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The dynamic response of a viscously damped rectangular trimorph plate
subjected to a sinusoidally distributed load was investigated for simply-
supported boundary conditions. The governing equation for the nonlinear
deflection of the plate, which is first introduced in this paper, was deri-
ved based on the classical plate theory (CPT) and the classical laminate
theory (CLT). The governing equation was solved using the Navier me-
thod and direct numerical integration. Optimised time-domain response
plots for a trimorph plate made up of aluminium (Al), polyvinylidene
fluoride (PVDF) and lead zirconate titanate (PZT) layers revealed that
only three out of the six possible layer configurations are necessary for de-
termining the best layer-stacking. In determining the best layer-stacking
for the optimised dynamic response, three factors were considered name-
ly: the stiffness, natural frequency and damping constant. Both of the
Al/PVDF/PZT or Al/PZT/PVDF configurations were found to produce
the best response qualities i.e. high elastic stiffness, high natural frequen-
cy and low viscous damping. Frequency-domain plots were generated to
compare the nonlinear and linear responses and it was discovered that the
effect of the nonlinearity predictably reduces the natural frequency of the
trimorph plate. This study can be applied to the analysis of optimised
damage mitigation of intelligent car bodies and safety critical structures
which are subject to potentially destructive loading conditions.
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1. Introduction

In recent times, research on the vibration of plates has inclined towards lami-
nated plates. This is because desirable operational qualities of materials such
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as strength, stiffness, low-weight, wear resistance and acoustical insulation etc.
can be achieved by using laminates (Jones, 1999), especially composite lami-
nates.

Lee (1990) developed the theory of laminated piezoelectric plates (TLPP)
for the design of distributed sensor/actuators. He developed the governing
equations and the reciprocal relationships of distributed piezoelectric sensors
and actuators for the laminated piezoelectric plate. Liew et al. (2004) stu-
died the vibration control of a laminated composite plate with piezoelectric
sensor/actuator patches. They developed an algorithm with which they stu-
died the dynamic response of the laminated plate and illustrated the effect
of stacking and positioning of sensor/actuator patches on the response of the
laminated plate. Zenkour (2004) examined the response of cross-ply laminated
plates subject to thermo-mechanical loading. He demonstrated the influence
of material anisotropy and stacking sequence, among others, on the thermally
induced response of the plate. Ganilova and Cartmell (2010) explored the vi-
bration control of a shape memory alloy (SMA) integrated laminated sandwich
plate by means of a controllable activation strategy. Their vibration model con-
tains time-dependent coefficients and hence requires careful selection of input
conditions to obtain practically realistic results.

In the literature, the word trimorph has been used to describe the kind of la-
minate studied. For instance, Craciunescu et al. (2005) used the word trimorph
to denote a substrate sandwiched between two film layers. The substrate used
was silicon while the films were Nickel-Titanium (NiTi) shape memory alloy
(SMA). Chang and Lin (2003) in the vibration analysis of a ring used the word
trimorph to represent a three-layer ring with an elastic material (substrate)
laminated in between two piezoelectric layers. Papila et al. (2008) making re-
ference to the configuration described by Chang and Lin considered it as a
bimorph. Roytburd et al. (1998) and Erturk and Inman (2008) used the same
architecture to mean bimorph just as Papila et al.. Hence, there is no standard
definition as to the use of the word trimorph. In this study, the word trimorph
is used in a general sense to mean a three-layer laminate. Also, layer-stacking
is used to mean the different possible permutations of the layers, which are
obviously six for a three-layer laminate.

This paper investigates the dynamic response of a trimorph plate subjected
to forced vibration. Vibration analysis for nonlinear and linear responses for
the different layer-stackings has been undertaken in order to determine the
layer-stacking that produces the best desirable material characteristics for an
optimised response. In developing the governing equations, classical laminate
theory (CLT) has been applied and the governing equations were solved to
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simulate the trimorph plate response using a combined solution of the Navier
method and direct integration in the time domain using MathematicaTM.

2. Governing equations of the trimorph plate

The system (trimorph plate) whose dynamic behaviour is modelled is a rec-
tangular plate having three layers bonded adhesively together so that there
is negligible relative motion between the layers. The layers are of different
materials and all the material properties are isotropic. The system is simply
supported on all four edges, under-damped and subjected to a sinusoidally
distributed load. Figure 1 provides a sketch of the system. The layers in Fig. 1
have different shading patterns suggesting that they are made of different ma-
terials.

