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Characteristics of wave propagation in thick beams are analyzed using a
three-dimensional (3-D) spectral element method (SEM) for the purpose of
damage detection. Analysis of wave propagation in beams of different thick-
ness under excitations with different central frequency reveals that when the
thickness of the beam is comparable to the wavelength of the elastic wave, a
local wave mode, besides quasi-symmetric and quasi-anti-symmetric modes,
exist simultaneously in the beam. In particular, when the wavelength is mo-
re than two times the beam thickness, the local wave modes are suppressed
and the wave modes in the beam can be regarded as traditional guided wa-
ves, i.e., Lamb waves. It is demonstrated that the central frequency of wave
signals can be selected according to the dimensions of the beam to obtain
simple wave modes like those in thin beams. The characteristics of wave
propagation in an intact beam and beams with a lateral crack are analyzed
and the results are also validated by experiments, where wave propagation
signals in thick steel beams are activated and captured using PZT elements.
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1. Introduction

For structures in aerospace, civil and infrastructure applications, abrupt im-
pact or growth of fatigue defects during service life can result in catastrophic
failure. It is therefore essential to develop techniques of surveilling the integrity
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of these structures and improving their safety and reliability. Various struc-
tural health monitoring (SHM) methods have been developed (Inman et al.,
2005; Staszewski et al., 2009; Su and Ye, 2009). Due to the long-range propa-
gation potential of elastic waves and their sensitivity to a variety of damage,
elastic-wave-based techniques for damage detection received a considerable at-
tention in the past decades (Giurgiutiu, 2003; Kessler et al., 2002; Raghavan
and Cesnik, 2007; Su et al., 2006).
For elastic-wave-based damage detection techniques, it is essential to un-

derstand the wave propagation characteristics in structures to be examined.
A number of numerical methods have been applied to analyze the propa-
gation of elastic waves in various types of structures (Lee and Staszewski,
2003a,b). The orthogonal polynomials (e.g., Legendre and Cheybyshev poly-
nomials) -based SEM, proposed by Patera (1984), which take advantage of
the accuracy of the spectral method and conserves the flexibility of FEM,
are much more suitable for analyzing wave propagation in a medium with
complex geometry than the conventional FEM. This method has been suc-
cessfully applied in many areas, such as fluids (Canuto et al., 1988; Fischer
et al., 2002; Karniadakis and Sherwin, 2005), seismology (Komatitsch et al.,
2002; Komatitsch and Vilotte, 1998; Seriani, 1998) and acoustics (Seriani and
Priolo, 1994). In the past few years, the SEM was used to simulate wave
propagation in structures for the purpose of damage detection. For example,
wave propagation in 1-D structures such as rods (Sridar et al., 2006) and be-
ams (Kudela et al., 2007b), 2-D structures such as isotropic (Zak et al., 2006)
and composite plate (Kudela et al., 2007a) was investigated using SEM. Wave
propagation in 2-D plate structures using three-dimensional SEM for damage
detection was also discussed in Peng et al. (2009). PZT transducers were mo-
deled using SEM to generate and receive Lamb waves (Ha and Chang, 2010b;
Kim et al., 2008; Kudela and Ostachowicz, 2009) and the effect of the adhesi-
ve layer between a PZT and a host structure was discussed (Ha and Chang,
2010a).
Thick beams play important roles in 3-D structures. Unlike the beam

structures that are commonly considered, where the wavelength of the ela-
stic waves is much greater than the thickness of the beam, the cross-section
size of thick beams is comparable to the wavelength. In this paper, thick be-
ams are modeled using the Legendre-polynomials-based 3-D SEM and ela-
stic wave propagation characteristics are analyzed. The characteristics of
elastic wave propagation in beams with and without a crack are evalu-
ated. Subsequently, the simulation results are validated with experimental
results.
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2. Formulation of the spectral element method

As in the conventional FE method, SEM first requires the domain Ω in three
dimensions to be decomposed into a number of non-overlapping elements Ωe.
Each element in the physical domain is mapped to a reference domain
Λ = [−1, 1]3 with local coordinates using an invertible local mapping func-
tion f . One difference between the SEM and FEM is the distribution of nodes.
A set of nodes is defined as ξi ∈ [−1, 1], i = 1, . . . , N + 1 in the domain Λ. In
SEM, these Gauss-Lobatto-Legendre (GLL) points are the (N + 1) roots of
(Canuto et al., 1988)

(1− ξ2)P ′N (ξ) = 0 (2.1)

where P ′N (ξ) is the derivative of the Legendre polynomial of the degree N .
Those nodes are irregularly distributed, while the nodes are uniformly spaced
in FEM.

