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The initial-boundary value problem of one-dimensional dynamical plastic deformation within
the scope of large strain of a metallic cylindrical rod has been analytically solved in a closed
form in this paper. The deformation of a flat-ended rod has been caused by its normal impact
on a rigid target. The rod material in the deformed part is defined by an incompressible,
rigid-plastic, power strain hardening model. Such a model of the material provided better
correlation with experimental data than a perfectly-plastic model. Results presented in this
paper have applicable values. Derived in the paper closed analytical relations, written by
elementary functions, give researchers and engineers insight into interaction of the physical
parameters of the rod during of the impact process and post-impact.
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1. Introduction

Taylor published his theory in 1948 (Taylor, 1948). Originally, one-dimensional analysis of Taylor
was used by Whiffin (1948) to estimate the dynamic yield stress of specimens. There has been
much interest in the impact testing and estimating the dynamic yield stress since then. A selective
review of the literature with respect to the Taylor impact test is in the papers by Jones et al.
(1987, 1997), Field et al. (2004) and Zuckas et al. (1982), and is not necessary to be discussed
in this paper.

The Taylor impact test is a useful experiment for estimating material behavior at high strain
rates (Meyers, 1994). The test is reproducible and is reasonably economical after the initial
investment has been made.

Jones et al. (1987) asserted that simple engineering theories still have a considerable value.
Such theories frequently give investigators insight into the interaction of physical parameters and
their relationship with the outcome of the event. Most often, these interactions are difficult to
ascertain from complex computer outputs. As a result, simple engineering theories often provide
the basis for design of experiments and are frequently used to refine the areas in which computing
is to be done.

Bearing in mind the above-mentioned opinions, the Taylor problem, for a rigid-plastic ma-
terial with power strain hardening, loaded by an impact has been analytically solved in a closed
form in this paper.

2. Formulation of the problem

Consider a uniform flat-ended metal rod of initial parameters, length L, cross-section area S0
and density ρ, that normally impacts against a rigid flat target. The initial velocity of the rod
is denoted by U . Assuming that U is large enough, a portion of the rod placed at the target
face will deform plastically. As in other problems of plasticity, it may be permissible to neglect
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elastic strains in comparison with plastic strains, particularly within the scope of the large plastic
strains that occur in the considered here problem.
Bearing in mind this fact, it is assumed that the rod material is rigid-plastic with power strain

hardening and incompressible into the region of plastic strains. Furthermore, it is assumed that
the material behavior is rate-independent, i.e. σ = σ(ε).
The process of rod deformation during the impact is schematically shown in Fig. 1. Let x

denote a Lagrangian coordinate aligned with the axis of the rod and having its origin at the
striking end of the rod. The rigid back part of the rod is approaching to the target with absolute
time-dependent velocity u(t). The plastic wave front is propagated away from the impact surface
with absolute time-dependent velocity v(t) leaving the material behind it at rest since elastic
recovery is neglected. S and σ are, respectively, the cross sectional area and nominal stress just
behind the plastic wave front, and S0 and σsd just ahead of it; σsd is the dynamic yield-point
stress. The remaining symbols, shown in Fig. 1, denote: xp = xp(t) momentary length of the
plastically deformed part of the rod, xs = xs(t) momentary length of undeformed portion of
the rod, xt = xt(t) momentary displacement of the rear end of the rod, Xt = Xt(t) momentary
total length of the rod, D0 initial diameter of the rod, DL maximum diameter of the deformed
section of the rod, L initial length of the rod, x Lagrangian coordinate. Additionally, the index k
denotes the final values of the quoted above parameters of the post-test, e.g. xpk is the final
length of the deformed part of the rod, and so on.

Fig. 1. Forms of deformation of the rod: (a) during the striking, (b) post-striking

Neglecting compressibility in the plastic deformed material, the equation of continuity takes
the form

(u+ v)S0 = vS (2.1)

This leads to the following expression for the longitudinal compressive strain behind the
plastic wave front

ε =
S − S0
S
=
u

u+ v
(2.2)

Defining xs as the time-dependent undeformed length of the rod at any instant, we have

dxs
dt
= −(u+ v) (2.3)

Momentum considerations across the wave front yield the equation

ρ(u+ v)u = σ − σsd (2.4)

The equation of motion of the rigid part of the rod is

ρxs
du

dt
= −σsd (2.5)
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The stress-strain curve of the rod material is approximated by the rigid-plastic with a power
strain hardening model in the following form

σ − σsd = Ewε
m (2.6)

where the coefficient Ew and exponent m are obtained experimentally for a given material.
Such a formulated problem, completed by initial and boundary conditions (see Sec. 3) has

been solved in an analytical form in the next section of this paper.