Fig. 1. Diagrammatic description of the system

The trimorph plate is modelled as a thin plate and therefore all the as-
sumptions for modelling thin plates apply. The equations of motion for a thin
rectangular plate subject to membrane force based on the classical plate theory
(CPT) are derived in Whitney (1987) and are shown below
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In equation (2.1), the terms on the left hand side represent the effect of
bending moments on the lateral displacement, while the last three terms on
the right hand side represent the effect of membrane forces on the lateral
displacement. The first three terms on the right hand side are the lateral
acceleration, the classical linear viscous damping force, and the excitation force
acting on the plate respectively. The excitation function is a time-dependent
sinusoidally distributed load and can be expressed as

q(x, y, t) = q(t) sin
πx

a
sin
πy

b
(2.3)

where a and b are the in-plane dimensions of the plate and q(t) is a time-
variant forcing function. For the purpose of this study, q(t) is assumed to be a
sinusoidal function with amplitude q i.e. q(t) = q sin(ωt). In equations (2.2),
the left hand side represents the effect of membrane forces while the right hand
side represents the accelerations in the in-plane directions.

The formulation of the classical laminate theory (CLT) is extensively di-
scussed in some text on composites (Vinson and Sierakowski, 2004; Reddy,
2004; Voyiadjis and Kattan, 2005 etc). Lee (1990) developed the TLPP using
the CLT. Lu and Li (2009) compared results obtained by various plate the-
ories, including CLT, and the CLT results were in good agreement with other
theories. Ganilova and Cartmell (2010) applied a dynamic model based on
CLT in the modelling and vibration control of an active sandwich plate.

For the general case of an unsymmmetric laminate with isotropic layers, the
constitutive laminate equations based on the CLT are given by Jones (1999)
as
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where {N}, {M}, {ε}, and {k} are the membrane force, bending moment,
elastic strain, and surface curvature vectors, respectively. [Aij ], [Bij] and [Dij ]
are the extension, bending-extension coupling, and bending stiffness matrices
respectively, and the elements of the matrices are given by
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where Qijk is the transformed reduced stiffness of the kth layer of the lami-
nate, k is the layer index, and N is the total number of layers. The kth layer
is bounded by surfaces at zk and zk−1 at the top and bottom respectively.
For the case of an unsymmetric laminate considered here, Qijk is related to
the material properties of the kth layer as shown in equations (2.6) below
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(2.6)

By substituting equations (2.4) in equations (2.1) and (2.2) and applying
Kirchhoff’s strain-displacement relationships (Voyiadjis and Kattan, 2005),
the following equations are obtained
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Equations (2.7) are PDEs in more than one independent variables, which can
be reduced to ODEs using the Navier Method (Ganilova and Cartmell, 2010;
Zak et al., 2003). For a time-variant sinusoidally distributed load as expressed
in equation (2.3), the appropriate solution for the displacements based on the
Navier method can be deduced from Ganilova and Cartmell (2010) as follows

u(x, y, t) = u(t) sin
πx

a
sin
πy

b

v(x, y, t) = v(t) sin
πx

a
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πy

b
(2.8)
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a
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b

Substituting equations (2.8) and their derivatives into equations (2.7) and
simplifying the resulting expressions, we obtain
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Using equation (2.10) in equation (2.9)1, neglecting the in-plane displacements,
and simplifying the resulting expression, the equation for lateral displacement
of the trimorph plate is derived as shown in equation (2.11)

ẅ + Cẇ +Dw(t) +B[w(t)]2 = Q sin(ωt) (2.11)

where w(t) is the time-dependent lateral displacement of the trimorph plate,

C =
c

ρh
is the damping constant per unit mass,

D =
π4

ρh

[D11
a4
+
2(D12 + 2D66)

a2b2
+
D11
b4

]

is the bending elastic stiffness

per unit mass,

B =
π4

ρh
B11
( 1

b4
+
1

a4

)

is the bending-extension elastic stiffness

per unit mass,

Q =
q

ρh
is the magnitude of the excitation force per unit mass.

