
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

49, 3, pp. 727-756, Warsaw 2011

SCALAR AND VECTOR TIME SERIES METHODS FOR
VIBRATION BASED DAMAGE DIAGNOSIS IN A SCALE

AIRCRAFT SKELETON STRUCTURE

Fotis P. Kopsaftopoulos

Spilios D. Fassois

University of Patras, Department of Mechanical and Aeronautical Engineering, Patras, Greece

e-mail: fkopsaf@mech.upatras.gr; fassois@mech.upatras.gr

A comparative assessment of several scalar and vector statistical time
series methods for vibration based Structural Health Monitoring (SHM)
is presented via their application to a laboratory scale aircraft skeleton
structure in which different damage scenarios correspond to the loose-
ning of different bolts. A concise overview of scalar and vector methods,
that is methods using scalar or vector signals, statistics, and correspon-
ding models, is presented. The methods are further classified as non-
parametric or parametric and response-only or excitation-response. The
effectiveness of the methods for both damage detection and identifica-
tion is assessed via various test cases corresponding to different damage
scenarios. The results of the study reveal various facets of the methods
and confirm the global damage diagnosis capability and the effectiveness
of both scalar and vector statistical time series methods for SHM.
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1. Introduction

Statistical time series methods for damage detection and identification (locali-
zation), collectively referred to as damage diagnosis, utilize random excitation
and/or vibration response signals (time series) along with statistical model
building and decision making tools for inferring the health state of a struc-
ture (Structural Health Monitoring – SHM). They offer a number of advan-
tages, including no requirement for physics based or finite element models,
no requirement for complete modal models, effective treatment of uncerta-
inties, and statistical decision making with specified performance characteri-
stics (Fassois and Sakellariou, 2007, 2009). These methods form an important,
rapidly evolving category within the broader family of vibration based me-
thods (Doebling et al., 1998; Sakellariou and Fassois, 2008; Kopsaftopoulos and
Fassois, 2010).

Statistical time series methods for SHM are based on scalar or vector
random (stochastic) vibration signals under healthy and potentially dama-
ged structural states, identification of suitable (parametric or non–parametric)
time series models describing the dynamics under each structural state, and
extraction of a statistical characteristic quantity Qo characterizing the structu-
ral state in each case (baseline phase). Damage diagnosis is then accomplished
via statistical decision making consisting of comparing, in a statistical sense,
the current characteristic quantity Qu with that of each potential state as de-
termined in the baseline phase (inspection phase). For an extended overview
of the basic principles and the main statistical time series methods for SHM,
the interested reader is referred to Fassois and Sakellariou (2007, 2009). An
experimental assessment of several methods is provided in Kopsaftopoulos and
Fassois (2010).

Non-parametric time series methods are those based on corresponding sca-
lar or vector non-parametric time series representations such as spectral es-
timates (Power Spectral Density, Frequency Response Function) (Fassois and
Sakellariou, 2007, 2009), and have received limited attention in the literatu-
re (Sakellariou et al., 2001; Liberatore and Carman, 2004; Hwang and Kim,
2004; Rizos et al., 2008; Kopsaftopoulos and Fassois, 2010). On the other
hand, parametric time series methods are those based on corresponding scalar
or vector parametric time series representations such as the AutoRegressi-
ve Moving Average (ARMA) models (Fassois and Sakellariou, 2007, 2009).
This latter category has attracted significant attention recently, and their
principles have been used in a number of studies (Sohn and Farrar, 2001;
Sohn et al., 2001, 2003; Basseville et al., 2004; Sakellariou and Fassois, 2006;
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Nair et al., 2006; Mattson and Pandit, 2006; Zheng and Mita, 2007; Car-
den and Brownjohn, 2008; Gao and Lu, 2009; Kopsaftopoulos and Fassois,
2010).

The goal of the present study is the comparative assessment of several
scalar (univariate) and vector (multivariate) statistical time series methods
for SHM via their application to an aircraft scale skeleton structure in which
different damage scenarios correspond to the loosening of different bolts. The
methods are further classified as non-parametric or parametric and response-
only or excitation-response. Preliminary results by various methods may be
found in our recent papers (Kopsaftopoulos et al., 2010; Kopsaftopoulos and
Fassois, 2011). It should be noted that the structure has been used in the past
for the development of novel scalar (univariate) methods for precise damage lo-
calization and magnitude (size) estimation using different (simulated) damages
consisting of small masses attached to the structure (Sakellariou and Fassois,
2008; Kopsaftopoulos and Fassois, 2007). Due to their ability to address the
precise localization and magnitude estimation problems, these methods are
generally more complex. As the focus of the present study is more on damage
detection and identification (the latter in the sense of estimating the damage
scenario from a given pool of potential scenarios), only simpler methods are
utilized.

More specifically, four scalar methods, namely the Power Spectral Density
(PSD), Frequency Response Function (FRF), model residual variance, and
Sequential Probability Ratio Test (SPRT) based method are employed, along
with two vector methods, namely the model parameter based and residual
likelihood function based method. A number of test cases (experiments) are
considered, each one corresponding to a specific damage scenario (loosening
of one or more bolts connecting various structural elements).

The main issues addressed in the study are:

(a) Assessment of the methods in terms of their damage detection capability
under various damage scenarios and different vibration measurement
locations (classified as either “local” or “remote” to damage location).