In a 3-D spectral finite element, the basis function can be written as

ψijk = hi(ξp)hj(ηq)hk(γr) =

{

1 i = p, j = q, k = r

0 otherwise
(2.2)

hm(ξ) denotes the m-th 1-D Lagrange interpolation at the (N+1) GLL points.
As an example, a 125-node spectral element in the local coordinate system is
shown in Fig. 1.

Fig. 1. A 125-node spectral finite element in the local coordinate system

Therefore, the integrals for the element matrices, Me, Ke and F e, are
calculated numerically in the local coordinate
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where ρ is the mass density, C is the material stiffness matrix, and P is the
distributed load. Ψe are the shape functions based on the Legendre polyno-
mials. The matrix Be is the strain-displacement matrix. Je is the Jacobian
matrix associated with the mapping function f from the physical domain Ωe
to the reference domain Λ. ωi is the weights of the GLL quadrature (Koma-
titsch et al., 2000; Pozrikidis, 2005). ni, i = 1, 2, 3 are the numbers of GLL
points in each direction in the local coordinate.

If we let U e denote the elementary vector of an unknown displacement
in the medium for wave propagation, the ordinary dynamic equation can be
written as (Pozrikidis, 2005)

M
eÜ
e
+KeU e = F e (2.4)

where Me denotes the elementary mass matrix, Ke is the elementary stiffness
matrix, and F e is the vector of time-dependent excitation force.

In a structural health monitoring system, the PZT transducer can be used
as an actuator as well as a sensor. The converse piezoelectric effect of piezo-
electric materials, which converts an externally applied electric field into indu-
ced strain, and the direct piezoelectric effect, which generates an electric field
under deformation, can be adopted for actuator and sensor correspondingly.
According to constitutive equations for piezoelectric materials, the elementary
governing equations of motion (2.4) can be rewritten as follows (Kudela and
Ostachowicz, 2009; Wang, 2004)

M
eÜ
e
+KeU e −Keuφφ

e = F e

(2.5)
K
e
φuU

e +Keφφ
e = Qe

The piezoelectric coupling matrices Keuφ and K
e
φu and dielectric permitti-

vity matrix Keφ can be calculated as
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where e is the piezoelectric constant matrix; g the dielectric constant matrix,
Qe the nodal externally applied charge vector.

According to the displacement and traction boundary on the surface of
both the host structure and piezoelectric transducer as well as electric po-
tential and charge boundary on the surface of the piezoelectric transducer,
the elementary governing equations of motion can be solved using a central
difference time integration scheme (Peng et al., 2009).

3. Wave propagation analysis in a thick beam

The wave propagation characteristics in steel beams of 34mm (thickness)
×25mm (width) ×300mm (length), shown in Fig. 2, are investigated. The
steel density ρ is 7900 kg/m3, Young’s modulus E is 200GPa, and Poisson ra-
tio ν is 0.3. The beam is modeled using 4 (thickness) ×5 (width) ×30 (length)
elements with 5 × 5 × 5 nodes, as depicted in Fig. 1. In this model, damping
is not considered and the boundaries are free.

Fig. 2. Geometric configuration of the steel beam [mm]

3.1. Elastic wave propagation in an intact thick beam

First, an intact beam is excited by a single shear force applied at the point
A on the upper surface at the left-hand end of the beam, as shown in Fig. 2. A
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Hanning-windowed 3.5-cycle sinusoidal toneburst with the central frequency of
35 kHz is used as the excitation signal. The waveform of the excitation signal in
the time domain is shown in Fig. 3. The displacement components of response
in the beam in the x direction at the times of 0.050ms, 0.079ms, 0.106ms and
0.141ms are shown in Fig. 4. It can be seen that the elastic waves propagating
in the beam experience repeated reflections at the upper and lower surfaces
alternately, and then they are reflected by the right-hand end of the beam.
Wave propagation in the mid-plane in the width direction is illustrated in
Fig. 5. When the beam is excited, the main longitudinal wave and main shear
wave with reflections between the upper and lower surfaces can be observed.
Superposition of their reflections and the possible converted longitudinal waves
and shear waves constitute the formulation of quasi-symmetrical (quasi-S)
wave mode associated with the longitudinal mode and quasi-anti-symmetrical
(quasi-A) wave mode associated with the flexible mode in the thick beam.