Equation (2.11) is a nonlinear ODE which models the lateral response of a
rectangular laminated plate acted upon by a sinusoidally varying and sinu-
soidally distributed excitation force and subjected to linear viscous damping.
The nonlinearity in the equation of lateral motion of the trimorph plate is in-
troduced by the membrane forces. This equation is different from the common
Duffing’s equation for nonlinear vibration because the nonlinear term has a
power of two, and the equation is introduced for the first time.
If the nonlinear term is neglected, equation (2.11) reduces to

ẅ + Cẇ +Dw(t) = Q sin(ωt) (2.12)

Equation (2.12) models the linear lateral response of the same system. Equ-
ations (2.11) and (2.12) can be solved by direct integration using software pac-
kages. Bespoke MathematicaTM codes have been used to solve these equations
and simulate graphically the time-domain and frequency-domain responses of
the trimorph plate for the different layer-stacking.

3. Determination of the elastic coefficients of the trimorph plate

The response of the plate is largely dependent on the elastic stiffness of the
plate. The trimorph plate stiffness is determined by D and B for the nonlinear
response and just D for the linear response. From equation (2.11), D is de-
pendent on the stiffness coefficients D11, D12, and D66 while B is dependent



648 A. Big-Alabo, M.P. Cartmell

on the stiffness coefficient B11. A more generalised approach for the deter-
mination of the stiffness coefficients of laminates was provided by Noor and
Tenek (1992). Expressions for the determination of thermoelastic coefficients
and the derivatives of coefficients with respect to material properties of the
laminae were developed. They also illustrated the effect of stacking sequence
and fibre orientation on the coefficients and for the first time provided sensiti-
vity derivatives. Here an attempt has been made to simplify algebraically and
to present more concise equations for determining the stiffness coefficients for
the trimorph plate (see appendix).

4. Numerical integration and discussion of the results

Numerical integration routines, as are found in many standard software pac-
kages, can be used to solve PDEs and ODEs directly, and Israr (2008) used
the NDSolve solver in MathematicaTM for the solution of the governing equ-
ation for vibration of a cracked aluminium plate. A similar approach was taken
by Atepor (2008) and Ganilova and Cartmell (2010). Optimised time-domain
responses have been simulated here, using the NDSolve integrator. Optimisa-
tion of the trimorph plate response involves solving the objective functions,
which are equations (2.11) and (2.12), within the optimisation constraints.
Two outputs have been constrained in this study to obtain an optimised re-
sponse. The first constrained output is the time take for the plate response to
go into steady-state as the initial response is transient. This transient behavio-
ur, though it cannot be eliminated in reality, can only be allowed for a short
period since it is not desirable and hence is the reason for constraining it. A
steady-state response time of not more than thirty seconds is used here. The
second constrained output is the amplitude of the steady-state response. It is
desirable in many applications of vibration to keep the maximum amplitude
of vibration within certain acceptable limits. This means that the response
has to be constrained and for the purpose of this study, a response range
of ±10 percent of one-tenth of the plate thickness is deemed to be accepta-
ble. The objective function and optimisation constraints are summarised as
follows:

— objective functions

(1) ẅ + Cẇ +Dw(t) +B[w(t)]2 = Q sin(ωt) nonlinear

(2) ẅ + Cẇ +Dw(t) = Q sin(ωt) linear
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— constraints

Ts ¬ 30 0.09h ¬ [w(t)]opt ¬ 0.11h

where Ts is the time in seconds taken for the plate response to go into steady-
state and [w(t)]opt is the optimum response in metres. The limit of the steady-
state response time is chosen arbitrarily. As for the response limit, the normal
case for small deflections of thin plates (Timoshenko and Woinowsky-Krieger,
1959) is applied, i.e. the lateral displacement is in the order of one-tenth of
the plate thickness. For the purpose of simulating the temporal response of
the trimorph plate, three different materials were used namely: Aluminium
(Al), Polyvinylidene Fluoride (PVDF) and Lead Zirconate Titanate (PZT).
Properties of these materials and other input parameters are given in Tables
1 and 2 respectively.

Table 1. Material properties of the plate layers

Material
Poisson’s ratio Modulus Density
ν [–] E [GPa] ρ [kg/m3]

Aluminium, Al 0.33 70 2700

PVDF 0.44 1.1 1770

PZT 0.3 64 7600

The properties of PVDF were obtained from Zhang et al. (1993) and the
website, http://www.texloc.com/closet/cl pvdf properties.htm while the pro-
perties of PZT were obtained from Malic et al. (1992) and Yimnirun et al.
(2004).

