatorname{sh} \alpha_n h} - \displaystyle\frac{\operatorname{sh} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \sin \alpha_n x_2 , \\ \sigma_{12}^* = \ldots , \\ \sigma_{13}^* = \displaystyle\sum_{n=0}^{\infty} \displaystyle\frac{A_0}{A_0} \left(\overline{\rho}_n + p_n \right) \alpha_n \left(\displaystyle\operatorname{sh} \alpha_n x_1 - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \varrho_n x_1 \\ \operatorname{sh} \alpha_n h} - \displaystyle\frac{\operatorname{sh} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \sin \alpha_n x_2 , \\ \sigma_{12}^* = \ldots , \\ \sigma_{13}^* = \displaystyle\sum_{n=0}^{\infty} \displaystyle\frac{A_0}{A_0} \left(\overline{\rho}_n + p_n \right) \alpha_n \left(\displaystyle\operatorname{sh} \alpha_n x_1 - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \vartheta_n x_1 \\ \operatorname{sh} \alpha_n h} - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \vartheta_n \right) \cos \alpha_n x_2 , \\ \mu_{23}^* = \displaystyle\sum_{n=0}^{\infty} \displaystyle\frac{A_0}{A_0} \left(\overline{\rho}_n + p_n \right) \alpha_n \left(\displaystyle\operatorname{sh} \alpha_n x_1 - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \vartheta_n h - \displaystyle\frac{\alpha_n}{\varrho_n} \displaystyle\operatorname{sh} \vartheta_n h \right) \cos \alpha_n x_2 . \\ \end{array}$$

3.2. Rozwiązanie problemu dla obciążenia brzegowego antysymetrycznego względem $x_2 = 0$. Obciążenie brzegowe pasma tarczowego antysymetryczne względem osi x_1 (L = 2a) tworzy wewnątrz okresu układ zrównoważony (rys. 6). Stan naprężenia wywołany tym obciążeniem rozpatrzymy jako superpozycję stanu A-S (antysymetria względem osi x_1 i symetria względem osi x_2) i stanu A-A (antysymetria względem osi x_1 i x_2). Stan A-S. Rozwinięcie obciążeń brzegowych w szeregi Fouriera ma postać

(3.2.1)
$$\frac{1}{2}\vec{p}(x_2) = \frac{1}{2}\sum_{n=1}^{\infty} \bar{a}_n \sin \alpha_n x_2,$$
$$\frac{1}{2}p(x_2) = \frac{1}{2}\sum_{n=1}^{\infty} a_n \sin \alpha_n x_2, \qquad \alpha_n = \frac{n\pi}{a}, \qquad n = 1, 2, 3, \dots.$$

Warunki brzegowe na brzegach $x_1 = \pm h$:

(3.2.2) $\sigma_{11}^*(\pm h, x_2) = \frac{1}{2} [\bar{p}(x_2) + p(x_2)], \quad \sigma_{12}^*(\pm h, x_2) = 0, \quad \mu_{13}^*(\pm h, x_2) = 0.$

Funkcje naprężeń F, Ψ przyjmujemy w postaci:

(3.2.3)

$$F = \sum_{n=1}^{\infty} (A_n \operatorname{ch} \alpha_n x_1 + \alpha_n x_1 B_n \operatorname{sh} \alpha_n x_1) \sin \alpha_n x_2,$$

$$\Psi = \sum_{n=1}^{\infty} (F_n \operatorname{sh} \alpha_n x_1 + H_n \operatorname{sh} \varrho_n x_1) \cos \alpha_n x_2,$$

a po wyznaczeniu stałych całkowania mamy:

$$F = -\sum_{n=1}^{\infty} \frac{\overline{a}_n + a_n}{2\alpha_n^2 \operatorname{ch} \alpha_n h} \left[\left(1 + \frac{\alpha_n h \operatorname{th} \alpha_n h}{\Delta_0} \right) \operatorname{ch} \alpha_n x_1 - \frac{\alpha_n x_1 \operatorname{sh} \alpha_n x_1}{\Delta_0} \right] \sin \alpha_n x_2,$$

$$(3.2.4)$$

$$\Psi = -\sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\Delta_0} \left(\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \frac{\alpha_n}{\varrho_n} \frac{\operatorname{sh} \varrho_n x_1}{\operatorname{ch} \varrho_n h} \right) \cos \alpha_n x_2,$$

gdzie

$$\Delta_0 = 1 + 2A_0 \alpha_n^2 \left(1 - \frac{\alpha_n}{\varrho_n} \operatorname{th} \varrho_n h \operatorname{cth} \alpha_n h \right) + \frac{2\alpha_n h}{\operatorname{sh} 2\alpha_n h}.$$