3. Analytical solution of the problem

Eliminating the differential dt from Eqs. (2.3) and (2.5), and using relationship (2.2), we obtain

d(ρu2) = 2σsdε
dxs
xs

(3.1)

From formulae (2.2), (2.4) and (2.6) it follows that

ρu2 = Ewε
m+1 (3.2)

Then, from Eqs. (3.1) and (3.2), we have

dxs
xs
=
m+ 1

2

Ew
σsd
εm−1dε (3.3)

At the moment t = 0, the rod is striking against the rigid target with velocity U . Then
xs(0) = L, and u(0) = U . Taking into account this fact, from expression (3.2), we obtain

ε(xs = L) = εL =
(ρU2

Ew

)

1

m+1

=
(U

c

)

2

m+1

c =

√

Ew
ρ

(3.4)

Integration of Eq. (3.3) at initial conditions (3.4), gives

ε =

[

2m

m+ 1

σsd
Ew
ln
xs
L
+
(U

c

)

2m

m+1

]

1

m

= [y(xs)]
1

m (3.5)

where

y(xs) =
2m

m+ 1

σsd
Ew
ln
xs
L
+
(U

c

)

2m

m+1

(3.6)

In turn, straightforward algebraic transformations of relationships (2.2), (3.2) and (3.5), yield

u(xs) = cε
m+1

2 = c[y(xs)]
m+1

2m u(xs) + v(xs) = c[y(xs)]
m−1

2m

v(xs) =
1− ε

ε
u = c(1− ε)ε

m−1

2 = c
{

[y(xs)]
m−1

2m − [y(xs)]
m+1

2m

} (3.7)

In agreement with Eqs. (2.3), (3.5) and (3.7)2, differentiation of the function ε[xs(t)] with
respect to t gives formulae for the strain rate, namely

dε

dt
=
2

m+ 1

σsd
Ew
[y(xs)]

1−m

m

1

xs

dxs
dt
= −

2

m+ 1

σsd
Ew
[y(xs)]

1−m

m

u+ v

xs

= −
2

m+ 1

σsd
Ew

c

xs
[y(xs)]

1−m

2m

(3.8)
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From Eqs. (3.7)2 and (2.3) after transformation and separation of the variables xs and t,
we obtain

[y(xs)]
1−m

2m d
(xs
L

)

= −d
(ct

L

)

(3.9)

The inverse function to the function y(xs), in agreement with notation (3.6), has form

xs
L
= exp

[

−
m+ 1

2m

Ew
σsd

(U

c

)

2m

m+1

]

exp
(m+ 1

2m

Ew
σsd
y
)

(3.10)

Differentiation of Eq. (3.10) gives

d
(xs
L

)

=
m+ 1

2m

Ew
σsd
exp

[

−
m+ 1

2m

Ew
σsd

(U

c

)

2m

m+1

]

exp
(m+ 1

2m

Ew
σsd
y
)

dy (3.11)

Integrating Eq. (3.9) and using relation (3.11) as well as noting that for t = 0 is xs = L and
y(L) = yL, we obtain

−
ct

L
=
m+ 1

2m

Ew
σsd
exp

[

−
m+ 1

2m

Ew
σsd

(U

c

)

2m

m+1

]

y(xs)
∫

yL

ξ
1−m

2m exp
(m+ 1

2m

Ew
σsd
ξ
)

dξ (3.12)

where

yL =
(U

c

)

2m

m+1

y(xs) =
2m

m+ 1

σsd
Ew
ln
xs
L
+ yL y(xs) ¬ ξ ¬ yL (3.13)