Table 2. Other inputs used for simulating trimorph plate response

Input Value Unit

Length, a 2 m

Width, b 0.5 m

Thickness of Al, δAl 1 mm

Thickness of PVDF, δPVDF 0.7 mm

Thickness of PZT, δPZT 0.3 mm

Exciting force, q 10 N/m2

From Table 2, it can be seen that a rectangular plate of unit area and
total thickness of 2mm has been chosen. Hence the thickness to length
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ratio (h/L) is 1/1000, which means the plate is defined as a thin pla-
te. Since the trimorph plate comprises of three different layers, then the
stacking of the layers can be carried out in six different permutations
namely: Al/PVDF/PZT, Al/PZT/PVDF, PVDF/Al/PZT, PVDF/PZT/Al,
PZT/PVDF/Al, and PZT/Al/PVDF. Response plots for the different stac-
king arrangement are shown below.

4.1. Nonlinear time-domain response

Fig. 2. Optimised time-domain response of Al/PVDF/PZT (a) and
Al/PZT/PVDF (b) stacking with ξ = 0.00018

Fig. 3. Optimised time-domain response of PVDF/Al/PZT (a) and
PVDF/PZT/Al (b) stacking with ξ = 0.01

Fig. 4. Optimised time-domain response of PZT/PVDF/Al (a) and
PZT/Al/PVDF (b) stacking with ξ = 0.0022
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4.2. Linear time-domain response

Fig. 5. Optimised time-domain response of Al/PVDF/PZT (a) and
Al/PZT/PVDF (b) stacking with ξ = 0.00018

Fig. 6. Optimised time-domain response of PVDF/Al/PZT (a) and
PVDF/PZT/Al (b) stacking with ξ = 0.018

Fig. 7. Optimised time-domain response of PZT/PVDF/Al (a) and
PZT/Al/PVDF (b) stacking with ξ = 0.0022

In simulating the optimised response to satisfy the optimisation constra-
ints, the damping of the system was varied by varying the damping ratio. This
was so because for a given set of layer thicknesses and in-plane dimensions, the
plate stiffnesses (D and B) cannot be altered to satisfy the optimisation con-
straints, therefore leaving only the option of varying the damping constant C,
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which can easily be done through the damping ratio ξ. The results obtained
from simulating the optimised response of the trimorph plate for the different
layer-stacking are summarised in Table 3 and 4 for the nonlinear and linear
analysis respectively.

Table 3. Nonlinear analysis of the trimorph plate response for the different
layer arrangement

S
/
N

Layer Plate Plate Plate Opera- Dam- Steady- Steady-
arrangem. den- stiffness stiffness ting ping -state -state
1-2-3 sity (B) (BE) freq. const. response set-in

respectively [kg/m3] [N/mkg] [N/m2kg] [rad/s] [Ns/mkg] [m] time [s]

1 Al/PVDF/PZT 3109.50 2.229·107 2.006·107 4721.08 1.700 2.004·10−4 6

2 Al/PZT/PVDF 3109.50 2.228·107 1.641·107 4719.77 1.699 2.005·10−4 6

3 PVDF/Al/PZT 3109.50 2.439·105 3.367·107 493.83 9.877 2.040·10−4 3

4 PVDF/PZT/Al 3109.50 2.458·105 3.430·107 495.74 9.915 2.024·10−4 3

5 PZT/PVDF/Al 3109.50 1.846·106 3.067·107 1358.64 5.435 2.175·10−4 3

6 PZT/Al/PVDF 3109.50 1.811·106 1.703·107 1345.61 5.921 2.017·10−4 3

B denotes bending stiffness while BE denotes bending-extension stiffness

Table 4. Linear analysis of the trimorph plate response for the different layer
arrangement

S/N

Layer Plate Plate Natu- Dam- Steady- Steady-
arrangem. den- stiffness ral ping -state -state
1-2-3 sity (B) freq. const. response set-in

respectively [kg/m3] [N/mkg] [rad/s] [Ns/mkg] [m] time [s]

1 Al/PVDF/PZT 3109.50 2.229·107 4721.08 1.700 2.003·10−4 6

2 Al/PZT/PVDF 3109.50 2.228·107 4719.77 1.699 2.005·10−4 6

3 PVDF/Al/PZT 3109.50 2.439·105 493.83 17.778 1.831·10−4 3

4 PVDF/PZT/Al 3109.50 2.458·105 495.74 17.847 1.817·10−4 3

5 PZT/PVDF/Al 3109.50 1.846·106 1358.64 5.435 2.178·10−4 3

6 PZT/Al/PVDF 3109.50 1.811·106 1345.61 5.921 2.012·10−4 3

Tables 3 and 4 provide a comprehensive summary of the results obtained
from simulating the time-domain responses of the different layer-stacking for
nonlinear and linear analysis respectively. It can be observed from column
three of both tables that the density of the trimorph plate is not affected
by different layer-stacking since the material properties and layer thicknesses
are unchanged. The last column of the tables shows when the steady-state
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response develops noticeably and definitively. It can be seen from the tables
that the steady-state response was achieved in less than 10 seconds in all cases.