Stan A-A. Rozwinięcie obciążeń brzegowych w szeregi Fouriera ma postać

(3.2.5)
$$\frac{\frac{1}{2}\overline{p}(x_2) = \frac{1}{2}\sum_{n=1}^{\infty} \overline{a}_n \sin \alpha_n x_2,}{\frac{1}{2}p(x_2) = \frac{1}{2}\sum_{n=1}^{\infty} a_n \sin \alpha_n x_2, \quad \alpha_n = \frac{n\pi}{a}, \quad n = 1, 2, 3, \dots.}$$

Warunki brzegowe na brzegach $x_1 = \pm h$:

$$(3.2.6) \ \sigma_{11}^{*}(\pm h, x_2) = \frac{1}{2} [\overline{p}(x_2) + p(x_2)], \quad \sigma_{12}^{*}(\pm h, x_2) = 0, \quad \mu_{13}^{*}(\pm h, x_2) = 0.$$

Przyjęta postać funkcji F i Ψ :

(3.2.7)

$$F = \sum_{n=1}^{\infty} (C_n \operatorname{sh} \alpha_n x_1 + \alpha_n x_1 D_n \operatorname{ch} \alpha_n x_1) \sin \alpha_n x_2,$$

$$\Psi = \sum_{n=1}^{\infty} (E_n \operatorname{ch} \alpha_n x_1 + G_n \operatorname{ch} \varrho_n x_1) \cos \alpha_n x_2,$$

po wyznaczeniu stałych całkowania jest następująca:

$$F = -\sum_{n=1}^{\infty} \frac{\overline{a}_n + a_n}{2\alpha_n^2 \operatorname{sh} \alpha_n h} \left[\left(1 + \frac{\alpha_n h \operatorname{cth} \alpha_n h}{\overline{\Delta}_0} \right) \operatorname{sh} \alpha_n x_1 + \frac{\alpha_n x_1 \operatorname{ch} \alpha_n x_1}{\overline{\Delta}_0} \right] \sin \alpha_n x_2,$$

$$(3.2.8)$$

$$\Psi = -\sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\overline{\Delta}_0} \left(\frac{\operatorname{ch} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \frac{\alpha_n}{\varrho_n} \frac{\operatorname{ch} \varrho_n x_1}{\operatorname{sh} \varrho_n h} \right) \cos \alpha_n x_2.$$

12 Mechanika Teoretyczna

Po uwzględnieniu wzorów (3.2.4) i (3.2.8) otrzymujemy składowe naprężeń w postaci:

$$\sigma_{11}^{*} = \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{ch} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{th} \, \alpha_{n} h}{\Delta_{0}}\right) \mathrm{ch} \, \alpha_{n} x_{1} - \frac{\alpha_{n} x_{1} \mathrm{sh} \, \alpha_{n} x_{1}}{\Delta_{0}} \right] - \frac{A_{0}}{\Delta_{0}} \left(\frac{\mathrm{ch} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \alpha_{n} h} - \frac{\mathrm{ch} \, \varrho_{n} x_{1}}{\mathrm{ch} \, \varrho_{n} h} \right) \right\} \sin \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{th} \, \alpha_{n} h}{\overline{\Delta_{0}}} - \frac{\mathrm{ch} \, \varrho_{n} x_{1}}{\overline{\Delta_{0}}} \right) \right\} \sin \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{th} \, \alpha_{n} x_{1}}{\overline{\Delta_{0}}} - \frac{\mathrm{sh} \, \varrho_{n} x_{1}}{\mathrm{sh} \, \varrho_{n} h} - \frac{\mathrm{sh} \, \varrho_{n} x_{1}}{\mathrm{sh} \, \varrho_{n} h} \right] \right\} \sin \alpha_{n} x_{2},$$