(b) Comparison of the performance characteristics of scalar and vector sta-
tistical time series methods with respect to effective damage diagnosis:
false alarm, missed damage and damage misclassification rates are inve-
stigated.

(c) Assessment of the ability of the methods to accurately identify (classify)
the damage type through “local” or “remote” sensors.
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2. The structure and the experimental set-up

2.1. The structure

The scale aircraft skeleton structure used in the experiments was designed
by ONERA (France) in conjunction with the Structures and Materials Action
Group SM-AG19 of the Group for Aeronautical Research and Technology in
Europe (GARTEUR) (Degener and Hermes, 1996; Balmes and Wright, 1997)
and manufactured at the University of Patras (Fig. 1). It represents a typical
aircraft skeleton design and consists of six solid beams with rectangular cross
sections representing the fuselage (1500 × 150 × 50mm), the wing (2000×
×100 × 10mm), the horizontal (300 × 100 × 10mm) and vertical stabilizers
(400× 100× 10mm) and the right and left wing-tips (400× 100× 10mm). All
parts are made of standard aluminum and are jointed together via steel plates
and bolts. The total mass of the structure is approximately 50 kg.

2.2. The damage scenarios and the experiments

Damage detection and identification is based on vibration testing of the
structure, which is suspended through a set of bungee cords and hooks from a
long rigid beam sustained by two heavy-type stands (Fig. 1). The suspension
is designed in a way as to exhibit a pendulum rigid body mode below the
frequency range of interest, as the boundary conditions are free-free.

Fig. 1. The scale aircraft skeleton structure and the experimental set-up: The force
excitation (Point X), vibration measurement locations (Points Y1-Y4), and bolts

connecting various elements of the structure

The excitation is broadband random stationary Gaussian force applied
vertically at the right wing-tip (Point X, Fig. 1) through an electromechanical
shaker (MB Dynamics Modal 50A, max load 225N). The actual force exerted
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on the structure is measured via an impedance head (PCB M288D01, sensiti-
vity 98.41mV/lb), while the resulting vertical acceleration responses at Points
Y1, Y2, Y3 and Y4 (Fig. 1) are measured via lightweight accelerometers (PCB
352A10 miniature ICP accelerometers, 0.7 g, frequency range 0.003-10 kHz,
sensitivity ∼ 1.052mV/m/s2). The force and acceleration signals are driven
through a conditioning charge amplifier (PCB 481A02) into the data acquisi-
tion system based on two SigLab 20-42 measurement modules (each module
featuring four 20-bit simultaneously sampled A/D channels, two 16-bit D/A
channels, and analog anti-aliasing filters).

The damage scenarios considered correspond to the loosening of various
bolts at different joints of the structure (Fig. 1). Six distinct scenarios (types)
are considered and summarized in Table 1. The assessment of the presen-
ted statistical time series methods with respect to the damage detection and
identification subproblems is based on 60 experiments for the healthy and
40 experiments for each considered damage state of the structure (damage ty-
pes A, B,. . . , F – see Table 1) – each experiment corresponding to a single test
case. Moreover, four vibration measurement locations (Fig. 1, Points Y1-Y4)
are employed in order to determine the ability of the considered methods in
treating damage diagnosis using single or multiple vibration response signals.
The frequency range of interest is selected as 4-200Hz with the lower limit
set in order to avoid instrument dynamics and rigid body modes. Each signal
is digitized at fs = 512Hz and is subsequently sample mean corrected and
normalized by its sample standard deviation (Table 1).

Table 1. The damage scenarios and experimental details

Structural
state

No of inspection
Description experiments

(test cases)

Healthy – 60
Damage A loosening of bolts A1, A4, Z1, Z2 40
Damage B loosening of bolts D1, D2, D3 40
Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40
Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40

Sampling frequency: fs = 512Hz, Signal bandwidth: 4-200Hz
Signal length in samples (s):
Non-parametric methods: N = 46080 (90 s)
Parametric methods: N = 15000 (29 s)
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A single healthy data set is used for establishing the baseline (reference)
set, while 60 healthy and 240 damage sets (six damage types with 40 expe-
riments each) are used as inspection data sets. For damage identification, a
single data set for each damage structural state (damage types A, B, . . . , F)
is used for establishing the baseline (reference) set, while the same 240 sets
are considered as inspection data sets (each corresponding to the test case
in which the actual structural state is considered unknown). The time series
models are estimated and the corresponding estimates of the characteristic
quantity Q are extracted (Q̂A, Q̂B , . . . , Q̂F in the baseline phase; Q̂u in the
inspection phase). Damage identification is presently based on successive bi-
nary hypothesis tests – as opposed to multiple hypothesis tests – and should
be thus considered as preliminary (Fassois and Sakellariou, 2009).

3. Structural dynamics of the healthy structure

3.1. Non-parametric identification

Non-parametric identification of the structural dynamics is based on N =
= 46080 (≈ 90 s) sample-long excitation-response signals obtained from four
vibration measurement locations on the structure (see Fig. 1). An L = 2048
sample-long Hamming data window with zero overlap is used (number of seg-
ments K = 22) for PSD (MATLAB function pwelch.m) and FRF (MATLAB
function tfestimate.m) Welch based estimation (see Table 2).

