
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

49, 3, pp. 879-903, Warsaw 2011

SIMULATION OF WAVE PROPAGATION IN DAMPED

COMPOSITE STRUCTURES WITH PIEZOELECTRIC

COUPLING

Rolf T. Schulte
Claus-Peter Fritzen

University of Siegen, Institute of Mechanics and Automatic Control – Mechatronics, Siegen,

Germany; e-mail: fritzen@imr.mb.uni-siegen.de

This paper presents an efficient and accurate simulation approach to
shorten time and cost of the necessary pre-tests in the design process of
structural health monitoring (SHM) systems. The simulation is perfor-
med using the time domain spectral element method, which leads to an
optimally concentrated mass matrix and results in a crucial reduction of
complexity of the time integration algorithm. The theoretical backgro-
und of the method and a spectral element for flat shells are presented.
New approaches to incorporate the anisotropic material damping and an
efficient coupling of piezoelectric elements within the spectral element
framework are developed.
Some numerical calculations are performed showing both the accura-
cy of this methodology, by comparing to experimental values, and the
applicability to more complex structures like stiffened curved panels.
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1. Introduction

During the last decades, many structural health monitoring (SHM) approaches
based on activating and sensing elastic waves using piezoelectric patches have
been developed (Balageas et al., 2006; Giurgiutiu, 2007). The majority of the-
se systems have shown their capabilities in the laboratory environment, and
their technology readiness level (TRL) is in the range of two to five, compare
Mankis (1995). So far, there are few examples of the transfer to more com-
plex real world structures. The reason for this can be found in many obstacles
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arising from different sectors: complexity of the technology, manufacturing,
certification, regulation authorities and some more.

This paper concentrates on the first of these points, the complexity of the
technology itself. Many wave propagation phenomena and especially the in-
teractions with different kinds of damage are difficult to understand. This is
particularly true with regard to received sensor data because of the presence
of different wave modes that often cannot be distinguished. However, only a
profound comprehension of wave propagation leads to the ability to configure
optimized SHM systems for a desired application. The system performance
strongly depends on an adequate choice of parameters like excitation signals,
damage evaluation algorithms, actuator/sensor types and actuator/sensor di-
stribution. For successful monitoring of complex real world structures, the
influence of all these parameters has to be studied in detail. For this reason
there is a strong interest in accurate simulation and visualisation tools to give
insight into the details of the wave motion. Precise and efficient numerical mo-
delling techniques can help to cut time and cost of the parameter optimization
process, and thereby can assist the challenging step to real world structures
and higher TRLs.

Generally, for the modelling of wave propagation phenomena a variety
of methods can be utilised. Well-established are the finite difference method
(FDM) (Graves, 1996), the pseudospectral method (PSM) (Fornberg, 1987;
Ku et al., 1987), the finite element method (FEM) (Moser et al., 1999; Zien-
kiewicz et al., 2005) and the boundary element method (BEM) (Beskos, 1997;
Cho and Rose, 1996). Because of the high frequency signals, which are requ-
ired to detect small damage, a very dense finite element mesh is necessary
for accurate simulation of wave propagation and possible wave scattering at
defects. For that reason, the conventional finite element simulation becomes
computationally very inefficient. Finite difference methods suffer from nume-
rical dispersion and difficulties arise when implementing boundary conditions
(Graves, 1996). Other approaches use mass-spring-lattice models (MSLM),
see e.g. Yim and Sohn (2000). Developments in this field include the so called
local interaction simulation approach (LISA), in which wave propagation is
simulated without using finite difference equations, but directly from physical
phenomena and properties (Delsanto et al., 1997).

A quite different methodology is the utilisation of so called spectral ele-
ments. Using this terminology, it is important to clearly distinguish between
two different techniques known under the same term. The Fourier transforma-
tion based spectral elements, see Doyle (1997), start from exact solutions of the
partial differential equations in the frequency domain. The excitation signals
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are transferred to the frequency domain using Fast Fourier Transformation
(FFT) and after solving the inverse FFT is used to calculate the response in
the time domain. This technique shows very good results for one-dimensional
structures (beams, rods) but difficulties arise in handling more complex geo-
metries, because exact solutions of the problem are often not available.