The results also reveal that the responses for rows 1 and 2 are similar. So
also are rows 3 and 4 and rows 5 and 6. The implication is that the response
is dependent on the first layer (layer 1), which is called the reference layer
in this study. The reference layer is the layer directly experiencing the lateral
load and could be either of the top-most or bottom-most layer. This redu-
ces the problem of optimising the trimorph plate response to simulating only
three different configurations instead of the six possible configurations. The
optimised responses of the three necessary configurations are given in rows 1,
3 and 5.

In determining the best possible layer-stacking from the three configura-
tions necessary for testing/simulation, the trimorph plate stiffness, natural
frequency and damping coefficient (or ratio) are worth considering. It is requ-
ired for most applications, for example in damage mitigation, to use a material
with high resilience to load. Also, a better material would have a high natural
frequency to avoid the occurrence of resonance in operation and would require
lower damping to reduce the cost of vibration and noise control. From the non-
linear analysis (Table 3) it can be seen that row 1 has the best combination of
these considerations compared to rows 3 and 5. It is important that the nonli-
nearity in the response is minimised as much as possible. Although, row 2 has
the least value for the coefficient of the nonlinear term (bending-extension stif-
fness coefficient), row 1 still produces the best response characteristics after
considering the other factors discussed above. Row 1 has the highest ben-
ding stiffness (22.289MN/mkg), the highest natural frequency (4721.00 rad/s
= 751.29 Hz – This value is obtained from the nonlinear frequency-domain re-
sponse plot of the configuration Al/PVDF/PZT) and the second lowest dam-
ping (1.700Ns/mkg). Similarly, from the linear analysis (Table 4) row 1 has
the best combination of response characteristics as follows: bending stiffness =
22.289MN/mkg, natural frequency = 4721.08 rad/s = 751.29Hz, and damping
constant = 1.700Ns/mkg. Hence, it can be concluded that the configuration
with the best dynamic response is either of Al/PVDF/PZT or Al/PZT/PVDF
since both give very similar responses.

4.3. Frequency-domain response

The frequency-domain (FD) plots for nonlinear and linear responses have
been simulated under identical condition i.e. the same magnitude of force, dam-
ping factor, in-plane dimensions and materials. The FD plots (Figs. 8 to 13)
reveal approximately equal responses for Al/PVDF/PZT and Al/PZT/PVDF
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Fig. 8. Frequency-domain response of Al/PVDF/PZT trimorph plate
configuration

Fig. 9. Frequency-domain response of Al/PZT/PVDF trimorph plate
configuration

Fig. 10. Frequency-domain response of PVDF/Al/PZT trimorph plate
configuration
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Fig. 11. Frequency-domain response of PVDF/PZT/Al trimorph plate
configuration

Fig. 12. Frequency-domain response of PZT/PVDF/Al trimorph plate
configuration

Fig. 13. Frequency-domain response of PZT/Al/PVDF trimorph plate
configuration
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trimorph configurations, slight difference in the responses for PVDF/Al/PZT
and PVDF/PZT/Al trimorph configurations, and approximately equal respon-
ses for PZT/PVDF/Al and PZT/Al/PVDF trimorph. The plots also show that
the peak response for the linear analysis is higher than the peak response for
the corresponding nonlinear analysis in the cases where there are differences.
Also, in the cases were the linear and nonlinear responses differ, the natural
frequency of the linear response is higher than the corresponding natural fre-
quency of the nonlinear response (Table 5). Hence, it is concluded that the
effect of the nonlinear term in the equation of motion is such as to reduce
the natural frequency of the trimorph plate and this is expected in principle.
Although, the reduction in natural frequency as shown in Table 5 is not large,
it is believed that this reduction can be quite significant depending on the
dimensions of and the materials for the trimorph plate.
Frequency-domain plots have been produced using the same system inputs

for both analyses in order to compare the nonlinear and linear responses. The
plots are shown in Figs. 8 to 13 below.