Table 2. Non-parametric estimation details

Data length N = 46080 samples (≈ 90 s)
Method Welch

Segment length L = 2048 samples

Non-overlapping segments K = 22 segments

Window type Hamming

Frequency resolution ∆f = 0.355Hz

The obtained FRF magnitude estimates for the healthy and damage states
of the structure for the Point X - Point Y2 transfer function are depicted in
Fig. 2. As it may be observed, the FRF magnitude curves are quite similar in
the 4-60Hz range; notice that this range includes the first five modes of the
structure. Significant differences between the healthy and damage type A, C
and F magnitude curves are observed in the range of 60-150 Hz, where the
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next four modes are included. Finally, in the range of 150-200 Hz another two
modes are present and discrepancies are more evident for damage types A, B,
C and F. Notice that the FRF magnitude curves for damage types D and E
are very similar to those of the healthy structure.

Fig. 2. Non-parametric Welch-based Frequency Response Function (FRF)
magnitude estimates for the healthy and damaged structural states

(Point X - Point Y2 transfer function)

3.2. Parametric identification

Parametric identification of the structural dynamics is based on N =
= 15000 (≈ 29 s) sample-long excitation and vibration response signals used
in the estimation of Vector AutoRegressive with eXogenous excitation (VARX)
models (MATLAB function arx.m). The modeling strategy consists of the suc-
cessive fitting of VARX(na, nb) models (with na, nb designating the AR and
X orders, respectively; na = nb = n is currently used) until a candidate model
is selected. Model parameter estimation is achieved by minimizing a quadra-
tic Prediction Error (PE) criterion (trace of the residual covariance matrix)
leading to a Least Squares (LS) estimator (Fassois, 2001; Ljung, 1999, p. 206).
Model order selection, which is crucial for successful identification, may be
based on a combination of tools including the Bayesian Information Criterion
(BIC) (Fig. 3), which is a statistical criterion that penalizes model comple-
xity (order) as a counteraction to a decreasing model fit criterion (Fassois,
2001; Ljung, 1999, pp. 505-507) and the use of “stabilization diagrams” which
depict the estimated modal parameters (usually frequencies) as a function
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of the increasing model order (Fassois, 2001). BIC minimization is achieved
for the model order n = 80 (Fig. 3), thus a 4-variate VARX(80,80) model is
selected as adequate for the residual variance, model parameter, and likeliho-
od function based methods. The identified VARX(80,80) representation has
d = 1604 parameters, yielding a Sample Per Parameter (SPP) ratio equal to
37.4 (N × (no of outputs)/d).

Fig. 3. Bayesian Information Criterion (BIC) for VARX(n, n) type parametric
models in the healthy case

It should be noted that the complete 4-variate VARX(80,80) model is em-
ployed in conjunction with vector methods in Section 5. Yet, scalar parts of
this model corresponding to excitation – single response are used in conjunc-
tion with scalar methods in Section 4. This is presently done for purposes of
simplicity and it is facilitated by the fact that only a single (scalar) excitation
is present.

4. Scalar time series methods and their application

Scalar statistical time series methods for SHM employ scalar (univariate) mo-
dels and corresponding statistics. In this Section, two non-parametric scalar
methods, namely a Power Spectral Density (PSD) based method and a Fre-
quency Response Function (FRF) based method, and two parametric scalar
methods, namely a residual variance based method and Sequential Probability
Ratio Test (SPRT) based method, are briefly presented and then applied to the
scale aircraft skeleton structure. Their main characteristics are summarized in
Table 3.

4.1. The Power Spectral Density (PSD) based method

Damage detection and identification is in this case tackled via characteristic
changes in the Power Spectral Density (PSD) S(ω) of the measured vibration
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Table 3. Characteristics of the employed statistical time series methods for SHM

Method Principle Test Statistic Type

PSD based Su(ω)
?
= So(ω) F = Ŝo(ω)/Ŝu(ω) ∼ F (2K, 2K) scalar

FRF based δ|H(jω)| = |Ho(jω)| − |Hu(jω)| ?= 0 Z = |δ|Ĥ(jω)||/
√
2σ̂2H(ω) ∼ N(0, 1) scalar

Residual variance σ2ou
?
¬ σ2oo F = σ̂2ou/σ̂

2
oo ∼ F (N,N − d) scalar

SPRT based σou
?
¬ σo or σou

?
 σ1 L(n) = n log σo

σ1
+
σ2
1
−σ2
o

2σ2
o
σ2
1

∑n
t=1 e

2[t] scalar

Model parameter δθ = θo − θu ?= 0 χ2θ = δθ̂
⊤

(2P̂ θ)
−1δθ̂ ∼ χ2(d) vector

Residual likelihood θo
?
= θu

∑N
t=1(e

⊤
ou[t,θo] ·Σo · eou[t,θo]) ¬ l vector

Explanation of Symbols:

S(ω): Power Spectral Density (PSD) function; |H(jω)|: Frequency Response Function (FRF) magnitude
σ2
H
(ω) = var [|Ĥo(jω)|]; θ: model parameter vector; d: parameter vector dimensionality; P θ: covariance of θ

σ2
oo
: variance of residual signal obtained by driving the healthy structure signals through the healthy model

σ2ou: variance of residual signal obtained by driving the current structure signals through the healthy model

eou[t,θo]: vector residual sequence obtained by driving the current structure signals through the healthy model

σo, σ1: user defined values for the residual standard deviation under healthy and damage states, respectively

e: k-variate residual sequence; Σ: residual covariance matrix; l: user defined threshold

The subscripts “o” and “u” designate the healthy and current (unknown) structural states, respectively
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response signals (non-parametric method) as the excitation is assumed unava-
ilable (response-only method). Thus, the characteristic quantity is Q = S(ω)
(ω designates frequency – see Table 3). Damage detection is based on confir-
mation of statistically significant deviations (from the nominal/healthy) in the
current structure’s PSD function at some frequency (Fassois and Sakellariou,
2007, 2009). Damage identification may be achieved by performing hypothesis
testing similar to the above separately for damages of each potential type. It
should be noted that response signal scaling is important in order to properly
account for potentially different excitation levels.