A more promising method for complex structures is the time domain spec-
tral element method (SEM) that was first proposed by Patera (1984). It com-
bines the accuracy of the global pseudospectral method with the flexibility of
the FEM. However, the spectral element method is not widespread in the con-
text of wave propagation in thin-walled structures. In Kudela et al.(2007) and
Kudela and Ostachowicz (2009) spectral elements are used to simulate trans-
verse wave propagation in undamped composite plates. In Ostachowicz(2008)
different elements (rods, beams, plates) based on the spectral element method
including damage models are derived. In Peng et al. (2009) waves in planar
shells are calculated by means of spectral volume elements. The SEM is used
in recent publications to investigate the wave propagation and interaction
with damages in complex structures like a welded L-joint (Rucka, 2010) or a
half-pipe structure (Ostachowicz and Kudela, 2010).
In this paper, the formulation of a flat shell spectral element is presen-

ted, including consideration of material damping. The construction of mass-,
stiffness- and damping matrices, and the time integration algorithm are presen-
ted briefly. A model of the electromechanical coupling of piezoelectric actuators
and sensors is adapted and integrated into the spectral element framework.
By construction, this leads to an efficient tool to simulate wave propagation
phenomena in thin-walled structures. An example of propagating waves in a
unidirectional composite plate is presented including the comparison of simu-
lation results with measured data. Moreover, a model of a curved panel with
stiffeners is analysed to demonstrate the applicability to more complex-shaped
geometries. The simulation results of the presented model can be used to de-
velop advanced signal processing strategies and to perform detailed parameter
studies.

2. Nodal base and shape functions in the spectral element

method

For the numerical treatment of high-frequency wave propagation one impor-
tant aspect to be kept in mind is the necessity of a dense mesh-grid to account
for the short wavelength. This requires to consider the interpolation properties
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of the used element type to be able to capture the wave motion with as few
degrees of freedom as possible. Theoretical analysis shows that the highest
interpolation accuracy is achieved by distributing the interior nodes of an ele-
ment corresponding to the roots of certain orthogonal polynomials, namely
Chebyshev or Lobatto polynomials (Pozrikidis, 2005). In contrast to the Che-
byshev polynomials, the N + 1 nodes of the Lobatto nodal base, the roots of
equation (2.1)

(1− ξ2)LoN−1(ξ) (2.1)

in conjunction with Lagrange interpolation polynomials leads by construc-
tion to an optimally concentrated mass matrix as will be seen subsequently.
LoN−1(ξ) denotes the Lobatto polynomial of (N − 1)-th order. The Lagrange
interpolation polynomials fulfil the discrete orthogonality ψi(ξj) = δij where
δij denotes the Kronecker delta. In Fig. 1 these interpolation polynomials –
also called shape functions – are depicted within the one-dimensional referen-
ce domain for a nodal base of 7 Gauss-Lobatto-Legendre (GLL) nodes. The
discrete orthogonality can be clearly seen as each polynomial is exactly one at
its corresponding GLL node and zero at all other nodes.

Fig. 1. Lagrange interpolation polynomials on the reference interval [−1, 1] through
7 Gauss-Lobatto-Legendre (GLL) points

Moreover, the excellent interpolation properties of this kind of elements
can be seen in Fig. 1, because the shape functions vary smoothly between
approximately −0.2 and 1 and any kind of Runge oscillations, that occur
at the ends of a higher order element with evenly spaced nodes when the
polynomial order is raised, are totally suppressed.