Fig. 3. Waveform of the excitation signal in the time domain

Two points, named B and B′, which are symmetric with respect to the
mid-plane in the thickness direction, as shown in Fig. 2, are selected to inve-
stigate wave propagation in the beam. The displacement components in the
x direction at the points B and B′ are shown in Fig. 6. The incident wave and
the reflected wave from the right-hand end of the beam can be observed in
the responses of B and B′. As in the thin beam, both symmetrical and anti-
symmetrical modes can be excited simultaneously by the single shear force of
the input signal. However, the amplitudes of the displacement at both points
are neither exactly identical nor opposite, which is the reason why these wave
modes are called quasi-S mode and quasi-A mode in the present study. Under
the excitation with a central frequency of 35 kHz, the group velocities of the
quasi-S mode and quasi-A mode are about 5210m/s and 3068m/s, respective-
ly, calculated using the arrival time (captured at point B) of the wave packets
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Fig. 4. Displacement component in the x direction of the intact beam at
(a) 0.050ms; (b) 0.079ms; (c) 0.106ms; (d) 0.141ms

Fig. 5. Reflections of elastic waves in the thick beam

Fig. 6. Displacement components in the x direction of the intact beam at points B
and B′ under the excitation of a single shear force
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reflected from the right-hand end of the beam. As expected, the quasi-S modes
travel more quickly than the quasi-A modes. In addition, the quasi-A mode is
dominant in wave propagation, with its normalized magnitude (0.543) being
clearly greater than that of quasi-S mode (0.148).

3.2. Effects of the excitation frequency and thickness

In the beam with a large thickness, the characteristics of wave propagation
become more complex when the excitation frequency is increased. For exam-
ple, an excitation with a central frequency of 56 kHz is used. Under such an
excitation, the local wave mode can be observed as shown in Fig. 7. The re-
ason for the occurrence of the local wave mode is that the elastic waves reflect
directly from the upper and lower surfaces. In this case, the reflected waves of
the local wave mode overlap with the reflected wave from the right-hand end
of the beam. The response at point B in Fig. 8 clearly shows the signals of the
local wave mode immediately after the incident wave.

Fig. 7. Displacement component in the x direction of the intact beam at 0.078ms
under the excitation with a central frequency of 56 kHz

Fig. 8. Displacement component in the x direction at the point B under the
excitation with a central frequency of 56 kHz
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For the purpose of damage detection using an elastic wave, simple wave
modes with a long range of propagation are desired. To obtain the simple
modes of wave propagation in a thick beam, the excitation frequency should
be carefully selected to avoid the local wave mode.
To evaluate the local wave mode in detail, three beams with thicknesses of

28mm, 34mm and 40mm are activated using a shear force with frequencies
from 25 kHz to 70 kHz with a step of 5 kHz. Three curves of the normalized
magnitude of the local wave mode at the point B as a function of the excitation
frequency are plotted in Fig. 9a. It is evident that the normalized magnitude
of the local wave mode is small at low frequencies. With an increase in the
excitation frequency, the magnitude increases significantly from a particular
frequency for the beams of different thickness, indicating that the existence
of the local wave mode is dependent on the excitation frequency f and the
thickness of the beam h. When the normalized magnitudes of the local wave
mode are plotted as a function of Lw/h, as shown in Fig. 9b, it is interesting
to see that the three curves merge into one, where Lw is calculated as

Lw =
cL
f

(3.1)

where cL is the wave speed of shear wave in the steel material and f is the exci-
tation frequency. One essential observation here is that if the wavelength Lw,
of the shear wave is about more than two times the thickness of the beam h,
the normalized magnitude of the local wave mode becomes very small, indica-
ting that the local wave mode are almost invisible, and in particular, a simple
wave mode (i.e. Lamb waves) like those in thin beams can be obtained.