Application Results. Typical non-parametric damage detection results
using the vibration measurement location of Point Y1 are presented in Fig. 4.
Evidently, correct detection at the α = 10−4 risk level is obtained in each case
as the test statistic is shown not to exceed the critical point (dashed horizontal

Fig. 4. PSD based method: Representative damage detection results (sensor Y1) at
the α = 10−4 risk level. The actual structural state is shown inside each plot

lines) in the healthy test case, while it exceeds it in each damage test case.
Observe that damage types A, B and C (see Fig. 1 and Table 1) are more
easily detectable (note the logarithmic scale on the vertical axis of Fig. 4),
while damage types D and E are harder to detect. This is in agreement with
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the remarks made in Subsection 3.1. Furthermore, notice that the frequency
bandwidth of [150-170] Hz is more sensitive to damage. This is also in agre-
ement with the remarks made in Subsection 3.1 and seems to be due to the
fact that the two natural frequencies in this bandwidth are more sensitive to
the considered damage scenarios (see Fig. 2).

Representative damage identification results at the α = 10−4 risk level
and using (as an example) the vibration measurement location at Point Y3
are presented in Fig. 5, with the actual damage being of type A. The test
statistic does not exceed the critical point when the Damage A hypothesis is
considered, while it exceeds it in all remaining cases. This correctly identifies
damage type A as the current underlying damage.

Fig. 5. PSD based method: Representative damage identification results (sensor Y3)
at the α = 10−4 risk level with the actual damage being of type A. Each considered

damage hypothesis is shown inside each plot

Summary damage detection and identification results for each vibration
measurement location (Fig. 1) are presented in Table 4. The PSD based me-
thod achieves accurate damage detection as no false alarms are exhibited,
while the number of missed damage cases is zero for all considered damaged
structural states. The method is also capable of identifying the actual damage
type, as zero damage misclassification errors are reported for damage types A,
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C, D and F, while it exhibits some misclassification errors for damage type E.
The misclassification problem is more intense for damage type B when either
the Y3 or the Y4 vibration measurement location is used (Table 4).

Table 4. Scalar methods: damage detection and identification summary re-
sults

Damage Detection
Method False Missed damage

alarms A B C D E F

PSD based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
FRF based 1/0/0/35 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/1/0/0 0/0/0/0
Res. varian.† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
False alarms for response points Y1/Y2/Y3/Y4 out of 60 test cases per point.
Missed damages for response points Y1/Y2/Y3/Y4 out of 40 test cases
per point; †adjusted α.

Damage Identification
Method Damage misclassification

A B C D E F

PSD based 0/0/0/0 0/0/21/21 0/0/0/0 0/0/0/0 0/0/1/2 0/0/0/0
FRF based 0/0/0/0 10/4/7/8 6/10/2/0 5/22/9/8 2/9/5/2 0/3/1/0
Res. variance† 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
SPRT based 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0
Damage misclassification for response points Y1/Y2/Y3/Y4 out
of 40 test cases per point; †adjusted α.

4.2. The Frequency Response Function (FRF) based method

This method is similar to the previous, but requires the availability of both
the excitation and response signals (excitation-response method) and uses the
FRF magnitude |H(jω)| (with j =

√
−1) as its characteristic quantity (non-

parametric method), thus Q = |H(jω)| (see Table 3). The main idea is the
comparison of the FRF magnitude Hu(jω) of the current state of the struc-
ture to that of the healthy structure |Ho(jω)|. Damage detection is based on
confirmation of statistically significant deviations (from the nominal/healthy)
in the current FRF of the structure at one or more frequencies through a hy-
pothesis testing problem (for each ω) (Fassois and Sakellariou, 2007, 2009).
Damage identification may be achieved by performing a hypothesis testing
similar to the above separately for damages of each potential type.
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Application Results. Figure 6 presents typical non-parametric damage
detection results via the FRF based method using the vibration measurement
location of Point Y4. Evidently, correct detection at the α = 10−6 risk level is
achieved in each case, as the test statistic is shown not to exceed the critical
points (dashed horizontal lines) in the healthy case, while it exceeds them in
all damage cases. Again, damage types A, B and C are more easily detectable
(hence more severe), while damage types D and E are harder to detect.