For the extension to two-dimensional elements, as the flat shell elements
presented within this paper, quadrilateral elements based on a tensorial pro-
duct of the one-dimensional constituents should be favoured over triangular
elements. The tensorial product guarantees that the discrete orthogonality
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also holds for the two-dimensional shape functions. If triangular elements ha-
ve to be used, Fekete points should be used as the nodal base (Komatitsch et
al., 2001; Pozrikidis, 2005), but with respect to accuracy and numerical sta-
bility quadrangles are preferable, as it is stated in Komatitsch et al. (2001).
According to Seriani, only about 5 to 6 nodes (exact value depends on the de-
gree of the interpolation polynomial) per shortest wavelength are necessary to
correctly simulate the wave propagation behaviour in contrast to 15-30 which
are needed using lower order finite elements (Seriani and Priolo, 1994).

3. Flat shell spectral element for composite material

The flat shell spectral element presented here is based on the first order shear
deformation theory (FSDT) for plates that was developed by Mindlin. The
three independent displacements ũ, ṽ and w̃ are expressed using a displace-
ment field of the form

ũ(x, y, z, t) = u(x, y, t) +
∂z0
∂x

w(x, y, z, t) + zθy(x, y, t)

ṽ(x, y, z, t) = v(x, y, t) +
∂z0
∂y

w(x, y, z, t) − zθx(x, y, t) (3.1)

w̃(x, y, z, t) = w(x, y, z, t)

where (u, v,w, θx, θy) are unknown functions to be determined. u, v and w
are the displacement of the plane z = 0, θx and θy denote right-hand-rule
rotations, see Fig. 2.

Fig. 2. Kinematic parameters used for the description of a flat shell element, the
dashed line is the midface of the shell

A rotational dof θz about the local z-axis is not used within the kinematic
description. This inhibits arbitrary transformations of the elements in spa-
ce between local and global coordinates, because general transformations in
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space account for 6 dofs. In principle, it is possible to use an in-plane formula-
tion with explicit θz-dof but this would complicate the problem unnecessarily.
Instead, an artificial θz-dof that is not used within the kinematic formula-
tion, can be introduced. To regularise the resulting system of equations, small
artificial values for the stiffness and mass of this dof are defined following Ba-
the (1986). The terms (∂z0/∂x)w(x, y, z, t) and (∂z0/∂y)w(x, y, z, t) take into
account the curvature of the shell in form of a pre-deformation, see Wagner
(1985). For planar shells, these terms are dropped.

The displacement field on the element level can be approximated in the
following form




w(ξ, η)
θx(ξ, η)
θy(ξ, η)
u(ξ, η)
v(ξ, η)



=
N+1∑

i=1

N+1∑

j=1

Ψij(ξ, η)q
(e)
ij =

N+1∑

i=1

N+1∑

j=1

ψi(ξ)ψj(η)




ŵ(ξi, ηj)

θ̂x(ξi, ηj)

θ̂y(ξi, ηj)
û(ξi, ηj)
v̂(ξi, ηj)



(3.2)

where ξ and η denote the local element coordinates, Ψ is a two-dimensional
shape function and ψi is the i-th one-dimensional shape function defined
above. q(e) represents the vector of nodal variables and the hat indica-
tes nodal degrees of freedom that are the unknowns of the resulting sys-
tem of equations. Examples of the GLL nodal distribution within the two-
dimensional reference element are depicted in Fig. 3 for a 25-node and a
81-node element. Raising the degree of the interpolation polynomial – that
is increasing the number of nodes per element – leads to clustering of nodes at
the element corners. The implication of this effect is discussed subsequently.

Fig. 3. Nodal distribution within the reference element for 5 GLL nodes (left) and
9 GLL nodes (right) per element edge
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Some examples of the two-dimensional shape functions Ψ on a grid using
25 element nodes are given in Fig. 4.