So that the current length of the rigid part of the rod xs(t) has been obtained in form of
an implicit function of t for any value of the coefficient m. In some cases, one can define the
time-dependent function xs(t) explicitly (see example).
In turn, the function xp(t), in agreement with Fig. 1a, is defined by the formula

xp(t)

L
= 1−

[xs(t)

L
+
xt(t)

L

]

where
xt
L
=

ct/L
∫

0

u[xs(τ)]

c
d
(cτ

L

)

(3.14)

This quantity xt/L, after making use of relations (3.7), (3.9) and (3.11) has been transformed
to

xt(xs)

L
=
m+ 1

2m

Ew
σsd
exp
(

−
m+ 1

2m

Ew
σsd
yL
)

yL
∫

y(xs)

ξ
1

m exp
(m+ 1

2m

Ew
σsd
ξ
)

dξ (3.15)

In agreement with expressions (2.2), (3.7)3 and (3.7)2 the current diameter of the plasticly
deformed part of the rod Dp has been determinated by the formula

Dp(xs) = D0

√

u+ v

v
=

1
√

1− [y(xs)]
1

m

D0 (3.16)

Thus have been defined all the dynamic parameters of the rigid-plastic rod with power strain
hardening by means of the implicit function of xs. The quantity xs is a time-dependent function
defined by Eqs. (3.12) and (3.13). In the example (next Section) these parameters are presented
in form of an elementary time-dependent function during the striking and their final post-impact
values.



Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target 851

4. Example

Uniform annealed (500◦C, 1 h) cooper (Cu-ETP) rods of the initial dimensions: length
L = 48mm and diameter D0 = 12mm were used in the examinations. The mechanical pa-
rameters of cooper are: density ρ = 8900 kg/m3, engineering static yield stress R0.2 = 84MPa,
Young’s modulus E = 130GPa. Stress-strain curves in compression of cooper for the true sys-
tem σ = σ(ϕ) and for the nominal system σ = σ(ε) are depicted in Fig. 2, where ϕ is the true
(logarithmic) strain, and ε is the nominal (engineering) strain, where ε = 1− exp(−ϕ).

Fig. 2. Stress-strain curves in compression of annealed cooper for the true system σ = σ(ϕ) and the
nominal system σ = σ(ε)

The rods were driven by a firing gun to the initial speeds within the range from 60m/s
to 220m/s. The rods impacted perpendicularly against the flat rigid target. The pictures of
deformed rods after impact are shown in Fig. 3.

Fig. 3. Pictures of deformed rods

Figure 2 shows that the curve of the nominal stress-strain for ε < 0.4 can be well enough
approximated by means of a straight line (m = 1), namely σ− σsd = 1100ε [MPa] (dashed line
in Fig. 2). The approximation error does not exceed several percent.

In agreement with the general solution of the problem presented in Section 3, for m = 1, we
obtain

x = ct
xs
L
= 1−

ct

L

xt
L
=
(U

c
−
σsd
Ew

)ct

L
−
σsd
Ew

(

1−
ct

L

)

ln
(

1−
ct

L

)

xp
L
=
(

1−
U

c
+
σsd
Ew

)ct

L
+
σsd
Ew

(

1−
ct

L

)

ln
(

1−
ct

L

) Xt
L
=
xp
L
+
xs
L

(4.1)
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and

ε =
u

c
=
U

c
+
σsd
Ew
ln
(

1−
ct

L

)

εL = εmax =
U

c
dε

dt
= −
σsd
Ew

c

xs
= −
σsd
Ew

c

L− ct
σ = σsd + Ewε

σL = σmax = σsd + Ew
U

c
u = U + c

σsd
Ew
ln
(

1−
ct

L

)

v = c− U − c
σsd
Ew
ln
(

1−
ct

L

)

u+ v = c = const

Dp = D0
[

1−
U

c
−
σsd
Ew
ln
(

1−
ct

L

)]

−

1

2 DL = Dpmax = D0
(

1−
U

c

)

−
1

2

(4.2)

The end of the striking process occurs at the instant when ε(tk) = u(tk) = 0. From this
condition and Eq. (4.2)1, it follows that

tk =
L

c

[

1− exp
(

−
Ew
σsd

U

c

)]

(4.3)