Fig. 6. FRF based method: Representative damage detection results (sensor Y4) at
the α = 10−6 risk level. The actual structural state is shown inside each plot

Representative damage identification results at the α = 10−6 risk level
using (as an example) the vibration measurement location of Point Y2 are
presented in Fig. 7, with the actual damage being of type E. The test statistic
does not exceed the critical point when the Damage E hypothesis is considered,
while it exceeds it in all other cases. This correctly identifies damage type E
as the current underlying damage.
Summary damage detection and identification results for each vibration

measurement location (Fig. 1) are presented in Table 4. The FRF based me-
thod achieves effective damage detection as no false alarms or missed damages
are reported (Table 4). On the other hand, the method exhibits decreased
accuracy in damage identification as significant numbers of damage misclassi-
fication errors are reported for damage types B and D (Table 4).
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Fig. 7. FRF based method: Representative damage identification results (sensor Y2)
at the α = 10−6 risk level with the actual damage being of type E. Each considered

damage hypothesis is shown inside each plot

4.3. The residual variance based method

In this method (excitation-response case) the characteristic quantity is the
residual variance. The main idea is based on the fact that the model (para-
metric method) matching the current state of the structure should generate a
residual sequence characterized by minimal variance (Fassois and Sakellariou,
2007, 2009). Damage detection is based on the fact that the residual series
obtained by driving the current signal(s) through the model corresponding to
the nominal (healthy) structure has a variance that is minimal if and only
if the current structure is healthy (Fassois and Sakellariou, 2007, 2009). This
method uses classical tests on the residuals and offers simplicity as there is no
need for model estimation in the inspection phase. The main characteristics
of the method are shown in Table 3.

Application Results. The residual variance based method employs an
excitation – single response submodel obtained from the complete 4-variate
VARX(80,80) models identified in the baseline phase, as well as the correspon-
ding residual series obtained by driving the current (structure in an unknown
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state) excitation and single response signals through the same submodel (in-
spection phase). Damage detection and identification is achieved via statistical
comparison of the two residual variances.
Representative damage detection and identification results obtained via the

residual variance based method (when the vibration measurement location of
Point Y2 is used) are presented in Figs. 8 and 9, respectively. Evidently, correct
detection (Fig. 8) is obtained in each considered case as the test statistic is
shown not to exceed the critical point in the healthy case, while it exceeds
it in each damage test case. Moreover, Fig. 9 demonstrates the ability of the
method to correctly identify the actual damage type – in this case the vibration
measurement location of Point Y3 is used.

Fig. 8. Residual variance based method: Representative damage detection results
(sensor Y2; healthy – 60 experiments; damaged – 200 experiments). A damage is
detected if the test statistic exceeds the critical point (dashed horizontal line)

Summary damage detection and identification results for each vibration
measurement location (Fig. 1) are presented in Table 4. The method achie-
ves effective damage detection and identification as no false alarms, missed
damage, or damage misclassification errors are observed.

4.4. The Sequential Probability Ratio Test (SPRT) based method

This method employs the Sequential Probability Ratio Test (SPRT) (Wald,
2004; Ghosh and Sen, 1991) in order to detect a change in the standard devia-
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Fig. 9. Residual variance based method: Representative damage identification
results (sensor Y3; 240 experiments) with the actual damage being of type D.
A damage is identified as type D if the test statistic is below the critical point

(dashed horizontal line)

tion σ of the model scalar residual sequence (e[t] ∼ N (0, σ2), t = 1, . . . , N)
(parametric method). An SPRT of strength (α, β), with α, β designating the
type I (false alarm) and II (missed damage) error probabilities, respectively,
is used for the following hypothesis testing problem:

Ho : σou ¬ σo (null hypothesis – healthy structure)

H1 : σou  σ1 (alternative hypothesis – damaged structure)
(4.1)

with σou designating the standard deviation of a scalar residual signal obtained
by driving the current excitation and response signals through the healthy
structural model, and σo, σ1 user defined values. The basis of the SPRT is the
logarithm of the likelihood ratio function based on n samples

L(n) = log f(e[1], . . . , e[n]|H1)
f(e[1], . . . , e[n]|Ho)

=
n∑

t=1

log
f(e[t]|H1)
f(e[t]|Ho)

(4.2)

= n log
σo
σ1
+
σ21 − σ2o
2σ2oσ

2
1

n∑

t=1

e2[t]

with L(n) designating the decision parameter of the method and f(e[t]|Hi)
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the probability density function (normal distribution) of the residual sequence
under hypothesis Hi (i = 0, 1).

The following test is then constructed at the (α, β) risk levels:

L(n) ¬ B =⇒ Ho is accepted (healthy structure)

L(n)  A =⇒ H1 is accepted (damaged structure)

B < L(n) < A =⇒ no decision is made (continue the test)

(4.3)

with B = log[β/(1 − α)] and A = log[(1 − β)/α]. Following a decision, L(n)
is reset to zero.

Damage identification may be achieved by performing SPRTs similar to
the above separately for damages of each potential type.

Application Results. The SPRT based method employs an excitation –
single response submodel obtained from the complete 4-variate VARX(80,80)
models identified in the baseline phase as well as a corresponding residual
series obtained by driving the current (structure in an unknown state) excita-
tion and single response signals through the same submodel (inspection phase).
Damage detection and identification is achieved via statistical comparison of
the two residual standard deviations using the SPRT. The nominal residual
standard deviation σo is selected as the mean standard deviation of the re-
siduals obtained from the 60 healthy data sets driven through the submodel
(corresponding to the selected response) of the baseline healthy VARX(80,80)
model. The residual standard deviation ratio σ1/σo is chosen equal to 1.1,
designating a 10% increase in the nominal standard deviation (see Eqs. (4.1)
and (4.2)).