Fig. 4. Examples of shape functions Ψij of a spectral-shellelement with 5 GLL-nodes
per element edge

The derivation of the variational equation and the weak form follows the
standard FE procedures, see e.g. Hughes (1987). The element matrices are
calculated using the Gauss-Lobatto integration rule. For the stiffness matrix
this leads to

K
(e) =

∫∫

Ωe

[B(x, y)]⊤DB(x, y) det(J) dΩ

(3.3)

≈

N+1∑

i=1

N+1∑

j=1

wiwj [B(xij, yij)]
⊤
DB(xij , yij) det(J)
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where w are quadrature weights and D is the material stiffness matrix that
is defined as

D =




D11 D12 D16 0 0 B11 B12 B16
D12 D22 D26 0 0 B12 B22 B26
D16 D26 D66 0 0 B16 B26 B66
0 0 0 κA55 κA45 0 0 0
0 0 0 κA45 κA44 0 0 0
B11 B12 B16 0 0 A11 A12 A16
B12 B22 B26 0 0 A12 A22 A26
B16 B26 B66 0 0 A16 A26 A66




(3.4)

where κ is a shear correction factor. The mass matrix can be calculated as

M
(e) =

∫∫

Ωe

[Ψ(x, y)]⊤HΨ(x, y) det(J) dΩ

(3.5)

≈

N+1∑

i=1

N+1∑

j=1

wiwj [Ψ(xij, yij)]
⊤
HΨ(xij , yij) det(J)

where H is given in the following equation

H =




I0 0 0 0 0
0 I2 0 0 −I1
0 0 I2 I1 0
0 0 I1 I0 0
0 −I1 0 0 I0




(3.6)

The mass moments of inertia Ii are given according to


I0
I1
I2


 =
∫

he



1
z
z2


 ρ(z) dz (3.7)

where ρ is the material density.
The mass matrix is optimally concentrated by construction because of the

aforementioned discrete orthogonality of the shape functions. For a density
distribution that is symmetric towards the midplane of the shell, the terms I1
in the matrix H vanish. Therefore, a completely diagonal mass matrix results
in that case.
Both Ke and Me can be assembled in the same manner as it is done with

the conventional finite elements to form global stiffness and mass matrices K
and M. The spectral elements naturally lead to free-free boundaries, other
boundary conditions can be implemented as for low-order finite elements.



Simulation of wave propagation... 887

4. Incorporation of material damping

For a realistic simulation model of a composite material, the influence of at-
tenuation has to be considered. While in other papers this point is neglected
for simplicity (e.g. Kudela and Ostachowicz, 2009) the incorporation of dam-
ping into the spectral element framework for composite shells is an important
aspect of this contribution.
The viscous damping model that is often applied in finite element analysis

of dynamics of structures, assumes the equation of motion in the following
form

Mq̈ + Cq̇ +Kq = F(t) (4.1)

The damping matrix C is usually assumed proportional to the mass and stiff-
ness matrix

C = αM+ βK (4.2)

where the scalar coefficients α and β are determined from experimental me-
asurements. Besides these models, some other approaches are used, especially
the application of fractional derivatives seems promising (Bagley and Torvik,
1985).
Within this contribution, viscous damping is assumed leading to an equ-

ation of motion in form of Eq. (4.1). Indeed, in contrast to Eq. (4.2), the
damping matrix is assembled in a different manner. As can be noticed from
experiments on composite plates, the damping behaviour often shows an inver-
se proportionality to the in-plane stiffness. For that reason, the second term in
Eq. (4.2), the linear coupling with the stiffness matrix, is completely dropped.
However, the proportionality to the mass matrix alone is not able to take into
account the direction-depending attenuation behaviour.
Instead, the following material damping matrix is introduced for each layer

C
(k)
mat =




1
2(C

(k)
θf + C

(k)
θm) 0 0 0 0

0 C
(k)
θm 0 0 0

0 0 C
(k)
θf 0 0

0 0 0 C
(k)
f 0

0 0 0 0 C
(k)
m




(4.3)

providing different coefficients for the different degrees of freedom. Index f
denotes the fibre direction, index m the transverse direction. This matrix
can be formulated for each of the material layers separately in the material
coordinate system, where the first axis is parallel to the fibre direction, see
Fig. 5.
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Fig. 5. Laminate coordinate system (x, y, z) and k-th layer with its material
coordinate system (x(k), y(k), z(k))

The material damping matrices from Eq. (4.3) can be transformed into the
laminate coordinate system by using

C
(k)
mat = Tc(−φ

(k))C
(k)
matT

⊤

c (−φ
(k)) (4.4)

where the matrix Tc is an appropriate rotation matrix.