Table 5. Comparison of natural frequencies for linear and nonlinear response
obtained from frequency-domain plots

S/N
Layer arrangement Linear response Nonlinear response
1-2-3 respectively [rad/s] [rad/s]

1 Al/PVDF/PZT 4721.0 4721.0

2 Al/PZT/PVDF 4719.8 4719.8

3 PVDF/Al/PZT 493.2 493.7

4 PVDF/PZT/Al 495.2 495.6

5 PZT/PVDF/Al 1358.6 1358.6

6 PZT/Al/PVDF 1345.6 1345.6

Table 5 summarises the natural frequencies of the nonlinear and linear
responses obtained from the frequency-domain plots for the different layer-
stacking of the trimorph plate.

5. Conclusions

The dynamics of a trimorph plate have been investigated in this paper. The
trimorph plate is a three-layer laminated plate with each layer made of a
different material. The plate is subjected to a sinusoidally distributed and
varying load and a linear viscous damping force.
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In studying the trimorph plate, the governing equations for deformation of
the plate were developed using the classical plate theory and classical laminate
theory as in equations (2.7). The governing equations were reduced to ordinary
differential equations (ODEs) as in equations (2.11) and (2.12) for modelling
the lateral deformation of the trimorph plate using the Navier method. The
ODEs were used to simulate the time-domain and frequency-domain respon-
ses of the plate by direct integration using bespoke MathematicaTM code. The
time-domain plots revealed that the responses were initially transient and set-
tled into steady-state after some time. To optimise the responses, the steady-
state commencement time was constrained to 30 seconds and the acceptable
maximum deflection at steady-state was constrained to ±10 percent of one-
tenth the thickness of the plate. The materials used to simulate the trimorph
plate responses were aluminium (Al), polyvinylidene fluoride (PVDF) and le-
ad zirconate titanate (PZT). From the response simulations, it was discovered
that only three out of the six possible different layer-stacking is necessary to
determine the best stacking for the trimorph plate. Considering the trimorph
plate stiffness, fundamental natural frequency and damping coefficient, either
one of the Al/PVDF/PZT or AL/PZT/PVDF configurations was found to
produce the best response given that both stackings produced very similar
responses.

Frequency-domain response plots were also generated for the nonlinear and
linear responses for the purpose of comparison. Frequency-domain responses
were generated over a chosen frequency interval, and the data were plotted.
The plots reveal that for configurations in which the nonlinear effect was signi-
ficant, the peak response and the natural frequency of the nonlinear response
are lower than that of the corresponding linear response for the same system
inputs. Therefore, the plots show that nonlinearity in the responses acts to
reduce the natural frequency of the trimorph plate.

This study has been limited to a rectangular trimorph plate that has isotro-
pic layers subjected to a sinusoidally distributed load and is simply-supported
on all four edges. This leaves room for further investigation of other loading
and boundary conditions. It is intended that the results obtained here will
be validated experimentally and numerically using software packages such as
ABAQUS. This study can be applied to the study of optimised damage mi-
tigation in structures subjected to potentially dangerous loads by considering
one of the layers of the trimorph configuration as the host material, one as the
sensor and the other as the actuator, and using the vibration analysis above
to determine what arrangement of the layers will produce the best structural
integrity under the operating constraints of the material.
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A. Appendix

The stiffness coefficients for the trimorph plate have been presented in a sim-
plified form based on the geometry of the layers. In order to accomplish this,
the reference layer labelled layer 1 is an outer layer as shown in Fig. 14. The
reference layer is the layer directly experiencing the lateral load and could be
either of the top-most or bottom-most layer, but for the purpose of illustration
the bottom-most layer is used. Other layers are labelled accordingly as shown
in Fig. 14.

Fig. 14. Sketch illustrating vertical deometry of laminae

From Fig. 14, the following can be deduced geometrically

zk − zk−1 = δk

zk =
k
∑

i=1

δi k > 0 or (A.1)

zk−1 =
k−1
∑

i=1

δi k > 1 else zk−1 = 0

where δk is the thickness of the kth layer and k = 1, 2, 3.