$$\sigma_{12}^{*} = \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{ch} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{th} \, \alpha_{n} h - 1}{\Delta_{0}} \right) \mathrm{sh} \, \alpha_{n} x_{1} - \frac{\alpha_{n} x_{1} \mathrm{ch} \, \alpha_{n} x_{1}}{\Delta_{0}} - \frac{\alpha_{n} x_{1} \mathrm{ch} \, \alpha_{n} x_{1}}{\Delta_{0}} - \frac{\alpha_{n} x_{1} \mathrm{ch} \, \alpha_{n} h}{\Delta_{0}} \right] - \frac{A_{0}}{\Delta_{0}} \left(\frac{\mathrm{sh} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \alpha_{n} h} - \frac{\mathrm{sh} \, \varrho_{n} x_{1}}{\mathrm{ch} \, \varrho_{n} h} \right) \right\} \cos \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{th} \, \alpha_{n} h - 1}{\Delta_{0}} \right) \mathrm{sh} \, \alpha_{n} x_{1} - \frac{\alpha_{n} x_{1} \mathrm{ch} \, \alpha_{n} x_{1}}{\Delta_{0}} - \frac{A_{0}}{\Delta_{0}} \left(\frac{\mathrm{sh} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \alpha_{n} h} - \frac{\mathrm{sh} \, \varrho_{n} x_{1}}{\mathrm{ch} \, \varrho_{n} h} \right] \right\} \cos \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{ch} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \omega_{n} h} - \frac{\alpha_{n} x_{1} \mathrm{sh} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \omega_{n} h} \right] \right] \right\} \cos \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} \left[\left(1 + \frac{\alpha_{n} h \mathrm{ch} \, \alpha_{n} h - \frac{\alpha_{n} x_{1} \mathrm{sh} \, \alpha_{n} x_{1}}{\mathrm{ch} \, \alpha_{n} h} \right] \right\} \cos \alpha_{n} x_{2} + \sum_{n=1}^{\infty} \left(\bar{a}_{n} + a_{n}\right) \alpha_{n}^{2} \left\{ \frac{1}{2\alpha_{n}^{2} \mathrm{sh} \, \alpha_{n} h} - \frac{\alpha_{n} \mathrm{sh} \, \alpha_{n} h}{\mathrm{ch} \, \alpha_{n} h} \right] \right\} \right\} \cos \alpha_{n} x_{2} + \sum_{n=1}^$$

$$(3.2.9) \qquad \mu_{13}^{*} = -\sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\Delta_0} \alpha_n \left(\frac{\operatorname{ch} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \frac{\operatorname{ch} \varrho_n x_1}{\operatorname{ch} \varrho_n h} \right) \cos \alpha_n x_2 - \\ -\sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\overline{\Delta_0}} \alpha_n \left(\frac{\tau \operatorname{sh} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \frac{\operatorname{sh} \alpha_n x_1}{\operatorname{sh} \alpha_n h} \right) \cos \alpha_n x_2,$$

$$\sigma_{22}^{*} = \dots,$$

$$\sigma_{21}^{*} = \dots,$$

$$\mu_{23}^{*} = \sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\Delta_0} \alpha_n \left(\frac{\operatorname{sh} \alpha_n x_1}{\operatorname{ch} \alpha_n h} - \frac{\alpha_n}{\varrho_n} \frac{\operatorname{sh} \varrho_n x_1}{\operatorname{ch} \varrho_n h}\right) \sin \alpha_n x_2 +$$

$$+ \sum_{n=1}^{\infty} \frac{A_0(\overline{a}_n + a_n)}{\overline{\Delta_0}} \alpha_n \left(\frac{\operatorname{ch} \alpha_n x_1}{\operatorname{sh} \alpha_n h} - \frac{\alpha_n}{\varrho_n} \frac{\operatorname{ch} \varrho_n x_1}{\operatorname{sh} \varrho_n h}\right) \sin \alpha_n x_2.$$

4. Tarcza prostokątna poddana działaniu obciążenia na dwóch przeciwległych brzegach

Rozpatrzymy zagadnienie tarczy prostokątnej obciążonej na brzegach $x_1 = \text{const.}$ Powyższy stan obciążenia wygodnie jest rozpatrywać, wykorzystując zasadę superpozycji, jako sumę dwóch stanów: dla obciążenia brzegowego podwójnie symetrycznego i symetryczno-antysymetrycznego, zgodnie z rys. 9. W ogólnym przypadku przy wyznaczeniu stanu naprężenia tarczy prostokątnej powinny być spełnione warunki dla czterech brzegów. W poniższym rozwiązaniu, które otrzymamy w postaci szeregu, warunki brzegowe dla naprężeń normalnych i naprężeń momentowych

będą spełnione wzdłuż każdego brzegu w sposób ścisły, natomiast warunki dla naprężeń stycznych — w sposób przybliżony (z uwagi na możliwość uwzględnienia tylko ograniczonej ilości wyrazów szeregu).