Representative damage detection results at the α = β = 0.01 risk levels
obtained via the SPRT based method for the vibration response (sensor) of
Point Y1 are shown in Fig. 10. A damage is detected when the test statistic
exceeds the upper critical point (dashed horizontal lines), while the structure
is determined to be in its healthy state when the test statistic lies below the
lower critical point. After a decision is made, the test statistic is reset to zero
and the test continues, thus during the testing multiple decisions are made.
Evidently, correct detection (Fig. 10) is obtained in each test case as the test
statistic is shown to exceed multiple times (multiple correct decisions) the
lower critical point in the healthy case, while it exceeds the upper critical
point in the damage test cases. Observe that damage types A and C (Table 1)
appear easier to detect, while damage types D and E appear harder to detect.
This is in agreement with the remarks made in Subsection 3.1 and Fig. 2.
Moreover, representative damage identification results at the α = β = 0.01
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Fig. 10. SPRT based method: Representative damage detection results (sensor Y1)
at the α = β = 0.01 risk levels (σ1/σo = 1.1). The actual structural state is shown

inside each plot

Fig. 11. SPRT based method: Representative damage identification results
(sensor Y4) at the α = β = 0.01 risk levels (σ1/σo = 1.1) with the actual damage
being of type B. Each considered damage hypothesis is shown inside each plot
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risk levels (σ1/σo = 1.1) for the vibration measurement location of Point Y4
are depicted in Fig. 11, with the actual damage being of type B.
Summary damage detection and identification results for each vibration

measurement location are presented in Table 4. The method exhibits excellent
performance in damage detection and identification as no false alarms, missed
damages, or damage misclassification errors are observed.

5. Vector time series methods and their application

Vector statistical time series methods for SHM employ vector (multivariate)
models and corresponding statistics (Lütkepohl, 2005). Despite their phenome-
nal resemblance to their univariate counterparts, multivariate models generally
have a much richer structure, while they typically require multivariate stati-
stical decision making procedures (Fassois and Sakellariou, 2009; Lütkepohl,
2005). In this Section, two parametric methods, namely a model parameter
based method and a residual likelihood function based method, are briefly
presented and then applied to the scale aircraft skeleton structure. The main
characteristics of the methods are summarized in Table 3.

5.1. The model parameter based method

This method treats damage detection and identification based on the charac-
teristic quantity Q = θ which is a function of the parameter vector θ of a
parametric time series model (Fassois and Sakellariou, 2007, 2009). In this
context, the model has to be re-estimated in the inspection phase based on
signals from the current (unknown) state of the structure.
Let θ̂ designate a proper estimator of the parameter vector θ (Fassois,

2001; Ljung, 1999, pp. 212-213). For sufficiently long signals, the estimator is
(under mild assumptions) Gaussian distributed with mean equal to its true va-
lue θ and a certain covariance P θ (Ljung, 1999, p. 303), hence θ̂ ∼ N (θ,P θ).
Damage detection is based on testing for statistically significant changes in

the parameter vector θ between the nominal and current state of the structure
through the hypothesis testing problem (Fassois and Sakellariou, 2007, 2009)

Ho : δθ = θo − θu = 0 (null hypothesis – healthy structure)
H1 : δθ = θo − θu 6= 0 (alternative hypothesis – damaged structure)

(5.1)
The difference between the two parameter vector estimators also follows Gaus-
sian distribution (Fassois and Sakellariou, 2007), that is δθ̂ = θ̂o − θ̂u ∼
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∼ N (δθ, δP ) with δθ = θo − θu and δP = P o + P u, where P o,P u desi-
gnate the corresponding covariance matrices. Under the null (Ho) hypothesis,

δθ̂ = θ̂o − θ̂u ∼ N (0, 2P o) and the quantity χ2θ = δθ̂
⊤ · δP−1 · δθ̂ (with

δP = 2P o) follows χ
2 distribution with d (parameter vector dimensionality)

degrees of freedom (Fassois and Sakellariou, 2007, 2009; Ljung, 1999, p. 558).

As the covariance matrix P o corresponding to the healthy structure is
unavailable, its estimated version P̂ o is used. Then, the following test is con-
structed at the α (type I) risk level:

χ2
θ
¬ χ21−α(d) =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure)
(5.2)

with χ21−α(d) designating 1− α critical point of the χ2 distribution.
Damage identification may be based on multiple hypotheses testing com-

paring the parameter vector θ̂u belonging to the current state of the structure
to those corresponding to different damage types θ̂A, θ̂B , . . ..

The main characteristics of the method are presented in Table 3.

Application Results. The model parameter based method employs the exci-
tation and all response signals along with the complete 4-variate VARX(80,80)
model identified in the baseline phase. In addition, a corresponding 4-variate
VARX(80,80) model is identified in each test case using the current signals
(inspection phase).

Figure 12 presents representative damage detection results. The healthy
test statistics are shown in circles (60 experiments), while the least severe
damage types D and E are presented with asterisks and diamonds, respectively
(one for each one of the 40 test cases). Evidently, correct detection is obtained
in each test case as the test statistic is shown not to exceed the critical point
in the healthy cases, while it exceeds it in the damage cases.