Finally, the material damping matrix for the laminate

Cmat =

∫

he

Cmat dz =
L∑

k=1

zk+1∫

zk

C
(k)
mat dz (4.5)

and the element damping matrix can be constructed

C
(e) =

∫∫

Ωe

[Ψ(xij, yij)]
⊤
CmatΨ(xij , yij) det(J) dΩ

(4.6)

≈

N+1∑

i=1

N+1∑

j=1

wiwj[Ψ(xij , yij)]
⊤
CmatΨ(xij , yij) det(J)

If this approach is used on the element level, different attenuation coefficients
can be used for the fibre direction and the transverse direction. With this
methodology, two important properties are achieved: on the one hand, the
direction-dependent attenuation behaviour can be realised and the damping
coefficients of in-plane and out-of-plane waves can be chosen separately. On the
other hand, the resulting damping matrix is diagonal. This property preserves
the opportunity to make use of a rapid time integration scheme, which will be
explained during the next section.
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5. Time integration of the global system

The equation of motion of the global system (4.1) can be discretised in time
using either implicit or explicit time integration schemes. To fully utilise the
advantage of the diagonal mass and damping matrices, the explicit central
difference scheme is used here. The main assumption of the central difference
scheme is an acceleration of the form

q̈
t =

1

∆t2
(qt−∆t − 2qt + qt+∆t) (5.1)

The velocity can be assumed as

q̇
t =

1

2∆t
(−qt−∆t + qt+∆t) (5.2)

Inserting (5.1) and (5.2) into the system of ordinary differential equations (4.1)
at the time instant t results in

( 1
∆t2
M+

1

2∆t
C

)
q
t+∆t = Ft−

(
K−

2

∆t2
M

)
q
t
−

( 1
∆t2
M−

1

2∆t
C

)
q
t−∆t (5.3)

that can be solved for qt+∆t. The solution of Eq. (5.3) can be performed very
efficiently if matrix inversions can be avoided, which is the case if M and C
are diagonal matrices. This methodology allows rapid calculation of the time
dependent solution of the system. If these matrices are not diagonal, the term
in brackets on the left hand side of Eq. (5.3) has to be decomposed, which in-
creases the computational cost drastically. If instead of the GLL interpolation,
Chebyshev polynomials are used, the mass matrix is no longer diagonal. In this
case, either an iterative time-stepping algorithm could be used (Seriani, 2004)
or the mass- and damping matrices can be diagonalised by row-summing the
contributions on the diagonal (Dauksher and Emert, 2000).

The drawback of this scheme is the difficulty to set the timestep ∆t that
has to be appropriately small to reach stability of the solution. It is very
difficult to derive a generally applicable formula to compute this timestep for
wave propagation problems. It depends on many parameters like the maximal
velocity of the travelling wave vmax, the excitation frequency, the distortion
of elements and minimum distance of mesh-nodes ∆xmin. The optimal length
of the time increment ∆t has to be adjusted to the particular problem of
interest. It can be estimated by using the Courant-Friedrichs-Levy condition

∆tmax = CFL
∆xmin
vmax

(5.4)
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CFL is the Courant-number that is close to 0.85 for the one-dimensional case,
but can only be estimated for more complex situations. The positive aspect
of this particular problem is the fact that a numerical error resulting from
a too large timestep ∆t makes the solution grow very fast to infinity. This
behaviour enables the user to distinguish easily between the correct results
and numerically distorted results by the too large timestep.

As Eq. (5.4) indicates a direct relationship of the timestep to the minimum
grid-spacing, this equation dictates the useful range of GLL nodes per element-
edge. As discussed above and depicted in Fig. 2, increasing the order of spectral
elements leads to clustering of nodes at the element edges and reduces ∆xmin.
While on the one hand higher order elements lead to a better approximation,
on the other hand the length of the time increment has to be reduced (denoting
more timesteps for the same period T , resulting in a higher computational
cost). From a practical point of view, the elements with an approximation
order of 5 to 9 seem an acceptable compromise.