Then the final values of the parameters of the rod, in agreement with the above quoted formulae,
one may define by the following expressions

xsk
L
= exp

(

−
Ew
σsd

U

c

) xtk
L
=
U

c
−
σsd
Ew

(

1−
xsk
L

)

xpk
L
=
(

1−
xsk
L

)(

1 +
σsd
Ew

)

−
U

c

Xtk
L
= 1−

xtk
L

(4.4)

From Eq. (4.2)1 and condition ε(tk) = 0 as well as formula (4.3), after transformations, we
obtain

σsd =
Ew(U/c)

ln(L/xsk)
(4.5)

The simple Taylor formula for σsd has form (Taylor, 1948)

σsd =
L− xsk
2(L−Xtk)

ρU2

ln(L/xsk)
(4.6)

So that all dynamical parameters of the annealed cooper (Cu-ETP) rod loaded according to
the Taylor test have been defined explicitly by elementary time-dependent functions during the
striking, and by closed form formulae in post-impact. Bearing in mind this fact, we will make
an analysis only for some of them.
The experimental data obtained from measurements of the deformed post-impact cooper

rods and the results of theoretical calculations for several values of the impact velocity are listed
in Table 1. One ought to notice that time of the impact action is very short, about 0.13ms in
the whole range of variation of the impact velocity (60m/s – 220m/s). It corresponds with the
literature data (Whiffin, 1948; Jones et al., 1987, 1997).
From analysis of the variations of quantities listed in Table 1 with respect to the values

impact velocity, it follows that the parameters σsd, Xtk, xpk and εL vary approximately linearly
with respect to an increase in the impact velocity within the range 60m/s – 220m/s, and one
may them well enough extrapolate by means of the following expressions:
— for formula (4.5)

σsd = 65 + 0.712(U − 68) (4.7)
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Table 1. Comparison of the experimental data obtained from Taylor tests with theoretical
results calculated for annealed cooper (Cu-ETP)

U [m/s] 68 125 146 180 214

σsd [MPa]
Paper (4.5) 65 111 122 142 169
Taylor (4.6) 61 89 96 112 133

tk · 10
3 [s] 0.13200 0.13315 0.13400 0.13457 0.13458

xsk = xsk/L
theoretical 0.03733 0.02904 0.02325 0.01869 0.01860
experimental 0.03752 0.02910 0.02292 0.01877 0.01873

|∆xsk| [%] difference 0.5 0.2 1.5 0.9 0.2

Xtk =
Xtk/L

theoretical 0.863 0.741 0.691 0.613 0.539
experimental 0.901 0.790 0.744 0.682 0.622

|∆X tk| [%] difference 4.3 6.2 7.2 10.1 13.3

xpk = xpk/L
theoretical 0.825 0.712 0.668 0.594 0.521
experimental 0.864 0.757 0.721 0.663 0.603

|∆xpk| [%] difference 4.5 5.9 7.4 10.4 13.7

DL/D0
theoretical 1.12 1.25 1.31 1.44 1.60
experimental 1.11 1.31 1.43 1.65 1.97

|∆(DL/D0)| [%] difference 1.06 4.97 8.58 13.03 18.48

εL
theoretical 0.19 0.36 0.42 0.51 0.61
experimental 0.18 0.42 0.51 0.63 0.74

|∆εL| [%] difference 5.6 14.3 17.6 19.0 17.8

— for Taylor formula (4.6)

σsd = 61 + 0.493(U − 68) (4.8)

— theoretical expressions

X tk =
Xtk
L
= 0.002219(214 − U) + 0.539 xpk =

xpk
L
= 0.002082(214 − U) + 0.521

εL =
U
c c =

√

Ew
ρ
= 351m/s

(4.9)

— experimental expressions

X tk =
Xtk
L
= 0.001911(214 − U) + 0.622 xpk =

xpk
L
= 0.001788(214 − U) + 0.603

εL = 0.003836(U − 68) + 0.18

(4.10)

where, in the quoted above relationships values of the impact velocity U ought to substitute
in m/s.
The absolute value of the differences between the experimental and theoretical results of

the studied parameters increase from several to over a dozen percent together with the increase
in the impact velocity from 60m/s to 220m/s. The cause of this fact is the influence of the
radial spreading (inertia) of the tested specimen on its longitudinal compressive strain. The
spreading increases together the increasing impact velocity, especially as related to the annealed
cooper (Cu-ETP), which is very sensitive to plastic deformation (Jones et al., (1997). In case
of alloy steels (e.g. nickel-chrome steel), the differences are considerably smaller (Włodarczyk et
al., 2012). The quoted above facts show that the presented here one-dimensional theory, with
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respect to the Taylor impact problem, is permissible for materials with strain hardening and
moderate values of impact velocities.