Aij coefficients

For the kth layer, (Aij)k = (Qij)k(zk − zk−1) = (Qij)kδk.
So that

(A11)k = (Q11)kδk =
Ek
1− ν2k

δk

(A12)k = (Q12)kδk =
νkEk
1− ν2k

δk (A.2)

(A66)k = (Q66)kδk =
Ek

2(1 + νk)
δk

where k = 1, 2, 3 for layer 1, layer 2 and layer 3, respectively.
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Hence, the extensional stiffness coefficients are given by

A11 =
k
∑

i=1

(A11)k =
E1
1− ν21

δ1 +
E2
1− ν22

δ2 +
E3
1− ν23

δ3

A12 =
k
∑

i=1

(A12)k =
ν1E1
1− ν21

δ1 +
ν2E2
1− ν22

δ2 +
ν3E3
1− ν23

δ3 (A.3)

A66 =
k
∑

i=1

(A66)k =
1

2

( E1
1 + ν1

δ1 +
E2
1 + ν2

δ2 +
E3
1 + ν3

δ3
)

Bij coefficients

For the kth layer, (Bij)k = (Qij)k(z
2
k − z

2
k−1),

z2k − z
2
k−1 = (zk + zk−1)(zk − zk−1).

Substituting equations (A.1),
z2k − z

2
k−1 = (δk + 2zk−1)δk = δk(δk + 2

∑k−1
i=1 δi.

Therefore, (Bij)k = (Qij)kδk(δk + 2
∑k−1
i=1 δi).

So that,

— for layer 1 (k = 1)

(B11)1 = (Q11)kδ
2
1 =

E1
1− ν21

δ21

(B12)1 = (Q12)1δ
2
1 =
ν1E1
1− ν21

δ21 (A.4)

(B66)1 = (Q66)1δ
2
1 =

E1
2(1 + ν1)

δ21

— for layer 2 (k = 2), (Bij)2 = (Qij)2δ2(δ2 + 2δ1)

(B11)2 = (Q11)2δ2(δ2 + 2δ1) =
E2
1− ν22

δ2(δ2 + 2δ1)

(B12)2 = (Q12)2δ2(δ2 + 2δ1) =
ν2E2
1− ν22

δ2(δ2 + 2δ1) (A.5)

(B66)2 = (Q66)2δ2(δ2 + 2δ1) =
E2

2(1 + ν2)
δ2(δ2 + 2δ1)



660 A. Big-Alabo, M.P. Cartmell

— for layer 3 (k = 3), (Bij)3 = (Qij)3δ3[δ3 + 2(δ2 + δ1)]

(B11)3 = (Q11)3δ3[δ3 + 2(δ2 + δ1)] =
E3
1− ν23

δ3[δ3 + 2(δ2 + δ1)]

(B12)3 = (Q12)3δ3[δ3 + 2(δ2 + δ1)] =
ν3E3
1− ν23

δ3[δ3 + 2(δ2 + δ1)] (A.6)

(B66)3 = (Q66)3δ3[δ3 + 2(δ2 + δ1)] =
E3

2(1 + ν3)
δ3[δ3 + 2(δ2 + δ1)]

Hence, the bending-extension stiffness coefficients are given by

B11 =
1

2

k
∑

i=1

(B11)k

=
1

2

( E1
1− ν21

δ21 +
E2
1− ν22

δ2(δ2 + 2δ1) +
E3
1− ν23

δ3[δ3 + 2(δ2 + δ1)]
)

B12 =
1

2

k
∑

i=1

(B12)k (A.7)

=
1

2

( ν1E1
1− ν21

δ21 +
ν2E2
1− ν22

δ2(δ2 + 2δ1) +
ν3E3
1− ν23

δ3[δ3 + 2(δ2 + δ1)]
)

B66 =
1

2

k
∑

i=1

(B66)k

=
1

4

( E1
1 + ν1

δ21 +
E2
1 + ν2

δ2(δ2 + 2δ1) +
E3
1 + ν3

δ3[δ3 + 2(δ2 + δ1)]
)

Dij coefficients

For each layer, (Dij)k = (Qij)k(z
3
k − z

3
k−1),

z3k − z
3
k−1 = (zk − zk−1)

3 + 3(zk − zk−1)zkzk−1 = δ
3
k + 3δk

∑k
i=1 δi

∑k−1
i=1 δi.