6. Piezoelectric coupling

As mentioned before, an efficient coupling of piezoelectric patches is included
into the spectral element framework. On the one hand these patches have local
contributions to the mass, stiffness and damping properties of the structure, on
the other hand the coupling of electrical and mechanical quantities due to the
piezoelectric effect has to be considered. The well-known piezoelectric effect is
not to be explained in detail here because the general equations can be found
in many textbooks, see e.g. Ikeda (1990). Assuming isotropic piezoelectric
actuators, the magnitude of the induced line forces and moments at the edges
of a rectangular piezo actuator patch that is bonded onto the surface of a plate
structure (actuator equation) can be expressed, following Banks et al. (1996),
as

Npztx = N
pzt
y =

−Epzthpzt
1− νpzt

d31
hpzt

Vpzt

(6.1)

Mpztx =M
pzt
y = −

1

8

Epzt
1− νpzt

[
4
(h
2
+ hpzt

)2
− h2
] d31
hpzt

Vpzt

Here, h denotes the plate thickness, hpzt is the thickness of the piezo element,
d31 is a piezo-ceramic strain constant, Epzt and νpzt are Young’s modulus and
the Poisson’s ratio of the piezo patch, and Vpzt denotes the applied voltage. If
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instead of rectangular patches, disc-shaped pzt-elements are used, the forces
and moments act at those nodes nearest to the physical edges of the pzt-
element, as it is depicted in Fig. 6. The line forces of the quadratic-shaped
element (indicated in grey) are replaced by forces at those GLL nodes nearest
to the radius of the round element (indicated in black). Mass, stiffness and
damping contributions to the global system are also only considered for those
areas physically covered by the pzt-element.

Fig. 6. Alignment of equivalent piezoelectric nodal forces (black arrows) for a
pzt-disc

The sensor equation is developed for orthotropic situations in Yang and
Ngoi (1999), and is used to calculate the output charge Q(t)

Q(t) = −

∫∫

S

(F + εX33E3) dxdy + zk

∫∫

S

G dxdy (6.2)

with

F (x, y) = e31
∂u0
∂x
+ e32

∂v0
∂y

G(x, y) = e31
∂ϕy
∂x
+ e32

∂ϕx
∂y

(6.3)

The charge depends on the strain in the piezo patch, as can be seen in
equation (6.3), where e31 and e32 are the coupling coefficients. For circular
patches, only the proportion of the element that is physically covered by the
patch is considered for the strain calculation. Because of the high density of
the interior mesh, the resulting output charge is accurate even for a small
wavelength corresponding to high frequency waves.
Using these equations is an efficient possibility to incorporate the electro-

mechanical coupling because it avoids adding further degrees of freedom to
the system, as has to be done using an approach including electrical degrees of
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freedom, see e.g. Lammering and Mesecke-Rischmann (2003). It is straight for-
ward to compute the generalised actuator forces and add them as external for-
ces Fext to the global system. The strains for the sensing equation (Eq. (6.2))
can be easily calculated either analytically using the strain-displacement ma-
trix B or numerically from the resulting displacements. Effects of shear-lag
due to the glue-layer between piezo patch and host structure can easily be im-
plemented by loss factors, as it is done in the application shown subsequently.
It is also possible to consider more refined models of the piezoelectric patches
including eigenresonances and so on, but this is not in the scope of this paper
and not necessary for the considered frequency range used here.

7. Application I, wave propagation in a GFRP plate

The presented methodology is used to simulate the propagation of waves in a
unidirectional GFRP plate of dimensions 800mm×800mm that is depicted in
Fig. 7. The thickness of the plate is approximately 1.5mm, the fibre direction
is in the y-direction. As can be noticed in Fig. 7, nine piezoelectric patches
are attached to the structure. The piezo-discs have a diameter of 10mm and
a thickness of 0.25mm. For the simulation, the plate is meshed with 68 × 68
elements using 36 nodes per element.