4.1. Rozwiązanie dla obciążenia brzegowego podwójnie symetrycznego. Przedstawiamy obciążenia brzegowe za pomocą szeregów Fouriera (L = 4a), przy założeniu, że ciągną się one dalej, poza długością brzegu

Warunki brzegowe na brzegach
$$x_1 = \pm h, x_2 = \pm a$$

(4.1.2) $\sigma_{11}^* = (\pm h, x_2) = p'(x_2), \quad \sigma_{22}^* (x_1, \pm a) = 0, \quad \sigma_{12}^* (\pm h, x_2) = 0, \quad \mu_{31}^* (\pm h, x_2) = 0, \quad \mu_{32}^* (x_1, \pm a) = 0.$

12*

589

K. MAJORKOWSKA-KNAP

Ze względu na dwuosiową symetrię stanu naprężenia przyjmujemy funkcje F i Ψ w postaci:

$$F = \sum_{n=1}^{\infty} (A_n \operatorname{ch} \alpha_n x_1 + \alpha_n x_1 B_n \operatorname{sh} \alpha_n x_1) \cos \alpha_n x_2 + + \sum_{m=1}^{\infty} (K_m \operatorname{ch} \beta_m x_2 + \beta_m x_2 M_m \operatorname{sh} \beta_m x_2) \cos \beta_m x_1,$$
$$\Psi = \sum_{n=1}^{\infty} (F_n \operatorname{sh} \alpha_n x_1 + H_n \operatorname{sh} \varrho_n x_1) \sin \alpha_n x_2 +$$

$$+\sum_{m=1}^{\infty} (P_m \mathrm{sh}\,\beta_m x_2 + R_m \mathrm{sh}\,\gamma_m x_2) \sin\beta_m x_1,$$

gdzie:

(4.1.3)

$$\alpha_n = \frac{n\pi}{2a}, \quad n = 1, 3, 5..., \quad \beta_m = \frac{m\pi}{2n}, \quad m = 1, 3, 5...$$
$$\varrho_n = \left(\alpha_n^2 + \frac{1}{l^2}\right)^{1/2}, \quad \gamma_m = \left(\beta_m^2 + \frac{1}{l^2}\right)^{1/2},$$

 β_m — odpowiada okresowi L = 2h. Stałe $A_n, B_n, K_m, M_m, F_n, P_m, R_m, H_n$ tak ustalimy, żeby były spełnione warunki brzegowe (4.1.2) i związki (2.5).

Ponieważ obrane funkcje naprężeń odpowiadają warunkom symetrii, wystarczy uwzględnić tylko warunki brzegowe dla brzegów $x_2 = +a$ i $x_1 = +h$. Jeżeli będą one spełnione, to będą również spełnione podobne warunki dla brzegów $x_2 = -a$ i $x_1 = -h$.

Z warunków brzegowych dla naprężeń normalnych σ_{11}^* i σ_{22}^* i z warunków brzegowych dla naprężeń momentowych μ_{13}^* i μ_{23}^* otrzymujemy:

(4.1.4)

$$\alpha_{n}F_{n}\operatorname{ch}\alpha_{n}h + \varrho_{n}H_{n}\operatorname{ch}\varrho_{n}h = 0,$$

$$\beta_{m}P_{m}\operatorname{ch}\beta_{m}a + \gamma_{m}R_{m}\operatorname{ch}\gamma_{m}a = 0,$$

$$A_{n}\operatorname{ch}\alpha_{n}h + \alpha_{n}hB_{n}\operatorname{sh}\alpha_{n}h = -\frac{a'_{n}}{\alpha_{n}^{2}},$$

$$K_{m}\operatorname{ch}\beta_{m}a + \beta_{m}aM_{m}\operatorname{sh}\beta_{m}a = 0.$$

Wykorzystanie związków wiążących funkcje F i Ψ [wzory (2.5)] prowadzi do nieskończonego układu równań

(4.1.5)
$$n(F_n - 2A_0 \alpha_n^2 B_n) \operatorname{ch} \alpha_n h \sin \frac{m\pi}{2} = m(-P_m - 2A_0 \beta_m^2 M_m) \operatorname{ch} \beta_m a \sin \frac{n\pi}{2}$$

Z równań (4.1.5) otrzymujemy dwa warunki

(4.1.6)
$$F_n - 2A_0 \alpha_n^2 B_n = 0, P_m + 2A_0 \beta_m^2 M_m = 0.$$

Spełniając cztery warunki brzegowe (4.1.4) oraz równania (4.1.6) otrzymujemy stałe całkowania w postaci: $A_n = f(B_n), H_n = f(B_n), K_m = f(M_m), R_m = f(M_m)$ jak poniżej:

(4.1.7)
$$A_{n} = -\frac{a_{n}'}{\alpha_{n}^{2} \operatorname{ch} \alpha_{n} h} - \alpha_{n} h \operatorname{th} \alpha_{n} h B_{n}, \quad H_{n} = -\frac{2A_{0} \alpha_{n}^{3}}{\varrho_{n}} \frac{\operatorname{ch} \alpha_{n} h}{\operatorname{ch} \varrho_{n} h} B_{n},$$
$$R_{m} = -\frac{2A_{0} \beta_{m}^{3}}{\gamma_{m}} \frac{\operatorname{ch} \beta_{m} a}{\operatorname{ch} \gamma_{m} a} M_{m}, \quad K_{m} = -\beta_{m} a \operatorname{th} \beta_{m} a M_{m}.$$

Spełnienie pozostałych warunków brzegowych dla naprężeń σ_{12}^* , σ_{21}^* po uwzględnieniu (4.1.7) i przedstawieniu funkcji: sh $\alpha_n x_1$, x_1 ch $\alpha_n x_1$... itp. za pomocą szeregów Fouriera, prowadzi do algebraicznych równań w postaci:

$$\alpha_{n}^{2} \left[-\frac{a_{n}'}{\alpha_{n}^{2}} \operatorname{th} \alpha_{n} h \sin \frac{m\pi}{2} + \operatorname{th} \alpha_{n} h (-\alpha_{n} h \operatorname{th} \alpha_{n} h + 1) B_{nm} + \alpha_{n} h B_{nm} + 2A_{0} \alpha_{n}^{2} B_{nm} \left(\operatorname{th} \alpha_{n} h - \frac{\alpha_{n}}{\varrho_{n}} \operatorname{th} \varrho_{n} h \right) \right] + \left. + \sum_{m=1}^{\infty} \beta_{m}^{2} \left[M_{mn} \frac{2\beta_{m}}{a} \frac{2\alpha_{n}^{2}}{(\alpha_{n}^{2} + \beta_{m}^{2})^{2}} - 2A_{0} \beta_{m}^{2} M_{mn} \frac{2\beta_{m}}{a} \left(\frac{1}{\alpha_{n}^{2} + \beta_{m}^{2}} + \frac{1}{\alpha_{n}^{2} + \gamma_{m}^{2}} \right) \right] = 0,$$

$$(4.1.8) \qquad \sum_{n=1}^{\infty} \alpha_{n}^{2} \left[\frac{-2a_{n}'}{\alpha_{n} h} \frac{\sin \frac{m\pi}{2}}{\alpha_{n}^{2} + \beta_{m}^{2}} + B_{mn} \frac{2\alpha_{n}}{h} \frac{2\beta_{m}^{2}}{(\alpha_{n}^{2} + \beta_{m}^{2})^{2}} - \left. -2A_{0}\alpha_{n}^{2} B_{nm} \frac{2\alpha_{n}}{h} \frac{2\alpha_{n}}{(\alpha_{n}^{2} + \beta_{m}^{2})(\varrho_{n}^{2} + \beta_{m}^{2})} \right] + \beta_{m}^{2} \left[\operatorname{th} \beta_{m} a (-\beta_{m} a \operatorname{th} \beta_{m} a + +1) M_{mn} + \beta_{m} a M_{mn} + 2A_{0} \beta_{m}^{2} M_{mn} \left(\operatorname{th} \beta_{m} a + \frac{\beta_{m}}{\gamma_{m}} \operatorname{th} \gamma_{m} a \right) \right] = 0.$$

Wprowadzono tu oznaczenia:

$$B_{nm} = B_n \operatorname{ch} \alpha_n h \sin \frac{m\pi}{2}, \quad M_{mn} = M_m \operatorname{ch} \beta_m a \sin \frac{n\pi}{2}.$$

Z nieskończonego układu równań (4.1.8) można określić poszukiwane stałe B_n , M_m .