Fig. 9. Normalized magnitude of the local wave mode as functions of (a) excitation
frequency f and (b) Lw/h

According to the above conclusion, to prevent the occurrence of local wa-
ve mode, for beams with a thickness of 28mm, 34mm and 40mm, when
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Lw/h  2, the corresponding excitation frequencies should be less than about
57 kHz, 47 kHz and 40 kHz, respectively. It is worth mentioning that when the
excitation frequency is greater than 64 kHz for beams with a width of 25mm,
the wavelength of the shear wave Lw < 50mm, which is less than two times
the width, and a local wave mode symmetric about the mid-plane in the width
direction is also formulated because the elastic waves are also reflected by the
two side surfaces of the beam, similar to the case in the thickness direction.

3.3. Wave propagation under the excitation of PZT actuator

In a structural health monitoring system, the PZT transducer is commonly
used to generate and capture Lamb wave signals. In this study, two PZT
transducers are modeled using the spectral element method. The dimensions
of the PZT transducer (PIC151) are 20mm (length) ×5mm (width) ×1mm
(thickness). One PZT transducer acts as an actuator and another one act as
a senor, as show in Fig. 10. An excitation signal of Hanning-windowed 3.5-
cycle sinusoidal toneburst with the magnitude of 30V is applied to the upper
surface of the PZT actuator. Displacement responses of the structure and
PZT transducer in the x direction at 0.058ms are shown in Fig. 11. A large
displacement can be observed in two ends of the PZT actuator.

Fig. 10. Schematic diagram of the coupled PZT-structure excitation model

Fig. 11. Displacement response of the structure and PZT transducer in the
x direction at 0.058ms
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Figure 12 shows the output voltage signal of sensor in the intact beam
under the excitation of PZT actuator. Similar to the case under excitation of
single shear force, there are three wave packets in the captured signal. The first
one is the incident wave; the second one is the quasi-S mode and the third one
is the quasi-A mode. The magnitude of the quasi-A mode is obviously larger
than the quasi-S mode.

Fig. 12. Captured signal of the sensor in the intact beam under excitation of the
PZT actuator with the central frequency of 35 kHz

As described before, when the excitation frequency is increased, a local
wave mode will appear under the excitation of a point shear force. Under the
excitation of the PZT actuator, when the central frequency of excitation is
increased to 56 kHz, the local wave mode can also be observed, as shown in
Fig. 13. The signal is very complex because of the local wave mode.

Fig. 13. Captured signal of the sensor in the intact beam under excitation of the
PZT actuator with the central frequency of 56 kHz
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4. Elastic wave propagation in beams with a lateral crack

Wave propagation in beams with a lateral crack located in the middle of the
beam, shown in Fig. 14, are investigated next. The degree of the damage is
defined by d/h, where d is the depth of the crack and h is the thickness
of the beam. Here, h = 34mm. Two cases with degrees of damage of 25%
and 50% are considered. The crack in the beam is modeled by the nodes
separation method, schematically shown in Fig. 15. Initially, the structure is
meshed without the crack. The nodes exactly on the crack plane are duplicated
and attached to the adjacent elements.

Fig. 14. Crack in the beam with degree of damage: (a) 25%; (b) 50% [mm]

Fig. 15. Modeling of the crack: (a) mesh without crack; (b) mesh with crack

Under the excitation with a central frequency of 35 kHz, the captured si-
gnals of the sensor are presented in Figs. 16 and 17. The reflected signal from
damage can be observed between the incident wave packet and the reflected
wave packet from the right-hand end of the beam. It is mainly the reflection
of the quasi-A mode for that the quasi-A mode dominates the wave propaga-
tion under the excitation with the central frequency of 35 kHz, as discussed
previously. The normalized magnitude (0.25) of the wave reflected from the
crack in the case of a 50% degree of damage is greater than that (0.20) for the
25% degree of damage. It is worth mentioning that the reflected wave of the
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quasi-S mode with a small magnitude from the right-hand end of the beam
and the reflected wave of the quasi-A mode from the crack overlap each other.