Variations of the relative speeds v/c and u/c versus the Lagrangian coordinate x/L = ct/L
for selected values of the impact velocity U are presented in Fig. 4.

Fig. 4. Variations of relative speeds v/c (solid line) and u/c (dashed line) versus Lagrangian
coordinate ct/L for selected values of the impact velocity U

As can seen, the propagation speed of the plastic wave front v intensively increases in the
surroundings of the fore-front of the undeformed portion of the rod, and at x = L−xsk reaches
the maximum value v = υmax = c =

√

Ew/ρ. On the contrary, the velocity of the undeformed
part of the rod u intensively decreases here, and is equal to 0 at x = L−xsk. The sum of these
velocities u(ct/L)+ v(ct/L) ≡ c is constant. This fact was noticed by Lee and Tupper (1951) in
their computational scheme. In Taylor (1948) and Whiffin (1948) investigations, it was assumed
that v(t) ≡ const and du/dt ≡ const . It is an erroneous assumption which gives unreal results.

The graph of variation of the longitudinal compressive strain behind the plastic wave front ε
with respect to the Lagrangian coordinate x/L = ct/L is the same as the graph of u/c (ε = u/c
– see (4.2)1).

Figure 5 shows that the absolute value of the strain rate intensively increases at the immediate
surroundings of the plastic wave front from the target side at the final stage of the impact process.
It reaches maximum values at the instant t = tk which is determined by the impact velocity,

e.g. [ε̇(tk)] =
[

ε̇]max = 11502 s
−1 for U = 68m/s, on the other hand [ε̇]max = 59845 s

−1 for

U = 214m/s. One ought to notice that in excess of 90%, the specimen length is deformed
quasi-statically.

The absolute value of the maximum strain rate |ε̇|max [s
−1], and the absolute value of the

average strain rate |ε̇|mid [s
−1] are determined by formulae

|ε̇|max =
σsd
Ew

1

1− ηk

c

L
ηk =

ctk
L

|ε̇|mid =
1

ηk

σsd
Ew

ηk
∫

0

dη

1− η
=
σsd
Ew

| ln(1− ηk)|

ηk

(4.11)

From analysis of formula (4.11)3, it follows that the quantity |ε̇|mid monotonically increases
from |ε̇|mid = 0.202 s

−1 for U = 68m/s to |ε̇|mid = 0.647 s
−1 for U = 214m/s. Accordingly, the

assumption that σ = σ(ε) at the formulation of the problem is permissible.
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Fig. 5. Variation of the absolute values of the strain rate |ε̇| versus Lagrangian coordinate x/L = ct/L
for selected values of the impact velocity U

Figure 6 shows, among other things, graphs of the parameter (σ− σsd)/Ew in the deformed
part of the rod. As seen, the stress is constant in the whole deformed part of the rod at the
given instant t, and is equal to the stress in the fore-front of the plastic wave from the target
side at the same time t. The stress decreases together with propagation of the wave front down
to value σsd and suddenly decreases to 0 at the final impact process – the rod separates from
the target.

Fig. 6. Graphs of the parameter (σ − σsd)/Ew in the deformed portion of the rod at the instants:
t = 0.2L/c, 0.6L/c and 0.9L/c for the impact velocity U = 214m/s

5. Final conclusions

The main conclusions from the above theoretical and experimental investigations may be briefly
summarized as follows:

• The analytical solution of the dynamics of the one-dimensional rigid-plastic cylindrical
rod striking against a rigid target has been found in this paper. It is an extended original
Taylor perfectly-plastic model for materials with power strain hardening.
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• The extended theory takes into account the step change of the nominal stress across the
plastic wave front in the equation of momentum balance, because this front is a source of
strong discontinuity in physical parameters. In the Taylor model, it was assumed that the
stress is continuous across this front.