Representative damage identification results (240 test cases) with the ac-
tual damage being of type F are presented in Fig. 13. Evidently, correct iden-
tification is obtained in each considered test case as the test statistics are
shown not to exceed the critical point in the damage type F case, while the
test cases corresponding to other damage types exceed the critical point. Note
the logarithmic scale on the vertical axis which indicates significant difference
between the damage type F statistics and the rest damage types statistics for
the considered test cases.

Summary damage detection and identification results are presented in Ta-
ble 5. The method achieves accurate damage detection and identification, as
no false alarm, missed damage, or damage misclassification errors are reported.



Scalar and vector time series methods for vibration... 747

Fig. 12. Model parameter based method: Representative damage detection results
for three structural states (healthy – 60 experiments; damaged – 80 experiments).

A damage is detected if the test statistic exceeds the critical point
(dashed horizontal line)

Fig. 13. Model parameter based method: Representative damage identification
results (240 experiments), with the actual damage being of type F. A damage is

identified as type F if the test statistic is below the critical point
(dashed horizontal line)
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Table 5. Vector methods: damage detection and identification summary re-
sults

Damage Detection Damage Identification
Method False Missed damage Damage misclassification

alarms A B C D E F A B C D E F

Mod. par.† 0 0 0 0 0 0 0 0 0 0 0 0 0
Res. lik.† 0 0 0 0 0 0 0 0 0 0 0 0 0
False alarms out of 60 test cases.Missed damages out of 40 test cases.
Damage misclassification out of 40 test cases; †adjusted α.

5.2. The likelihood function based method

In this method damage detection is based on the likelihood function under
the null (Ho) hypothesis of a healthy structure (Fassois and Sakellariou, 2007,
2009; Gertler, 1998, pp. 119-120). The hypothesis corresponding to the largest
likelihood is selected as true for the current structural state. This method
offers simplicity as there is no need for model estimation in the inspection
phase.

The hypothesis testing problem considered is:

Ho : θo = θu (null hypothesis – healthy structure)

H1 : θo 6= θu (alternative hypothesis – damaged structure),
(5.3)

with θo,θu designating the parameter vectors corresponding to the healthy
and current structure, respectively. Assuming serial independence of the resi-
dual sequence, the Gaussian likelihood function Ly(Y,θ/X) for the data Y
given X can be calculated (Fassois and Sakellariou, 2007, 2009; Box et al.,
1994, p. 226).

Under the null (Ho) hypothesis, the residual series eou[t] generated by
driving the current signals through the nominal (healthy) model is iid Gaussian
with zero mean and covariance matrix Σo. Decision making may be then
based on the likelihood function under Ho evaluated for the current data, by
requiring it to be larger or equal to a threshold l∗ (which is to be selected) so
that the null (Ho) hypothesis can be accepted:

Ly(Y,θo/X)  l∗ =⇒ Ho is accepted (healthy structure)

Else =⇒ H1 is accepted (damaged structure)
(5.4)

Under the null (Ho) hypothesis the above decision making rule may be re-
expressed as follows:
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∑N
t=1(e

⊤
ou[t,θo] ·Σo · eou[t,θo]) ¬ l =⇒ Ho is accepted (healthy struct.)

Else =⇒ H1 is accepted (damaged struct.)
(5.5)

Damage identification may be achieved by computing the likelihood func-
tion for the current signal(s) for the various values of θ (θA,θB, . . .) and
accepting the hypothesis that corresponds to the maximum value of the like-
lihood.
The main characteristics of the method are shown in Table 3.

Application Results. The residual likelihood function based method em-
ploys the complete 4-variate VARX(80,80) model identified in the baseline
phase. Figure 14 shows representative damage detection results. Evidently,
correct detection is obtained in each test case, as the test statistic is shown
not to exceed the critical point in the healthy cases, while it exceeds it in each
damage test case. Representative damage identification results, with the actual
damage being of type A, are depicted in Fig. 15. Evidently, correct identifica-
tion is obtained in each considered test case, as the test statistics are shown
not to exceed the critical point in the damage type A case, while the test cases
corresponding to the other damage types exceed the critical point.

Fig. 14. Residual likelihood function based method: Representative damage
detection results (healthy – 60 experiments; damaged – 200 experiments). A damage
is detected if the test statistic exceeds the critical point (dashed horizontal line)
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Fig. 15. Residual likelihood function based method: Representative damage
identification results (240 experiments) with the actual damage being of type A.
A damage is identified as type A if the test statistic is below the critical point

(dashed horizontal line)

Summary damage detection and identification results are presented in Ta-
ble 5. The method achieves accurate damage detection and identification as
no false alarm, missed damage, or damage misclassification cases are reported.

6. Discussion

Scalar time series methods for SHM are shown to achieve effective damage
detection and identification, although non-parametric scalar methods do seem
to encounter some difficulties. The PSD based method achieves excellent da-
mage detection, although it exhibits some misclassification errors for damage
type E. The misclassification problem is more intense for damage type B when
vibration measurement location Y3 or Y4 is used.

The FRF based method achieves accurate damage detection with no false
alarms or missed damage errors, except for vibration measurement location Y4
for which it exhibits an increased number of false alarms. Moreover, it faces
problems in correctly identifying damage types B and D, as the number of
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damage misclassification errors is higher for these specific damage types. Both
of these damage types involve loosening of bolts on the left wing-tip (Fig. 1).
The FRF based method yields results inferior to those obtained by the PSD
based method even though it employs excitation-response signals (while the
latter employs response-only signals). This is probably due to the larger PSD
estimate uncertainty, which seems to better “accommodate” actual structural
and experimental uncertainties.