Fig. 7. GFRP plate with piezo patches

To demonstrate the capabilities of this simulation approach, the patch
located in the centre (P5) is used as an actuator, and the other patches are
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used as sensors. A voltage pulse signal with a carrier frequency of 100 kHz
lasting for 5 cycles (windowed by an Hann-window) is used as the actuation
signal, and the received sensor signals at the other patches are both measured
and calculated.

In Fig. 8, the measured and simulated sensor voltage signals are compared
for patches P2, P3 and P6 corresponding to 90◦, 45◦ and 0◦. For this compari-
son, a loss factor of 0.78 is introduced to compensate for the shear lag effect of
the actuator and sensors, and Young’s moduli, shear moduli and density of the
plate are optimized. The signals that can be seen at the measurement voltage
of P2 and P3 at the time before 0.05ms are an electrical coupling phenomenon
with the actuator channel, because the contacts are not perfectly shielded. In
general, Fig. 8 shows a good agreement of the simulated and measured data
including the time of flight of different wave-modes, amplitude and phase.

Fig. 8. Simulated and measured sensor signals for P2, P3 and P6; excitation
at 100 kHz
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Comparison of the signals of P2 and P6 (Fig. 8) shows the anisotropy of
this plate, because both sensors have the same distance to the actuator, but
the time of flight is significantly shorter to P2 that is placed in the direction
of the fibres. The anisotropic characteristic becomes even more obvious by
considering snapshots of the propagating waves. In Figs. 9 and 10 some of these
snapshots are depicted. As the excitation signal for these plots, a windowed
pulse signal with a carrier frequency of 75 kHz lasting for four cycles was used.
In Fig. 9 the resulting in-plane displacement, calculated from the x- and y-
displacement is depicted (in-plane waves), while in Fig. 10 the z-displacement
is shown (out-of-plane waves). In Fig. 9, the same scale is used for all snapshots,
because the damping of the in-plane waves is not as strong as for the out-of-
plane waves, where different scales had to be used (see Fig. 10). In both figures
small disturbances of the wave field can be noticed, when the travelling waves
reach the piezo sensors (Fig. 9c,d and Fig. 10b,c).

In contrast to isotropic plates, where the SH0 mode is usually not exci-
ted by bonded piezo actuators, in Fig. 9 two different wave modes, namely
S0 and SH0 can be clearly identified, because besides the S0 wave, there is
another group of waves with a lower wave speed and wavelength. The SH0
wave propagates predominantly in a direction close to ±45◦ (see Fig. 9d,e).
In Figs. 10c and 10d, the anisotropic damping characteristics can be noti-

ced, because travelling the wave packet in the x-direction looses its amplitude
much faster than in the y-direction. Moreover, the dispersive character of
the out-of plane waves is obvious, because the pulse widens with increasing
runtime, in contrast to the in-plane waves that are barely dispersive.
In comparison to pure sensor data, the presented simulation methodology

provides a deeper insight to many details of the wave propagation phenomena.
While on a single plate the behaviour of the travelling waves is comparatively
simple to predict, matters get more complicated, if more complex structu-
res are under investigation. This makes it particularly attractive to use this
simulation approach for the analysis of more complex structures.

8. Application II, wave propagation in a stringer stiffened curved

panel

In the aerospace industry, typical sub-structures are curved panels with stif-
feners. For that reason the presented simulation approach is demonstrated
subsequently on such a panel with a radius of 2m, which is typical for medium-
sized aircraft. The geometry of the panel with its element-mesh is shown in
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Fig. 9. Snapshots of propagating in-plane-waves at 75 kHz in the GFPR plate;
S0 and SH0 wave can be identified
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Fig. 10. Snapshots of propagating out-of-plane-waves at 75 kHz in the GFPR plate

Fig. 11. Curved panel with stiffeners and piezo patches

Fig. 11, where piezo elements are indicated in black. The excitation signal is
a windowed pulse signal with a carrier frequency of 50 kHz lasting for three
cycles.
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The T-shape stiffeners are modelled close to reality as it can bee seen
in Fig. 12. For this model, an isotropic aluminium material is assumed. The
connection of the base-shell to the stiffener is modelled using a five times
higher attenuation factor to account for higher damping because of gluing.