Therefore, (Dij)k = (Qij)k(δ
3
k + 3δk)

∑k
i=1 δi

∑k−1
i=1 δi

— for layer 1 (k = 1), (Dij)1 = (Qij)1(δ
3
1 + 3δ

2
1)

(D11)1 = (Q11)1(δ
3
1 + 3δ

2
1) =

E1
1− ν21

(δ31 + 3δ
2
1)

(D12)1 = (Q12)1(δ
3
1 + 3δ

2
1) =

ν1E1
1− ν21

(δ31 + 3δ
2
1) (A.8)

(D66)1 = (Q66)1(δ
3
1 + 3δ

2
1) =

E1
2(1 + ν1)

(δ31 + 3δ
2
1)
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— for layer 2 (k = 2), (Dij)2 = (Qij)2[δ
3
2 + 3δ2δ1(δ1 + δ2)]

(D11)2 = (Q11)2[δ
3
2 + 3δ2δ1(δ1 + δ2)] =

E2
1− ν22

[δ32 + 3δ2δ1(δ1 + δ2)]

(D12)2 = (Q12)2[δ
3
2 + 3δ2δ1(δ1 + δ2)] =

ν2E2
1− ν22

[δ32 + 3δ2δ1(δ1 + δ2)] (A.9)

(D66)2 = (Q66)2[δ
3
2 + 3δ2δ1(δ1 + δ2)] =

E2
2(1 + ν2)

[δ32 + 3δ2δ1(δ1 + δ2)]

— for layer 3 (k = 3), (Dij)3 = (Qij)3[δ
3
3 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]

(D11)3 = (Q11)3[δ
3
3 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]

=
E3
1− ν23

[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]

(D12)3 = (Q12)3[δ
3
3 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)] (A.10)

=
ν3E3
1− ν23

[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]

(D66)3 = (Q66)3[δ
3
3 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)

=
E3

2(1 + ν3)
[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]

Hence, the bending stiffness coefficients are given by

D11 =
1

3

k
∑

i=1

(D11)k =
1

3

( E1
1− ν21

(δ31 + 3δ
2
1)

+
E2
1− ν22

[δ32 + 3δ2δ1(δ1 + δ2)] +
E3
1− ν23

[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]
)

D12 =
1

3

k
∑

i=1

(D12 =
1

3

( ν1E1
1− ν21

(δ31 + 3δ
2
1)

(A.11)

+
ν2E2
1− ν22

[δ32 + 3δ2δ1(δ1 + δ2)] +
ν3E3
1− ν23

[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]
)

D66 =
1

3

k
∑

i=1

(D66)k =
1

6

( E1
1 + ν1

(δ31 + 3δ
2
1)

+
E2
1 + ν2

[δ32 + 3δ2δ1(δ1 + δ2)] +
E3
1 + ν3

[δ33 + 3δ3(δ1 + δ2)(δ1 + δ2 + δ3)]
)
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Analiza drgań płyty trimorficznej pod kątem zoptymalizowanej ochrony

przed uszkodzeniem

Streszczenie

Przedstawiono badania dotyczące wiskotycznie tłumionej płyty trimorficznej pod-
danej sinusoidalnie rozłożonemu obciążeniu przy warunkach brzegowych typu swo-
bodne podparcie. Wyprowadzono równanie ruchu płyty, pierwszy raz w tym arty-
kule, opisujące nieliniowy efekt ugięcia na podstawie klasycznej teorii płyt (CPT)
oraz klasycznej teorii laminatów (CLT). Równanie to rozwiązano metodą Naviera
oraz bezpośrednim całkowaniem numerycznym. Zoptymalizowane wykresy odpowie-
dzi czasowych płyty wykonanej z aluminium (Al), polifluorku winylidenu (PVDF)
oraz spieków cyrkonu i tytanu (PZT) wykazały, że tylko trzy z możliwych sześciu
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konfiguracji warstw trimorfu wystarczają do określenia najlepszego ułożenia warstw.
Przy znajdowaniu najlepszej aranżacji warstw pod kątem zoptymalizowanej odpowie-
dzi dynamicznej płyty wzięto pod uwagę trzy czynniki: sztywność, częstość własną
i stałą tłumienia. W tym kontekście najlepsze okazały się konfiguracje Al/PVDF/PZT
oraz Al/PZT/PVDF – uzyskały najwyższą sztywność, największą częstość drgań wła-
snych i najmniejszy współczynnik tłumienia. Wykresy otrzymane w dziedzinie czę-
stości pozwoliły na porównanie odpowiedzi układu nieliniowego i zlinearyzowanego,
ujawniając, zgodnie z przewidywaniami, że efekt nieliniowy zmniejsza częstość własną
trimorfu. Wykazano także, że zaprezentowane badania mogą zostać zastosowane do
analizy „inteligentnych” nadwozi samochodowych celującej w zoptymalizowane wła-
ściwości ze względu na ochronę przed uszkodzeniami oraz do krytycznych elementów
bezpieczeństwa narażonych na potencjalne ryzyko zniszczenia.
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