Fig. 16. Captured signal of the sensor in the beam with 25% damage degree under
the excitation with a central frequency of 35 kHz

Fig. 17. Captured signal of the sensor in the beam with 50% damage degree under
the excitation with a central frequency of 35 kHz

5. Experimental validation

Three steel beams with dimensions shown in Fig. 2 are used to validate the
wave propagation characteristics in thick beams. One specimen is kept intact
as a benchmark, and the other two are cut in the mid-span with a notch to
simulate the crack. The depths of the notches are 8mm and 17mm, to simulate
cracks of 25% and 50% degrees of damage, respectively. Two pieces of the PZT
(PI ROPIC151, PQYY-0586) element are surface-mounted on the upper surface
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at the left-hand end of each specimen. One serves as the actuator to generate
elastic waves while the other serves as the sensor to acquire the reflected wa-
ve signals in the steel beams. The generation and acquisition of elastic wave
signals are fulfilled using an active signal generation and data acquisition sys-
tem developed on the VXI platform, consisting mainly of a signal generation
unit (Agilent©E1441), signal amplifier (PiezoSys ROEPA-104), signal condi-
tioner (Agilent©E3242A) and signal digitizer (Agilent©E1437A). 3.5-cycle
sinusoidal tonebursts enclosed in a Hanning window with a magnitude of 30V
as used in simulation are generated and applied to the PZT actuator.
Under the excitation with a central frequency of 35 kHz, the captured signal

in the experiments for intact beam is shown in Fig. 12. The simulation results
are in good agreement with the experimental results, in which both quasi-
S mode and quasi-A mode can be observed. When the central frequency is
increased to 56 kHz, the captured signal is more complex, as shown in Fig. 13,
and it has a similar profile as the simulation signal, indicating the existence of
the local wave mode. When there is a notch in the beam, the elastic wave is
reflected from both the damage and the right-hand end of the beam, shown in
Figs. 16 and 17. When the degree of damage is 50%, the normalized magnitude
of the reflection from the damage (0.31) is greater than that of the beam
with degree of damage of 25% (0.15), as predicted by the simulation results,
indicating that the magnitude of the reflected wave from crack can convey
information about the degree of damage in such a 3-D structure. Therefore, the
effectiveness of the proposed SEM model is validated by the good agreement
in general trends between the simulation and experiment results.

6. Conclusions

Characteristics of wave propagation in thick beams are analyzed. It is shown
that the characteristics of wave propagation in thick beams are complex, with
the interaction between local wave modes, quasi-symmetric and quasi-anti-
symmetric wave modes, when the thickness of the beam is comparable to the
wavelength of the elastic wave. In particular, when the shear wavelength is two
times the beam thickness, the local wave modes are suppressed and the wave
modes in the beam can be regarded as traditional guided wave modes, i.e.
Lamb waves. Therefore, the excitation frequency should be carefully selected
when carrying out damage detection strategies for such thick beams. A lateral
crack in thick beams is modeled using a node separation method, and the
interaction of elastic wave with the lateral crack is analyzed. The simulation
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results of wave propagation in thick beams are validated by experiments, where
the wave propagation in a thick steel beam is activated and captured using
PZT elements.
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Charakterystyki propagacji fal sprężystych w belkach grubych – w jakich

przypadkach fala prowadzona jest falą dominującą?

Streszczenie

Praca przedstawia problem detekcji uszkodzeń w belkach o znacznej grubości
za pomocą trójwymiarowej metody elementów spektralnych (SEM) ze szczególnym
uwzględnieniem charakterystyk propagacji fal w ośrodku. Analiza rozchodzenia się
fal w belkach o różnej grubości poddanych wymuszeniom o różnej częstotliwości cen-
tralnej ujawniła, że gdy grubość belki jest porównywalna z długością fali sprężystej,
to oprócz quasi-symetrycznych i quasi-antysymetrycznych postaci pojawia się lokalna
postać własna fali. Gdy długość fali przekracza co najmniej dwukrotnie grubość belki,
postacie lokalne zanikają i postacie fal mogą zostać uznane jako tradycyjne fale prowa-
dzone, tj. fale Lamba. Pokazano, że centralna częstotliwość sygnałów falowych może
zostać dobrana do konkretnych rozmiarów belki tak, aby otrzymać proste postacie
własne fal przypominające kształt fal rozchodzących się w belkach cienkich. W pracy
zbadano charakterystyki propagacji fal w belce nieuszkodzonej i belce z pęknięciem
poprzecznym. Rezultaty tych badań zweryfikowano doświadczalnie poprzez genero-
wanie i rejestrację sygnałów w grubych stalowych belkach aktuatorami i czujnikami
piezoelektrycznymi.
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