Fig. 12. Detailed view of the stiffener geometry

The subsequent figures show snapshots of different waves travelling within
the panel at different time instances. The out-of-plane waves excited by the
piezopatch mainly remain in the area between the two neighbouring stiffeners
(see Figs. 13 to 15).

Fig. 13. y-displacement at t = 0.10ms
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Fig. 14. y-displacement at t = 0.20ms

Fig. 15. y-displacement at t = 0.30ms

The in-plane waves can leave this area much easier, as can be seen in Figs.
16 and 17, where the resulting in plane displacement is depicted. The in-plane
waves within the base-shell excites out-of plane waves in the stiffeners, as can
be seen in Fig. 17 from the shorter wavelength in the stiffeners.

As in Fig. 17 some contributions of waves with a shorter wavelength also in
the base-shell are noticeable, in Fig. 18 the local in-plane displacements at the
same time instance are plotted for comparison. This makes clear that those
contributions arise just from the curvature of the base-shell, because the global
xz-displacement contains parts from the out-of-plane wave as well.
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Fig. 16. xz-displacement at t = 0.10ms

Fig. 17. xz-displacement at t = 0.30ms

Fig. 18. Local in-plane displacement at t = 0.30ms
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9. Conclusions

The formulation of flat spectral shell elements has been presented in detail.
The novelty of this contribution is, in particular, the capability of the presen-
ted formulation to include direction dependent attenuation within the spectral
element framework. The construction of the damping matrix and the efficient
implementation within the central difference scheme for the time integration
were discussed. Moreover, piezoelectric coupling is implemented within the
spectral element framework. This is done using analytical equations and avo-
iding additional degrees of freedom. The ability to handle damping phenomena
broadens the scope of application of this methodology towards realistic simu-
lation models especially regarding composite materials.

The proposed approach is demonstrated by two examples including a com-
parison to experimental data for a unidirectional GFRP plate. Simulated and
measured sensor data show a good correlation and affirm the necessity to con-
sider the attenuation. The second, pure numerical example demonstrates the
application to a stiffened curved panel, a more complex structure that is often
used as sub-structure in the aircraft industry.

The simulation can support a deeper understanding of the propagation
behaviour of different wave modes including direction-depending attenuation,
reflections from various obstacles as the stiffeners, and some more.

In the next step, the presented approach can be used to optimize actu-
ator/sensor networks on structures including extensive parameter studies. This
process can help to shorten time, cost and material consumption of pretests
and may help to bring SHM a small step further to real life application and
higher TRL levels.
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Symulacja propagacji fali w kompozytach tłumionych efektem sprzężenia

piezoelektrycznego

Streszczenie

W pracy przedstawiono efektywną i dokładną procedurę symulacji układów z sys-
temem monitorowania stanu (SHM) stosowaną na wstępnym etapie projektowania
takich układów i pozwalającą na redukcję czasu i kosztów niezbędnych analiz wstęp-
nych. Procedurę oparto na metodzie elementów spektralnych w dziedzinie czasu, co
umożliwiło uzyskanie optymalnie określonych macierzy bezwładności i przez to zdecy-
dowane skrócenie czasu całkowania. Przybliżono podstawy teoretyczne metody i opi-
sano elementy spektralne dla płaskich powłok. Przedyskutowano nową metodologię
badań symulacyjnych pozwalających na wprowadzenie tłumienia anizotropowego oraz
efektu sprzężenia piezoelektrycznego w ujęciu elementów spektralnych. Na kilku przy-
kładach zaprezentowano dokładność obliczeń numerycznych poprzez porównanie ich
z wynikami eksperymentu oraz wykazano ich przydatność do analizy bardziej złożo-
nych układów, jak np. zakrzywionych paneli z lokalnymi usztywnieniami.
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