• The dynamical parameters of the annealed cooper (Cu-ETP) rod were examined by means
of the Taylor test.

• The static stress-strain curves of this cooper rod for the true system, σ = σ(ϕ), and for
the nominal system, σ = σ(ε), were well enough approximated by the following functions
σ − σsd = 409ϕ

0.36MPa, and σ − σsd = 1100εMPa (see Fig. 2).

• The absolute velocity of propagation of the plastic wave front v and the absolute speed of
displacement of the rear of the rod u are individually intensively time-dependent functions
(see Fig. 4). On the other hand, their sum,u(t) + v(t) = c is constant. In Taylor (1948)
and Whiffin (1948) investigations, it was assumed that v(t) ≡ const and du/dt ≡ const .
These are far-reaching simplifications contradictory to reality.

• The absolute value of the strain rate |ε̇| intensively increases only in the immediate surro-
unding of the plastic wave front at the final stage of the impact process, and reaches the
maximum value at the instant t = tk. On the contrary, in excess of 90%, the specimen
length is deformed quasi-statically. The average absolute value of the strain rate |ε̇|mid
increases from |ε̇|mid = 0.202 s

−1 for U = 68m/s to |ε̇|mid = 0.647 s
−1 for U = 214m/s.

Accordingly, the influence of the strain rate on the stress-strain curve for annealed cooper
(Cu-ETP) is negligible.

• The stress is constant in the whole deformed section of the rod at the given moment t,
and is equal to stress in the fore-front of the plastic wave from the target side at the same
time t (see Fig. 7).

• All final parameters of the deformed rods post-impact, together with the dynamic yield
stress for the examined cooper, are approximately linear functions of the impact velocity U ,
see formulae (4.7)-(4.10).

• The absolute values of differences between the experimental and the theoretical results of
the studied parameters increase from several to a dozen percent with the increasing impact
velocity (see Table 1). These differences are caused by the radial spreading during impact,
especially with respect to annealed cooper, which is very sensitive to plastic deformation.

• The above quoted facts show that the presented here one-dimensional theory, with respect
to the Taylor impact problem, is permissible for materials with strain hardening and
moderate impact velocities.

• According to the authors, the results presented in this paper have applicable and cognitive
effects. The derived in a closed form formulae, which are written by elementary functions,
give investigators and engineers insight into the interaction of the physical parameters of
the rod during the impact process and post-impact.

References

1. Field J.E., Walley S.M., Proud W.G., Goldrein H.T., Siviour C.R., 2004, Review of
experimental techniques of high rate deformation and shock studies, International Journal of Impact
Engineering, 30, 725-775

2. Jones S.E., Gillis P.P., Foster J.C. Jr., 1987, On the equation of motion of the undeformed
section of a Taylor impact specimen, Journal of Applied Physics, 61, 2



Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target 857

3. Jones S.E., Maudlin P.J., Foster J.C. Jr., 1997, An engineering analysis of plastic wave
propagation in the Taylor test, International Journal of Impact Engineering, 19, 2

4. Lee E., Tupper S., 1951, Analysis of inelastic deformation in a steel cylinder striking a rigid
target, Journal of Applied Mechanics, 21, 1

5. Meyers M.A., 1994, Dynamic Behavior of Materials, John Wiley and Sons, Inc. New York-
Chichester-Brisbane-Toronto-Singapore

6. Taylor G., 1948, The use of flat-ended projectiles for determining dynamic yield stress. I. The-
oretical considerations, Proceedings of the Royal Society, Series A, London

7. Whiffin A.C., 1948, The use of flat-ended projectiles for determining dynamic yield stress. 2. Tests
on various metallic materials, Proceedings of the Royal Society, Series A, London

8. Włodarczyk E., Jackowski A., Sarzyński M., 2012, Dynamic behavior of a metallic cylinder
striking a rigid target, Biuletyn Wojskowej Akademii Technicznej, 61, 4

9. Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D.R., 1982, Impact Dyna-
mics, Willey-Interscience, New York

Manuscript received Decembr 7, 2012; accepted for print January 28, 2013