The scalar parametric residual variance and SPRT based methods achieve
excellent performance in accurately detecting and identifying damage, employ-
ing any one of the vibration measurement locations (Table 4).

Vector time series methods for SHM achieve very accurate damage detec-
tion and identification, as with a properly adjusted risk level α (type I error)
no false alarm, missed damage, or damage misclassification errors are repor-
ted (Table 5). Moreover, the methods demonstrate better “global” damage
detection capability. Nevertheless, parametric vector models require accura-
te parameter estimation and appropriate model structure (order) selection in
order to accurately represent the structural dynamics and effectively tackle
the damage detection and identification problems. Therefore, methods falling
into this category require adequate user expertise and are somewhat more
elaborate than their scalar or non-parametric counterparts.

Furthermore, the number and location of vibration measurement sensors is
an important issue. Several vibration based damage diagnosis techniques that
appear to work well in certain test cases could actually perform poorly when
subjected to measurement constraints imposed by actual testing (Doebling et
al., 1998). Techniques that are to be seriously considered for implementation
in the field should demonstrate that they can perform well under limitations
of a small number of measurement locations and under the constraint that
these locations should be selected a priori, without knowledge of the actual
damage location. In the present study, the considered statistical time series
methods have been demonstrated to be capable of achieving effective damage
diagnosis based on a very limited (vector case) or even a single-pair (scalar
case) of excitation-response signals. Nevertheless, their performance on large
scale structures should be further investigated.

Another issue of primary importance is the proper selection of the risk le-
vel α (type I error) for reasons associated with the robustness and effectiveness
of the methods. If α is not properly adjusted, damage diagnosis will be inef-
fective, as false alarm, missed damage, or damage misclassification errors may
occur. The user is advised to make an initial investigation on the number of
false alarms for different α levels using several healthy data sets. Afterwards,
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potential missed damage errors may be checked with data corresponding to
various damage structural states.

Moreover, in order for certain parametric methods to work effectively, a
very small value of the type I risk α is often needed. This is due to the fact that
the stochastic time series models (such as ARMA, ARX, state space, and so
on) currently used for modeling the structural dynamics are – in reality – still
incapable of fully capturing the experimental, operational and environmental
uncertainties that the structure is subjected to. For this reason, a very small α
is often selected in order to “compensate” for the lack of effective uncertainty
modeling. More accurate modeling of uncertainties is an important subject of
current research (Hios and Fassois, 2009; Michaelides and Fassois, 2008).

7. Concluding remarks

• Statistical time series methods for SHM achieve effective damage detec-
tion and identification based on (i) random excitation and/or vibration
response (scalar or vector) signals, (ii) statistical model building, and
(iii) statistical decision making under uncertainty.

• Both scalar and vector statistical time series methods for SHM have been
shown to effectively tackle damage detection and identification with the
vector methods achieving excellent performance with zero false alarm,
missed damage and damage misclassification errors.

• Both scalar and vector methods have “global” damage detection capabi-
lity as they are able to detect “local” and “remote” damage (with respect
to the sensor location being used).

• All methods have been shown to correctly identify the actual damage
type except for the FRF based method which exhibited an increased
number of damage misclassification errors for the two damage types that
affect the left wing-tip of the scale aircraft skeleton structure.

• Parametric time series methods are more elaborate and require higher
user expertise compared to their generally simpler non-parametric co-
unterparts. Yet, they offer increased sensitivity and accuracy. Moreover,
the vector methods based on multivariate models are more elaborate,
but offer the potential of further enhanced performance.

• The availability of data records corresponding to various potential da-
mage scenarios is necessary in order to treat damage identification. This
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may be accommodated by employing scale laboratory models or tuned
Finite Element models.
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Skalarne i wektorowe szeregi czasowe w diagnostyce uszkodzeń opartej na
analizie drgań na przykładzie modelu szkieletu samolotu

Streszczenie

W pracy zawarto analizę porównawczą kilku skalarnych i wektorowych statystycz-
nych szeregów czasowych stosowanych w technikach monitorowania stanu konstruk-
cji (SHM) na podstawie ich skuteczności w zastosowaniu do wykrywania uszkodzeń
szkieletowej struktury laboratoryjnego modelu samolotu dla różnych scenariuszy
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uszkodzeń wywołanych poluzowaniem połączeń śrubowych. Zaprezentowano krótki
przegląd skalarnych i wektorowych metod analizy, tj. bazujących na skalarnych i wek-
torowych sygnałach i statystykach, oraz odpowiadające im modele. Metody te skla-
syfikowano jako nieparametryczne i parametryczne oraz oparte wyłącznie na infor-
macji o odpowiedzi dynamicznej układu lub relacji pomiędzy wymuszeniem i odpo-
wiedzią. Efektywność rozważanych metod oceniono na podstawie kilku eksperymen-
talnych przypadków badawczych odpowiadających różnym scenariuszom uszkodzeń
modelu. Wyniki badań ujawniły różne aspekty zastosowanych technik analizy i po-
twierdziły przydatność skalarnych i wektorowych szeregów czasowych w diagnostyce
i monitorowaniu stanu konstrukcji (SHM).
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