4.2. Rozwiązanie dla obciążenia brzegowego symetryczno-antysymetrycznego. Postępując w podobny sposób jak w punkcie 4.1 przedstawiamy obciążenia brzegowe za pomocą szeregów Fouriera (L = 2a)

(4.2.1)
$$p''(x_2) = \sum_{n=1}^{\infty} a''_n \sin \alpha_n x_2, \quad \alpha_n = \frac{n\pi}{a}, \quad n = 1, 2, 3 \dots$$

Warunki brzegowe na brzegach $x_1 = \pm h$, $x_2 = \pm a$:

(4.2.2)
$$\begin{aligned} \sigma_{11}^{*}(\pm h, x_2) &= p^{\prime\prime}(x_2), \quad \sigma_{22}^{*}(x_2, \pm a) = 0, \quad \sigma_{12}^{*}(\pm h, x_2) = 0, \\ \sigma_{21}^{*}(x_1, \pm a) &= 0, \quad \mu_{13}^{*}(\pm h, x_2) = 0, \quad \mu_{23}^{*}(x_1, \pm a) = 0. \end{aligned}$$

Funkcje naprężeń F i Ψ przyjmujemy w postaci:

$$F = \sum_{n=1}^{\infty} (A_n \operatorname{ch} \alpha_n x_1 + \alpha_n x_1 B_n \operatorname{sh} \alpha_n x_1) \sin \alpha_n x_2 +$$

+
$$\sum_{m=1}^{\infty} (K_m \operatorname{sh} \beta_m x_2 + \beta_m x_2 M_m \operatorname{ch} \beta_m x_2) \cos \beta_m x_1,$$

(4.2.3)
$$\Psi = \sum_{n=1}^{\infty} (F_n \operatorname{sh} \alpha_n x_1 + H_n \operatorname{sh} \varrho_n x_1) \cos \alpha_n x_2 +$$

+
$$\sum_{m=1}^{\infty} (P_m \operatorname{ch} \beta_m x_2 + R_m \operatorname{ch} \gamma_m x_2) \sin \beta_m x_1,$$

gdzie

$$\alpha_n = \frac{n\pi}{a}, \quad n = 1, 2, 3, ..., \quad \beta_m = \frac{m\pi}{2h}, \quad m = 1, 3, 5 ...$$
$$\varrho_n = \left(\alpha_n^2 + \frac{1}{l^2}\right)^{1/2}, \qquad \gamma_m = \left(\beta_m^2 + \frac{1}{l^2}\right)^{1/2},$$

 β_m — odpowiada okresowi L = 4h, co umożliwia spełnienie w sposób ścisły warunków brzegowych dla składowych naprężenia $\sigma_{11}^*, \mu_{13}^*$.

Rys. 11

Tok rozwiązania zagadnienia jest taki sam jak w punkcie (4.1). Biorąc pod uwagę wzory (4.2.3) spełniamy najpierw cztery warunki brzegowe (4.2.2)_{1,2,5,6} i równania wiążące funkcje F i Ψ (2.5), otrzymując stałe całkowania w postaci $A_n = f(B_n)$, $H_n = f(B_n)$, $K_m = f(M_m)$, $R_m = f(M_m)$. Następnie spełniając dwa ostatnie warunki brzegowe (4.2.2)_{3,4} dochodzimy do nieskończonego układu równań.

Literatura cytowana w tekście

- 1. W. NOWACKI, Teoria niesymetrycznej sprężystości, PWN, Warszawa 1971.
- 2. K. GIRKMAN, Dźwigary powierzchniowe, Arkady, Warszawa 1957.
- 3. S. KALISKI, J. KAPELEWSKI, S. RYMARZ, Surface waves on an optical branch in a continuum with rotational degrees of freedom, Proc. Vibr. Probl., 2, 9 (1968).
- 4. K. MAJORKOWSKA-KNAP, Plaskie zagadnienia mikropolarnej spreżystości, Praca doktorska złożona w Bibliotece Głównej Politechniki Warszawskiej, Warszawa 1972.

Резюме

СТАТИКА МИКРОПОЛЯРНЫХ ДИСКОВ

В работе рассматривается на примере диска, полубесконечного диска и дисковой полосы задача микрополярной упругости.

Задача решается с помощью функции Эри-Миндлина. Соответствующие дифференциальные уравнения в частных производных решались с помощью одинарных и двойных рядов Фурье.

Summary

STATICS OF MICROPOLAR PLATES

In the paper the static problems of micropolar elasticity for a semi-infinite plate, a plate-strip and a right-angled plate in a plane state of stress are considered. Solved are the problems by means of the Airy-Mindlin function. The differential partial equations of the problems are solved using a single and double Fourier series.

POLITECHNIKA WARSZAWSKA, FILIA W PŁOCKU

Praca została złożona w Redakcji dnia 22 grudnia 1973 r.; w wersji ostatecznej -- dnia 15 maja 1974 r.